
Introduction The Project Lustre Architecture Performance Conclusion References

Lustre

Paul Bienkowski
2bienkow@informatik.uni-hamburg.de

Proseminar “Ein-/Ausgabe - Stand der Wissenschaft”

2013-06-03

1 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Outline

1 Introduction

2 The Project
Goals and Priorities
History
Who is involved?

3 Lustre Architecture
Network Architecture
Data Storage and Access
Software Architecture

4 Performance
Theoretical Limits
Recent Improvements

5 Conclusion

6 References

2 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

What is Lustre

parallel filesystem

well-scaling (capacity and speed)

based on Linux kernel

optimized for clusters (many clients)

Linux cluster

3 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

What is Lustre

parallel filesystem

well-scaling (capacity and speed)

based on Linux kernel

optimized for clusters (many clients)

Linux cluster

3 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

The Project

1 Introduction

2 The Project
Goals and Priorities
History
Who is involved?

3 Lustre Architecture
Network Architecture
Data Storage and Access
Software Architecture

4 Performance
Theoretical Limits
Recent Improvements

5 Conclusion

6 References

4 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Goals and Priorities

Goals

stability

features

performance

until 2007
“it’s a science project”

(prototype)

stability

performance

features

2010
used in high-performance

production environments

reproduced from [2]

4 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

History

History

Started as a research project in 1999 by Peter Braam

Braam founds Cluster File Systems

Lustre 1.0 released in 2003

Sun Microsystems aquires Cluster File Systems in 2007

Oracle Corporation aquires Sun Mircrosystems in 2010

Oracle ceases Lustre development, many new Organizations continue
development, including Xyratex, Whamcloud, and more

In 2012, Intel aquires Whamcloud

In 2013, Xyratex purchases the original Lustre trademark from Oracle

5 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Who is involved?

Who is involved?

Oracle no development, only pre-1.8 support

Intel funding, preparing for exascale computing

Xyratex hardware bundling

OpenSFS (Open Scalable File Systems) “keeping Lustre open”

EOFS (EUROPEAN Open File Systems) (community collaboration)

FOSS Community many joined one of the above to help development
(e.g. Braam works for Xyratex now)

DDN, Dell, NetApp, Terascala, Xyratex
storage hardware bundled with Lustre

6 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Who is involved?

Supercomputers

Lustre File System is managing data on more than 50 percent of
the top 50 supercomputers and seven of the top 10
supercomputers.

— hpcwire.com, 2008 [9]

The biggest computer today (Titan by Cray, #1 on TOP500)
uses Lustre.

[13]
7 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Lustre Architecture

1 Introduction

2 The Project
Goals and Priorities
History
Who is involved?

3 Lustre Architecture
Network Architecture
Data Storage and Access
Software Architecture

4 Performance
Theoretical Limits
Recent Improvements

5 Conclusion

6 References

8 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Network Architecture

Network Structure

CLIENTS

OBJECT
STORAGE

METADATA

MDS

OSS

MDT

OST

different network types: any TCP/GigE, InfiniBand,

Cray Seastar, Myrinet MX, RapidArray ra, Quadrics Elan [5]

graph reproduced from [1]

8 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Network Architecture

Network Structure

CLIENTS

OBJECT
STORAGE

METADATA

MDS

OSS

MDT

OST

different network types: any TCP/GigE, InfiniBand,

Cray Seastar, Myrinet MX, RapidArray ra, Quadrics Elan [5]

graph reproduced from [1]

8 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Network Architecture

Network Structure

CLIENTS

OBJECT
STORAGE

METADATA

MDS

OSS

MDT

OST

different network types: any TCP/GigE, InfiniBand,

Cray Seastar, Myrinet MX, RapidArray ra, Quadrics Elan [5]

graph reproduced from [1]

8 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Network Architecture

Network Structure

CLIENTS

OBJECT
STORAGE

METADATA

MDS

OSS

MDT

OST

different network types: any TCP/GigE, InfiniBand,

Cray Seastar, Myrinet MX, RapidArray ra, Quadrics Elan [5]

graph reproduced from [1]

8 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Network Architecture

Network Structure

CLIENTS

OBJECT
STORAGE

METADATA

MDS

OSS

MDT

OST

different network types: any TCP/GigE, InfiniBand,

Cray Seastar, Myrinet MX, RapidArray ra, Quadrics Elan [5]

graph reproduced from [1]

8 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Network Architecture

Metadata Server (MDS)

store file information (metadata)

accessed by clients to access files

manage data storage

at least one required

multiple MDS possible (different techniques)

recent focus for performance improvement

9 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Network Architecture

Network Structure

CLIENTS

OBJECT
STORAGE

METADATA

MDS

OSS

MDT

OST

different network types: any TCP/GigE, InfiniBand,

Cray Seastar, Myrinet MX, RapidArray ra, Quadrics Elan [5]

graph reproduced from [1]

10 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Network Architecture

Network Structure

CLIENTS

OBJECT
STORAGE

METADATA

MDS

OSS

MDT

OST

different network types: any TCP/GigE, InfiniBand,

Cray Seastar, Myrinet MX, RapidArray ra, Quadrics Elan [5]

graph reproduced from [1]

10 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Network Architecture

Object Storage Server (OSS)

store file content (objects)

accessed by clients directly

at least one required

> 10, 000 OSS are used in large scale computers

11 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Network Architecture

Network Structure

CLIENTS

OBJECT
STORAGE

METADATA

MDS

OSS

MDT

OST

different network types: any TCP/GigE, InfiniBand,

Cray Seastar, Myrinet MX, RapidArray ra, Quadrics Elan [5]

graph reproduced from [1]

12 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Network Architecture

Network Structure

CLIENTS

OBJECT
STORAGE

METADATA

MDS

OSS

MDT

OST

different network types: any TCP/GigE, InfiniBand,

Cray Seastar, Myrinet MX, RapidArray ra, Quadrics Elan [5]

graph reproduced from [1]

12 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Network Architecture

Targets

two types

object storage target (OST)
metadata target (MDT)

can be any block device

normal hard disk / flash drive / SSD
advanced storage arrays

will be formatted for lustre

up to 16 TiB / target (ext4 limit)

13 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Network Architecture

Failover

if one server fails, another one takes over

backup server needs access to targets

enabled on-line software upgrades (one-by-one)

14 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Network Architecture

Network Structure

CLIENTS

OBJECT
STORAGE

METADATA

MDS

OSS

MDT

OST

different network types: any TCP/GigE, InfiniBand,

Cray Seastar, Myrinet MX, RapidArray ra, Quadrics Elan [5]

graph reproduced from [1]

15 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Network Architecture

Network Structure

CLIENTS

OBJECT
STORAGE

METADATA

MDS

OSS

MDT

OST

different network types: any TCP/GigE, InfiniBand,

Cray Seastar, Myrinet MX, RapidArray ra, Quadrics Elan [5]

graph reproduced from [1]

15 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Network Architecture

System characteristics

Subsystem Typical number
of systems

Performance Required atta-
ched storage

Desirable hard-
ware characteri-
stics

Clients 1 - 100,000 1 GB/s I/O,
1000 metadata
ops

– –

Object Storage 1 - 1,000 500 MB/s - 2.5
GB/s

total capacity
OSS count

good bus
bandwidth

Metadata Sto-
rage

1 + backup (up
to 100 with Lustre
> 2.4)

3,000 - 15,000
metadata ops

1 - 2% of file
system capacity

adequate CPU
power, plenty of
memory

table reproduced from [1]

16 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Data Storage and Access

Traditional Inodes

used in many file system structures (e.g. ext3)

each node has an index

bijective mapping (file ↔ inode)

contains metadata and data location (pointer)

17 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Data Storage and Access

Metadata (Lustre Inodes)

Lustre uses similar structure

inodes are stored on MDT

inodes point to objects on OSTs

file is striped across multiple OSTs

inode stores information to these OSTs

18 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Data Storage and Access

Striping

RAID-0 type striping
data is split into blocks
block size adjustable per file/directory
OSTs store every n-th block (with n being number of OSTs involved)
speed advantage (multiple simultaneous OSS/OST connections)
capacity advantage (file bigger than single OST)

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4

OST1 OST2 OST3

A1 A2 A3
A4 A5 A6
A7 A8

B1
B2

B3
B4

19 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Data Storage and Access

Data Safety & Integrity

data safety

striping does not backup any data
but for the targets, a RAID can be used
in target RAIDs, a drive may fail (depends on RAID type)

availability

failovers ensure target reachability
multiple network types/connections

consistency

lustre log (similar to journal)
simultaneous write protection: LDLM (Lustre Distributed Lock
Manager), distributed across OSS

20 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Software Architecture

Software Architecture - Server

MDS/OSS has mkfs.lustre-formatted space

ldiskfs kernel module required (based on ext4)

kernel requires patching (only available for some Enterprise Linux 2.6
kernels, e.g. Red Hat)

Limitations

very platform dependent

needs compatible kernel

not a problem when using independent storage solution

21 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Software Architecture

Software Architecture - Client

“patchfree” client: kernel module for Linux 2.6

userspace library (liblustre)

userspace filesystem (FUSE) drivers

NFS access (legacy support)

Platform Support

most Linux kernel versions > 2.6 supported

NFS for Windows

NFS/FUSE MacOS

22 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Software Architecture

Interversion Compatibility

Lustre usually supports interoperability [6].

e.g. 1.8 clients ↔ 2.0 servers and vice versa

→ on-line upgrade-ability using failover systems

23 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Performance

1 Introduction

2 The Project
Goals and Priorities
History
Who is involved?

3 Lustre Architecture
Network Architecture
Data Storage and Access
Software Architecture

4 Performance
Theoretical Limits
Recent Improvements

5 Conclusion

6 References

24 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Theoretical Limits

Theoretical Limits

A well designed Lustre storage system can achieve 90% of
underlining hardware bandwidth.

— Zhiqi Tao, Sr. System Engineer, Intel [3]

Example

160 OSS, 16 OST each, 2 TiB each

→ 2.5 PiB (Pebibyte) total storage

each OST delivers 50 MiB/s

→ 800 MiB/s combined throughput per OSS

stripe size 16 MiB

write 200 GiB file (80 stripes per OSS, 5 stripes per OST)

→ 1.25 GiB per OSS, written in 1.6 seconds

all OSS parallel, total speed 125 GiB/s

24 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Theoretical Limits

Theoretical Limits

A well designed Lustre storage system can achieve 90% of
underlining hardware bandwidth.

— Zhiqi Tao, Sr. System Engineer, Intel [3]

Example

160 OSS, 16 OST each, 2 TiB each

→ 2.5 PiB (Pebibyte) total storage

each OST delivers 50 MiB/s

→ 800 MiB/s combined throughput per OSS

stripe size 16 MiB

write 200 GiB file (80 stripes per OSS, 5 stripes per OST)

→ 1.25 GiB per OSS, written in 1.6 seconds

all OSS parallel, total speed 125 GiB/s

24 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Theoretical Limits

Theoretical Limits

A well designed Lustre storage system can achieve 90% of
underlining hardware bandwidth.

— Zhiqi Tao, Sr. System Engineer, Intel [3]

Example

160 OSS, 16 OST each, 2 TiB each

→ 2.5 PiB (Pebibyte) total storage

each OST delivers 50 MiB/s

→ 800 MiB/s combined throughput per OSS

stripe size 16 MiB

write 200 GiB file (80 stripes per OSS, 5 stripes per OST)

→ 1.25 GiB per OSS, written in 1.6 seconds

all OSS parallel, total speed 125 GiB/s

24 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Theoretical Limits

Theoretical Limits

A well designed Lustre storage system can achieve 90% of
underlining hardware bandwidth.

— Zhiqi Tao, Sr. System Engineer, Intel [3]

Example

160 OSS, 16 OST each, 2 TiB each

→ 2.5 PiB (Pebibyte) total storage

each OST delivers 50 MiB/s

→ 800 MiB/s combined throughput per OSS

stripe size 16 MiB

write 200 GiB file (80 stripes per OSS, 5 stripes per OST)

→ 1.25 GiB per OSS, written in 1.6 seconds

all OSS parallel, total speed 125 GiB/s

24 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Theoretical Limits

Theoretical Limits

A well designed Lustre storage system can achieve 90% of
underlining hardware bandwidth.

— Zhiqi Tao, Sr. System Engineer, Intel [3]

Example

160 OSS, 16 OST each, 2 TiB each

→ 2.5 PiB (Pebibyte) total storage

each OST delivers 50 MiB/s

→ 800 MiB/s combined throughput per OSS

stripe size 16 MiB

write 200 GiB file (80 stripes per OSS, 5 stripes per OST)

→ 1.25 GiB per OSS, written in 1.6 seconds

all OSS parallel, total speed 125 GiB/s

24 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Theoretical Limits

Theoretical Limits

A well designed Lustre storage system can achieve 90% of
underlining hardware bandwidth.

— Zhiqi Tao, Sr. System Engineer, Intel [3]

Example

160 OSS, 16 OST each, 2 TiB each

→ 2.5 PiB (Pebibyte) total storage

each OST delivers 50 MiB/s

→ 800 MiB/s combined throughput per OSS

stripe size 16 MiB

write 200 GiB file (80 stripes per OSS, 5 stripes per OST)

→ 1.25 GiB per OSS, written in 1.6 seconds

all OSS parallel, total speed 125 GiB/s

24 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Theoretical Limits

Theoretical Limits

A well designed Lustre storage system can achieve 90% of
underlining hardware bandwidth.

— Zhiqi Tao, Sr. System Engineer, Intel [3]

Example

160 OSS, 16 OST each, 2 TiB each

→ 2.5 PiB (Pebibyte) total storage

each OST delivers 50 MiB/s

→ 800 MiB/s combined throughput per OSS

stripe size 16 MiB

write 200 GiB file (80 stripes per OSS, 5 stripes per OST)

→ 1.25 GiB per OSS, written in 1.6 seconds

all OSS parallel, total speed 125 GiB/s

24 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Theoretical Limits

Theoretical Limits

A well designed Lustre storage system can achieve 90% of
underlining hardware bandwidth.

— Zhiqi Tao, Sr. System Engineer, Intel [3]

Example

160 OSS, 16 OST each, 2 TiB each

→ 2.5 PiB (Pebibyte) total storage

each OST delivers 50 MiB/s

→ 800 MiB/s combined throughput per OSS

stripe size 16 MiB

write 200 GiB file (80 stripes per OSS, 5 stripes per OST)

→ 1.25 GiB per OSS, written in 1.6 seconds

all OSS parallel, total speed 125 GiB/s

24 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Theoretical Limits

Theoretical Limits

A well designed Lustre storage system can achieve 90% of
underlining hardware bandwidth.

— Zhiqi Tao, Sr. System Engineer, Intel [3]

Example

160 OSS, 16 OST each, 2 TiB each

→ 2.5 PiB (Pebibyte) total storage

each OST delivers 50 MiB/s

→ 800 MiB/s combined throughput per OSS

stripe size 16 MiB

write 200 GiB file (80 stripes per OSS, 5 stripes per OST)

→ 1.25 GiB per OSS, written in 1.6 seconds

all OSS parallel, total speed 125 GiB/s

24 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Recent Improvements

Recent Improvements

“wide striping”

OST/file limit extended
> 160 OST possible
inode xattrs

ZFS support

instead of ldiskfs on targets
better kernel support
more widely used → better developed
all advantages of ZFS (checksums, up to 256 ZiB1/OST, compression,
copy-on-write) [12]

multiple MDS

metadata striping / namespacing
metadata performance as bottleneck

1kibi, mebi, gibi, tebi, pebi, exbi, zebi, yobi
25 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Recent Improvements

Metadata overhead

Common Task

readdir (directory traversal) and stat (file information)

ls -l

Problem

one stat call for every file, each is a RPC (POSIX).

each RPC generates overhead and I/O wait

Solution

Lustre detects readdir+stat and requests all stats from OSS in
advance (parallel)

a combined RPC reply is sent (up to 1 MB)

Alternative

readdirplus from POSIX HPC I/O Extensions [11]

26 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Recent Improvements

Metadata overhead (cont’d)

1 2 4 8 16

10

100

1,000

10,000

Item count (100K)

T
ra

n
ve

rs
al

ti
m

e
(s

ec
)

ls -l with subdir items

improved original

1 2 4 8 16
10

100

1,000

10,000

Item count (100K)

T
ra

n
ve

rs
al

ti
m

e
(s

ec
)

ls -l with 4-striped files

improved original

graph data from [4]

27 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Recent Improvements

Metadata overhead

Common Task

readdir (directory traversal) and stat (file information)

ls -l

Problem

one stat call for every file, each is a RPC (POSIX).

each RPC generates overhead and I/O wait

Solution

Lustre detects readdir+stat and requests all stats from OSS in
advance (parallel)

a combined RPC reply is sent (up to 1 MB)

Alternative

readdirplus from POSIX HPC I/O Extensions [11]

28 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Recent Improvements

SSDs as MDT

Metadata often bottleneck

SSDs have higher throughput

SSDs achieve way more IOPS (important for metadata)

only small capacity required (expensiveness!)

Following Graphs:

plot metadata access (create, stat, unlink)

8 processes per client-node

HDD/SSD/RAM

ldiskfs / ZFS (Orion-Lustre branch)

data from [10]

29 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Recent Improvements

SSDs as MDT

Metadata often bottleneck

SSDs have higher throughput

SSDs achieve way more IOPS (important for metadata)

only small capacity required (expensiveness!)

Following Graphs:

plot metadata access (create, stat, unlink)

8 processes per client-node

HDD/SSD/RAM

ldiskfs / ZFS (Orion-Lustre branch)

data from [10]

29 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Recent Improvements

SSDs as MDT

Single Node 1 2 4 8 16

0

10,000

20,000

Client nodes

C
re

a
te

s
p

er
se

co
n

d

ldiskfs-HDD ldiskfs-SSD

ldiskfs-RAM ZFS-SSD

30 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Recent Improvements

SSDs as MDT

Single Node 1 2 4 8 16

10,000

20,000

30,000

40,000

50,000

Client nodes

S
ta

ts
p

er
se

co
n

d

ldiskfs-HDD ldiskfs-SSD

ldiskfs-RAM ZFS-SSD

31 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Recent Improvements

SSDs as MDT

Single Node 1 2 4 8 16
0

5,000

10,000

15,000

20,000

Client nodes

U
n

li
n

k
s

p
er

se
co

n
d

ldiskfs-HDD ldiskfs-SSD

ldiskfs-RAM ZFS-SSD

32 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

Conclusion

still heavily developed

many interested/involved companies + funding

actively used in HPC clusters

well scalable

throughput depends on network

still improvements for metadata performance and ZFS required

Linux 2.6 (Redhat Enterprise Linux, CentOS) only

33 / 34



Introduction The Project Lustre Architecture Performance Conclusion References

References

[1] http://www.raidinc.com/assets/documents/lustrefilesystem_wp.pdf 2013-05-17

[2] http://www.opensfs.org/wp-content/uploads/2011/11/Rock-Hard1.pdf 2013-05-17

[3] http://www.hpcadvisorycouncil.com/events/2013/Switzerland-Workshop/Presentations/Day_3/10_Intel.pdf

2013-05-21

[4] http://storageconference.org/2012/Presentations/T01.Dilger.pdf 2013-05-21

[5] http://wiki.lustre.org/images/3/35/821-2076-10.pdf 2013-05-28

[6] http://wiki.lustre.org/index.php/Lustre_Interoperability_-_Upgrading_From_1.8_to_2.0 2013-05-25

[7] http://wiki.lustre.org/index.php/FAQ_-_Installation 2013-05-12

[8] https://wiki.hpdd.intel.com/display/PUB/Why+Use+Lustre 2013-05-21

[9] http://www.hpcwire.com/hpcwire/2008-11-18/suns_lustre_file_system_powers_top_supercomputers.html

2013-05-28

[10] http://www.isc-events.com/isc13_ap/presentationdetails.php?t=contribution&o=2119&a=select&ra=

sessiondetails 2013-05-31

[11] http://www.pdl.cmu.edu/posix/docs/POSIX-IO-SC05-ASC.ppt 2013-05-31

[12] http://zfsonlinux.org/lustre.html 2013-05-31

[13] http://www.olcf.ornl.gov/wp-content/themes/olcf/titan/images/gallery/titan1.jpg 2013-06-02

34 / 34

http://www.raidinc.com/assets/documents/lustrefilesystem_wp.pdf
http://www.opensfs.org/wp-content/uploads/2011/11/Rock-Hard1.pdf
http://www.hpcadvisorycouncil.com/events/2013/Switzerland-Workshop/Presentations/Day_3/10_Intel.pdf
http://storageconference.org/2012/Presentations/T01.Dilger.pdf
http://wiki.lustre.org/images/3/35/821-2076-10.pdf
http://wiki.lustre.org/index.php/Lustre_Interoperability_-_Upgrading_From_1.8_to_2.0
http://wiki.lustre.org/index.php/FAQ_-_Installation
https://wiki.hpdd.intel.com/display/PUB/Why+Use+Lustre
http://www.hpcwire.com/hpcwire/2008-11-18/suns_lustre_file_system_powers_top_supercomputers.html
http://www.isc-events.com/isc13_ap/presentationdetails.php?t=contribution&o=2119&a=select&ra=sessiondetails
http://www.isc-events.com/isc13_ap/presentationdetails.php?t=contribution&o=2119&a=select&ra=sessiondetails
http://www.pdl.cmu.edu/posix/docs/POSIX-IO-SC05-ASC.ppt
http://zfsonlinux.org/lustre.html
http://www.olcf.ornl.gov/wp-content/themes/olcf/titan/images/gallery/titan1.jpg

	Introduction
	The Project
	Goals and Priorities
	History
	Who is involved?

	Lustre Architecture
	Network Architecture
	Data Storage and Access
	Software Architecture

	Performance
	Theoretical Limits
	Recent Improvements

	Conclusion
	References

