
Proseminar

Programmieren in R

Rcpp

Oliver Heidmann
Betreuer: Julian Kunkel

Deutsches Klima Rechenzentrum
University of Hamburg

30.September 2016

Contents

1 R 1

2 C++ 1

3 Basics 1
3.1 Installing packages . 1
3.2 RObject . 1
3.3 SEXP . 2
3.4 Type Mappings . 2

4 Integrating C++ code 2
4.1 Inline . 2
4.2 cppSource . 4
4.3 Package . 5
4.4 Rcpp.package.skeleton usage 5
4.5 Installing the package . 6

5 Performance 6
5.1 System data . 6
5.2 Inline vs sourceCpp vs package 6

5.2.1 Mean calculation . 7
5.2.2 matrix multiplication 7
5.2.3 Search . 7
5.2.4 Results . 7

5.3 C++ vs R vs Rcpp . 7
5.3.1 Result . 7

6 Conclusion 8

1

Abstract

In most cases R is fast enough but there are times when more speed is needed
than R offers. Rcpp allows the usage of C++ code in R scripts. And through
this gain part of the performance C++ offers. In this report I will present
Rcpp and explain its usage and document the speedups gained through it.
This report is written with the intend to get C++ programmers into R and
Rcpp so there will only be a very brief section about C++. At the end of
the report the reader should be able to use Rcpp and to build his own Rcpp
package without having previous knowledge about R or Rcpp.

1 R

R is a platform independent inter-
preted open source programming lan-
guage. It is a implementation of S
and combines S with lexical scop-
ing semantics and also is heavily in-
spired by Scheme. Freeing of allo-
cated memory space is done by a
garbage collector. R is not made
for performance but to offer tools
to easy implement data analysis and
statistics programs and use of many
data sources eg. ODBC-compliant
sources and other statistical pack-
ages. Comprehensive R Archive Net-
work (CRAN) offers multitudes of
free extensions called packages.

2 C++

C++ is a programming language de-
signed for flexibility in use. In encom-
passes high level language features
as well as access to the lower fea-
tures. C++ allows a variety of differ-
ent programming paradigms includ-
ing Object-oriented programming. It
allows direct control of memory man-
agement and is designed to have high
performance in execution and mem-
ory usage. C++ code needs to get
compiled and the language is strongly
typed.

3 Basics

3.1 Installing packages

Installing packages is done through
the

install.packages("pkgname","repo_url")

command. In an active R shell, if the
user does not specify a mirror, the
shell will ask the user to select one.
For this report I wrote a small exam-
ple script

requiredPackages = c(

"Rcpp",

"microbenchmark",

"ggplot2")

#set repo url

repo <- "http://cran.uni-muenster.de/"

for all required

packages do:

for(p in requiredPackages)

{

#if the package is not installed

if(!require(p, character.only = TRUE))

{

#install the missing package

install.packages(p, repo)

}

}

which checks if all required packages
are installed and installs the missing
ones.

3.2 RObject

RObjects are taking the role of the
base of all API classes in Rcpp. They
themselves have no meaning and are
used to bind the four parent classes
together. SlotProxyPolicy is one of

1

the parent classes and defines the
member functions to manipulate the
S objects which are used in R. The
second is AttributeProxyPolicy and
defines member fucntions that enable
working with object attributes. ROb-
jectMethods on the other hand de-
fine the functions of all RObject API
classes. Preserve Storage is the last
of the parent classes and provides the
data field of the underlying R struc-
ture of type SEXP. In addition one
of the most important attributes of
RObject is that is protects the R vari-
ables used in the C++ code from the
R garbage collector.

3.3 SEXP

SEXP is short for S-Expressions and
is the type R uses and which Rcpp
matches to C++ Objects.

3.4 Type Mappings

Rccp can map anything that offers
the SEXP() method from C++ to R.
SEXP() will be used by wrap to cre-
ate the new SEXP object.

template <typename T>

SEXP wrap(const T & object)

And for R to C++ there is

template <typename T>

T as(SEXP x)

The programmer can write his
own SEXP() for user defined Types.

Rcpp provides mappings for, int, dou-
ble, bool, std::string and all standard
library containers containing the just
mentioned types. There are things
that can not be mapped automati-
cally for example a vector in a vec-
tor. For this Rcpp provides special
types for the given example there is
Rcpp::NumericMatrix which will be
used later in this article.

4 Integrating C++

code

Rcpp offers different approaches of in-
tegrating C++ code into R. In the
following section I will present them.
Each of them differ in ease of use,
performance and the amount of steps
needed to use them.

4.1 Inline

Integrating C++ function with this
method is best used for short C++
code. Inline allows the programmer
to write C++ functions directly in
the R file. To use inline the inline
package must be included as well as
the Rcpp package. After the function
is defined it can be used as one would
use a R function.

#including the packages

require(inline)

require(Rcpp)

2

#binding function to

#name

inlineMean <-cppFunction(’

#c++ function

float sCpp_mean(

#this function calculates

#the mean of a vector

std::vector<int> vec)

{

float result = 0;

for(float entry : vec)

{

result += entry;

}

return result/vec.size();

}

’)

In this example a function inlineMean
was created through cppFunction().
Inside the cppFunction’s parameter
the C++ function is defined. The
created function then then be called
like any other R function. Each time
the R interpreter reaches a inline c++
function it is compiled. Since compi-
lation is relatively slow this burdens
the execution time of the script. In
addition to the example above I im-
plemented two other functions. Both
will be used in the benchmark sec-
tion. The first takes a vector and cal-
culates the mean.

inline_search <-cppFunction(’

bool inline_search (

std::vector<int> vec)

{

bool found = true;

unsinged long i;

for (i = 0; i < vec.size(); i++) {

// if found iterator to the object

// else iterator to end of vec

auto iter = std::find(vec.begin(),

vec.end(),

i);

if (it == vec.end())

{

found = false;

};

}

return found;

}

’)

The second multiplies two matrices

inline_matrix_mul <-cppFunction(’

Rcpp::NumericMatrix sCpp_matrix_mul(

Rcpp::NumericMatrix a,

Rcpp::NumericMatrix b)

{

unsigned long n = a.nrow();

unsigned long m = a.ncol();

unsigned long l = b.ncol();

Rcpp::NumericMatrix result;

if (a.ncol() == b.nrow()) {

for (unsigned long i = 0; i < n; i++)

for (unsigned long k = 0; k < l; k++)

for (unsigned long j = 0; j < m; j++)

{

result(i,j) += a(i,k) * b(k,j);

}

} else {

std::cout << "Error: matrices dont

have the right

3

dimensions "

<< std::endl;

exit(EXIT_FAILURE);

}

return result;

}

’)

The time needed to compile them is
shown here. All results are in sec-
onds.

compiling inline_search

Compiling time inline search:

user system elapsed

5.373 0.235 5.630

compiling inline_mean

Compiling time inline mean:

user system elapsed

8.046 0.312 8.395

compiling inline_matrix_mul

Compiling time inline_matrix_mul:

user system elapsed

10.659 0.423 11.131

Summation of inline compile time:

user system elapsed

24.078 0.970 25.156

4.2 cppSource

Rccp offers the cppSource(”filename”)
function to include entire Cpp source
files. To use the functions in that file
each function that is meant to be ex-
ecuted in the R file has to be marked
with

//[[Rcpp::export]]

These function must be in the global
namespace and parameters and re-
turn values need to be Mappable.
Functions can be renamed with he ex-
tension of the export tag, this allows
to use names which C++ would not
allow.

//[[Rcpp::export(name = ".newname")]]

With this it is possible to, for ex-
ample, adapt the name to your, in
R used, function name conventions.
For dependencies to other R packages
there is the

//[[Rcpp::depends()]]

feature. This causes the cppFunc-
tion() function to configure the build-
ing process to compile and link to
given packages. Mapping the types is
done while the R code is interpreted
so no manual mapping is required.
As long as the C++ source file is
not changed the compilation is only
done once per R session. But every
time the script is run through Rscript
the C++ functions will be compiled
again as this counts as a new R shell.
The time needed to compile depends
on the code that is compiled. The
time needed to include functions very
similar to the example fuctions from
the inline section in second is shown
here:

Loading cppSource source file

Loading time

4

user system elapsed

2.753 0.139 2.902

included C++ headers will be linked
and added to the source code auto-
matically.

4.3 Package

For when there are lager c++ code
parts and functionality that can be
used in different contexts there is
a simple way of creating packages
which use Rcpp. Rccp offers a com-
mand that builds a skeleton package
which also can be used as a tuto-
rial/starting point to get into Rcpp
and package creation.

> Rcpp.package.skeleton("pakagename")

Trough using the skeleton the pack-
age already confirms with the Rcpp
vignette guideline which I will not
go over in this report. The skele-
ton includes a file structure as well
as example functions and readme files
as well as skeleton package descrip-
tion/documentation files. The struc-
ture is separated into a usage folder
and R, C++ code folders as well as a
folder for the interface functions writ-
ten in C++.

simplePackage/

man/

R/

src/

DESCRIPTION

NAMESPACE

Read-and-delete-me

The C++ Code is compiled into a
shared library when the package is
build so no further compilation is
needed when executing the R script.

4.4 Rcpp.package.skeleton
usage

Each C++ function requires a wrap-
per function, defined in the src
folder, which cares for mapping the
types between C++ and R. Rcpp of-
fers the function compileAttributes
which generates the wrappers and
the bindings. For easy use I wrote
a 2 line script compileAttributes.R,
which takes care of generating the ex-
port functions.

>library(Rcpp)

>compileAttributes(commandArgs(TRUE))

The script can be called with with

Rscript compileAttributes.R <pkg_name>

without the need to open an active R
shell.

The compileAttributes function
would then generate the following
code from a C++ function.

• C++ function:

// [[Rcpp::export]]

std::vector<int> add(

int a, int b)

5

{

return a + b;

}

• the generated wrapper function

using namespace Rcpp;

using namespace std;

//function definiton

int add(int a, int b);

//wraper function

RcppExport SEXP

test_add(SEXP aSEXP, SEXP bSEXP)

{

BEGIN_RCPP

RObject rcpp_result_gen;

RNGScope rcpp_rngScope_gen;

traits::input_parameter<int>::type a(aSEXP);

traits::input_parameter<int>::type b(bSEXP);

rcpp_result_gen = wrap(add(a, b));

return rcpp_result_gen;

END_RCPP

}

• function binding through .call

> r_function <- function(p1_, p_2, p_n){

.Call(’cppfunc_name’),

PACKAGE = ’pkg_name’,

p1_, p_2, p_n}

The .Call method is the interface
function between R and C++.

4.5 Installing the package

installing the package is done through

R CMD INSTALL --build test

once installed it can be used like any
other package.

5 Performance

I used the above introduced functions
to compare inline, sourceCpp and the
package in terms of running time. In
addition I compared the results with
a native C++ program and a na-
tive R program. Those three function
each represent an often needed task in
programming

1. Searching entries in a vector
2. Matrix multiplication
3. Calculations on a vector

For the benchmarks I used the pack-
age microbenchmarks.

5.1 System data

System Specs:

1. Architecture: x86 64
2. OS: linux 4.7.4-1 (ArchLinux)
3. Ram: 8GB DDR3
4. Cpu: Intel(R) Core(TM) i5-

3570K CPU @ 3.40 GHz

5.2 Inline vs sourceCpp
vs package

All functions in a group differ only
in their way of calling them from R.
Each function was called 100 times.
The source code is attached to this re-
port for full view of the functions and
the benchmarks. Important to note is
that for the compilation of the pack-
age the compiler optimization flag O2
was used.

6

5.2.1 Mean calculation

This function goes over a vector
and sums its entries up. After that
the function divides the sum by the
number of elements in that vector.

min(ms) mean (ms) max(ms)
sCpp 0.028000 0.03778730 0.071649
inline 0.028376 0.03791835 0.095817

package 0.030758 0.04214210 0.141447

5.2.2 matrix multiplication

In the matrix multiplication func-
tions I used no special C++ features.
It is implemented trough three nested
for loops. The loops are nested in a
way that minimizes cache misses in
case of larger matrices.

This function works by going
over the vector once while calcu-
lating the sum of all contained val-
ues. At the end the sum gets di-
vided by the size of the vector.

min (ms) mean (ms) max (ms)
sCpp 1.316425 1.378768 1.495590
inline 1.320563 1.389122 1.611258

package 1.319452 1.389438 1.584307

5.2.3 Search

For the search I used the std::find(...)
function from the C++ Stan-
dard Library. The vectors in
which the algorithm searches are
filled with ordered numbers and
each number is searched for once.

min (ms) mean (ms) max (ms)
sCpp 3334.03500 34.68003 36.38635
inline 3334.07672 34.74363 36.43009

package 3334.12335 34.67028 36.14496

5.2.4 Results

The results show that each of the
here presented usages of Rcpp are
quite close together in terms of per-
formance. Using sourceCpp is just
slightly faster that the other two as
long as we do not add in the compile
times for cppSource and inline. If we
add those in the package is the fastest
of the three.

5.3 C++ vs R vs Rcpp

In this section I use the package
used in the benchmarks before and
compare the runtime to the na-
tive R and C++ implementations.

matrix mean search
R 1583.8 ms 2.00 ms 269.51 ms

Rcpp 1.37 ms 0.043 ms 33.83 ms
C++O2 1.4 ms 0.02 ms 26.43 ms
C++O3 0.24 ms 0.01 ms 17.67 ms

5.3.1 Result

The tables in these section show
the decrease of runtime though using
Rcpp and also the difference to na-
tive C++ code. They also show the
further potential decrease in runtime
by changing the by R/Rcpp used O2
compiler flag to O3. O3 tells the com-
piler to optimize the code as much as

7

it is possible by the compiler.
For the matrix Benchmarks we get
the following speed up.

R Rcpp
Rcpp 1154.36 0

C++ O2 1130.62 0.98
C++ O3 6595.3 5.70

There is a very huge speed from na-
tive R code to C++. The table also
shows that through using the C++
compilers optimization there is even
more room for improvement. In fact
the difference between O2 and O3 is
a six times speed up in addition to
the 1000 times speed up from native
R to Rcpp.

In the mean we get a lot less re-
duction in runtime but these results
also show a huge difference in runtime
through Rcpp.

R Rcpp
Rcpp 46.51 0

C++ O2 100 2.15
C++ O3 200 4.3

Using the O3 flag would half the run-
time in addition to the 46 times lower
runtime of Rcpp.

The searches show the lowest de-
crease of runtime.

R Rcpp
Rcpp 7.967 0

C++O2 10.20 1.27
C++O3 15.25 1.91

Here we get a nearly 8 times decrease
in runtime through using Rcpp. And
almost double that for a C++ pro-
gram compiled with the O3 flag.

6 Conclusion

In the first part I showed that R/Rcpp are easy to get into. Many already in-
tegrated tools like the package creation or the R function which creates map-
ping and wrapper functions for the programmer make working with R/Rcpp
very easy and comfortable.

Through using Rccp the resulting speed up is huge, especially for loops,
which are generally slow in R profit from the C++ integration. But not only
loops get a huge boost but every function tested got at least 7 times faster
that its native R counter part. In addition to the already speed up extra
optimization is possible through changing the compiler flag R/Rcpp uses for
compiling C++ code to O3.

Using inline is good for short code snippets as it is easily written in.
For lager functions or multiple large functions it is less appropriate since

8

each function is compiled when reached the first time. Also it decreases
readability and thus gives the programmer a harder time maintaining the
code.

For mid sized C++ code cppSource ist the best way to integrate the C++
functions. It has similar ease of use as inline and keeps, through the way the
C++ code is included, R and C++ code in separate files. Another benefit
is that the C++ code is easily reusable since all that has to be done to use
it, is to include it with sourceCpp. As inline cppSource has the drawback of
the needed compile time when executing the Rscript.

Using a package that contains the C++ offers the most increase in perfor-
mance since the package does not need to compile the code each time it is used
as long as it has already been installed. I is also the best way to maintain a
large C++ code base. One drawback is that it need the most amount of work
to be implemented as such it is not a good choice for prototyping or small
code snippets. As the other two do it does handle the wrapping an mapping
of functions and types on its own as long as the compileAttributes function
is used. Its file structure, generated through Rcpp.package.skeleton, makes
the code easy to maintain and extend. Through this, keeping the readability
of the package high is also made easy.

All in all is Rcpp a very good and easy way to increase the performance
of Rscripts and offers many tools to ease the implementation process for the
programmer.

9

• adv-r.had.co.nz/Performance.html
29.9.2016

• http://dirk.eddelbuettel.com/code/rcpp/Rcpp-introduction.pdf
13.6.2016

• http://dirk.eddelbuettel.com/code/rcpp/Rcpp-package.pdf
13.6.2016

• http://dirk.eddelbuettel.com/code/rcpp/Rcpp-FAQ.pdf
13.6.2016

• https:://www.techopedia.com/definition/26184/c-programming-language
13.6.2016

• adv-r.had.co.nz/Rcpp.html
13.6.2016

• https://cran.r-project.org/web/packages/microbenchmark/microbenchmark.pdf
13.6.2016

10

