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1 Introduction

File systems are a vital component in any computing system, having the task of storing and
organizing data files on block devices, such as hard drives. File systems (FS) are generally
a piece of software, often implemented as system drivers. There is a variety of different
file systems for different purposes.

Lustre is a parallel file system. As such, it distributes the data across multiple nodes,
usually independent hardware machines, and allows the access over network. The concept
of Lustre is to be a well-scaling solution for High Performance Computing (HPC) clusters
with a high amout of clients.

In this article I will explain the general idea of Lustre, its core architecture, as well as some
performance measurings and recent improvements.
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2 The Project

Lustre was started as a research project in 1999 by Peter Braam, who then founded Cluster
File Systems to continue development on the project. The first version was released in
2003. Four years later, Sun Microsystems aquired Cluster File Systems, and in 2010, Sun
itself was bought by the Oracle Corporation.

Oracle was not interested in continuing development or support of the project, so they
discontinued it. Since Lustre is released under the terms of the GNU General Public
License v2, many new organizations could continue development, including Xyratex and
Whamcloud (part of Intel since 2012).

Several other organizations took over community management and funding of the project,
including OpenSFS (Open Scalable File Systems), whose slogan is “keeping Lustre open”,
and EOFS (European Open File Systems), managing community collaboration. Other
companies, such as Xyratex, Dell and Terascala, sell hardware storage solutions bundled
with Lustre software. Braam and other contributors joined some of these companies and
continue working on the project.

Lustre is actively being used in the HPC environment. According to hcpwire.com, more that
50 percent of the top 50 supercomputers manage their data using Lustre. This includes
the Titan, today’s fastest supercomputer by Cray.

Since Lustre is now being used in huge clusters, the priorities of the project have changed.
While it started out as a science project, for production environments, the focus had to be
shifted to stability instead of features and performance.
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“it’s a science project”
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performance
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used in high-performance
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Figure 1: The change in project priorities
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3 Lustre Architecture

3.1 Network Architecture

The Lustre architechtecture aims to connect a number of clients with the data servers in an
efficient and failsafe way. The following graph shows an example structure of the network
setup in a Lustre environment.

CLIENTS

OBJECT
STORAGE

METADATA

MDS

OSS

MDT

OST

different network types: any TCP/GigE, InfiniBand,
Cray Seastar, Myrinet MX, RapidArray ra, Quadrics Elan [5]

= failover

Figure 2: The Lustre network architecture

There are three types of nodes required for a Lustre network. The clients are the nodes
that will receive access to the data storage. They have to be connected via any network
(e.g. Ethernet or InfiniBand) to all the server nodes. Multiple network types are supported
simultaneously, as long as every client can reach every server somehow.

The metadata servers (MDS) are responsible for every metadata management. They store
file information in a structure very similar to the Inodes known from other file systems such
as ext3 on a storage device attached to them, the metadata target (MDT). At least one
metadata server is required for a Lustre system, but there can be multiple failover systems.

The object storage servers (OSS) are finally the nodes responsible for storing the actual
file contents in so-called objects on the attached object storage targets (OST). Again,
at least one OSS is required, but the number of possible nodes is not limited, with more
nodes yielding a greater amount of attached storage and combined data throughput. In
very large clusters, Lustre systems with more than 10,000 OSS have been created.

Both metadata and object storage targets can be any type of block device for raw byte
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storage. This includes common hard disk drives (HDD), flash drives, solid state drives
(SSD) as well as other, more advanced storage systems such as enterprise-class storage
arrays. Each target will be formatted for use with Lustre, in older versions with a fork of
the ext3/4 file system named ldiskfs, in more recent versions support for ZFS has been
implemented.

To ensure avaiabiliy, a failover mechanism is used. When one server fails or is unreachable,
another server may take over serving its targets. There is a number of different configura-
tions, providing different levels of redundancy and performance. The failover mechanism
can be utilized to upgrade the system while on-line, by taking one server off the network,
upgrading it, and then upgrading the failover system.

3.2 File access

To access a file, the client first has to request the metadata for the file from the metadata
server. This metadata contains the information, which parts of the file are stored on which
OST. To read or write the actual file content, the client then accesses these OSTs directly,
without the need to route the data through other nodes like the MDS.

Subsystem Clients Object Storage Metadata Storage

System count 1-100,000 1-1,000 1-2

Performance 1 GB/s IO

1000 metadata ops

500 MB/s - 2.5 GB/s 3k-15k metadata ops

Required storage – total capacity / OSS count 1-2% of file system capacity

Desirable hardware – good bus bandwidth fast CPU, plenty of memory

Table 1: Lustre subsystem characteristics
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3.3 Striping

Striping is the technology used to distribute any data across multiple targets. The striping
mechanism resembles a RAID-0 striping system, where a single file is being split into blocks,
which are then evenly distributed across the target objects.

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4

OST1 OST2 OST3

A1 A2 A3
A4 A5 A6
A7 A8

B1
B2

B3
B4

Figure 3: Striping

Figure 3 indicates how files are being split and distrubuted. The red and green blocks on
top represent file data, which is split into eight and four blocks, respectively. The red file
(file A) starts on OST1, and the blocks are placed on OST 1 through 3 in order. The
resulting red block on OST1 consists of the data blocks a1, a4 and a7. This target block
is called the object of file A on OST1. Each object is internally saved as a single file on
the OST, using the filesystem present on that target.

The placement of file B (green) in this example starts on OST2, again creating three
objects on the OSTs. Only the first object contains more than one data blocks, since the
file is only four blocks in length.

Striping has multiple advantages for the Lustre architecture. Most importantly, it describes
a mechanism to distribute the data across the OSTs. Thus, the client can write/read
simultaneously to/from all OSSs involved, accumulating the bandwith and disk speed
limits for a higher total throughput. By striping across multiple targets, the file size is also
not limited to the size of a single target anymore, allowing the user to store huge amounts
of data in a single file.

The block size and number of target objects is adjustable. In Lustre, these attributes can
be set as metadata on a per-tree or per-file level, giving the administrator great control of
the striping process and the ability to fine-tune the setup for the user’s needs.
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3.4 Data Storage and Access

Traditional filesystems like ext2 use so-called inodes (from “index node”) to manage their
file structure. The nodes are stored in a flat, non-hierarchical array, each accessed with its
index. The nodes contain all the metadata of a file, as well as the location on the block
device (disk). Every node corresponds to exactly one file, creating a bijective mapping.

Lustre uses similar nodes for metadata storage. The Lustre inodes contain information
about the OSTs on which the file objects are located, as well as the object location inside
the target. This information is partially stored in the xattr (“extended attributes”) section
of the inode, allowing for many referenced objects across all targets. The inode array itself
is stored on the MDT.

3.5 Data Safety & Integrity

The safety and integrity of the stored data is an important aspect of HPC storage solu-
tions. While the striping mechanism itself does not backup any data, other means of data
protection can be implemented. The easiest available solution is to protect the targets,
for example using RAID technology. Because Lustre supports any type of block device,
the targets can not only be simple hardware drives, but may also be hardware or software
RAID systems or even professional high-end storage solutions. These provide their own
data safety mechanism, so the Lustre system does not require to manage data safety.

To ensure high availability, Lustre has two main features. The measure against server failure
is the simple failover mechanism. This makes sure that each target is available in case of
a single server failing. To counter network failures, caused for example by broken switches
or routers, Lustre has support for multiple simultaneous network types. If a Lustre server
is connected to a client via two or more networks, e.g. Ethernet and Infiniband, either one
of them may fail without impeding the reachability.

The third problem in large, parallel computing environments is data consistency. Lus-
tre implements simultaneous write protection using the Lustre Distributed Lock Manager
(LDLM), which runs on the OSSs, allowing only one client to write a single file at any
time.

For further consistency and integrity, the Lustre log, which is similar to the ext4 journal,
can restore the file state in case of write failure, caused for example by a defect client or
connection failure.

Paul Bienkowski Page 7 of 14



Proseminar “Ein-/Ausgabe - Stand der Wissenschaft” 2013 Lustre File System

4 Software Architecture

4.1 Server Software

The Lustre servers have a variety of requirements and limitations to consider before instal-
lation.

The object and metadata storage targets are formatted using mkfs.lustre, which is using
the ldiskfs filesystem. This filesystem is based on ext4, and requires some kernel patches
only available for a limited number of Enterprise Linux 2.6 kernels, for example Red Hat.

This makes the server software very platform dependent, a normal Linux user cannot
simply run a Lustre storage cluster “at home”. This is not that much of a problem in HPC
environments, though, since the kernel that runs on the storage servers is independent of
the actual computing environment, allowing the clients to run the kernels required/desired
for the computations.

Starting with Lustre 2.4, ZFS support has finally been implemented. This is a new and
promising feature, that may not yet perform as well as the old ldiskfs versions, but supports
a wider range of systems, more data integrity features 1 and is actively being developed
and improved.

4.2 Client Software

For Lustre clients, there is a broad variety of solutions available to access the data. The
basic implementation is a “patchfree” kernel module, available for any Linux 2.6 kernel.
This module lets the user mount the remote file system using a native implementation,
yielding the best performance results.

Other implementations include a userspace library (liblustre), that can be used to develop
custom applications that directly interact with the storage system, a userspace filesystem
driver (FUSE), which is important for OSX support, and NFS access for MS Windows
support and legacy versions, as well as any operating system not supporting any of the
above solutions. Thus, the Lustre client is available cross-platform, with best performances
using the native filesystem module on Linux 2.6 or later.

4.3 Interversion Compatibility

The Lustre project usually supports some level of version interoperability [6]. This means
for example that clients of version 1.8 can connect to servers running version 2.0 and vice
versa. This feature is mainly used to be able to upgrade a Lustre storage system without
taking it off-line, using the failover system, and upgrading the versions sequentially. During
this process, some devices still run the old version while others run the new, in which case
interoparability comes in handy.
1See http://zfsonlinux.org/lustre.html for detailled description on ZFS features
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5 Performance

A well designed Lustre storage system can achieve 90% of underlining hardware
bandwidth.

— Zhiqi Tao, Sr. System Engineer, Intel [3]

5.1 Theoretical Limits

In the following table, I present a theoretical Lustre environment setup with some key
specifications, and the resulting, theoretical limits. These calculated values of course do
not contain any performance limitations such as overhead, metadata access, or network
capabilities, but rather show what would be the absolute limit.

System specifications Theoretical performance

OSS count 160
OST/OSS 16
OST size 2 TiB
OST throughput 50 MiB/s

Total storage 2.5 PiB (Pebibyte)
Throughput per OSS 800 MiB/s
Total throughput 125 GiB/s

Due to the Lustre architecture, the resulting values come close to the presented limits.
There are only a few bottlenecks that still remain, and these are actively being improved.

5.2 Recent Improvements

5.2.1 ZFS support

ZFS support comes with many improvements. Mainly, it allows for new kernels to run
the servers without patching required. Furthermore, ZFS is more widely used by the open
source community, thus being more actively developed and supported by a wider user base.

More ZFS features include checksums, support for up to 256 ZiB (Zebibyte, 1021 Bytes)
storage per OST, compression support and copy-on-write. All of these assist the perfor-
mance and possibilities of a Lustre system.

5.2.2 Wide Striping

Until recently, the number of OSTs that stored a single file was limited to 160, due to
the number of records available in an inode. This limit has been breached by storing the
information in the extended attributes (“xattrs”) array of the inode. ZFS also does not
have this limit.
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5.2.3 Multiple MDS

Since metadata access used to be the main performance bottleneck, work has been focused
on improving this. Since Lustre 2.4, more than one simultaneous MDS are supported.
This is implemented by either striping the metadata across multiple targets, similar to
object striping, or namespacing the metadata. In a namespaced environment, some subtree
(directory) of the file system would be handled by a different MDS, thus splitting the load.

These two methods provide a good way of fine-tuning the metadata system by the admin-
istrator according to the needs of the clients.

5.2.4 Metadata overhead

A common task in file system operation is directory traversal (readdir) and metadata
readout (stat). This combination is used, for example, in the UNIX command ls -l.

The problem with this approach is that for each file in the directory, a separate RPC (stat)
has to be sent and processed. This creates a lot of network overhead and I/O wait for
directories with many files.

One solutions is the non-standard readdirplus command from the POSIX HPC I/O
Extensions [11]. Lustre implements this extensions, and sents a single response including
the metadata of the files.

Since not every client supports the HPC I/O Extensions, the Lustre MDS also detects
a combination of readdir and stat calls and requests all stats from OSSs in advance,
parallelized, then sending a combined RPC reply that can be up to 1 MiB in size.

The following graphs visualize the metadata performance of both the original POSIX direc-
tory traversal, and the improved Lustre detection system. One can see that the improved
version is up to 27x faster (y-axis in log scale) than the original one on files that are striped
across 4 OSSs, since the metadata is fetched in parallel.
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5.2.5 SSDs as MDT

Since metadata performance is still the major bottleneck, suggestions have been made
to better support solid state drives (SSDs) as metadata targets. These have a higher
throughput, but most importantly an order of magnitude more IOPS, which is important
for metadata seeks. Furthermore, the metadata storage requires relatively low capacity,
which makes using the more expensive SSDs for MDTs affordable.

The graphs in Figure 4 visualize the analysis of different drive types for metadata storage
for the three main metadata operations (create, stat, unlink). They were measured using
both ldiskfs and ZFS (in development) versions, using 8 processes per client node.

The data shows that generally, the ZFS branch achieved the lowest performances. Since this
is an early development branch (Orion-Lustre), recent improvements have to be expected.
Furthermore, the ldiskfs-RAM line (green) displays the limit of what can be achieved
independent of the drive used. One can notice that SSDs are better than HDDs, but not
by the expected order of magnitude. Some research can be expected in this area. Also quite
noticable is the apparent limit of stat calls per second, not rising above ~50,000, not even
in RAM. This seems to be another bottleneck, where metadata striping or namespacing
may yield better results due to distribution of the load across multiple servers.
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Figure 4: Metadata performance by number of clients using different drive types [10]
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6 Conclusion

As a conclusion, the Lustre project is a promising and well-established storage solution for
high performance computing environments. It is actively being developed by the Open
Source Community as well as many interested companies that provide funding and employ
developers.

It is used in many of the TOP-500 HPC clusters, scales exceptionally well in both size and
throughput, only depending on the network architecture to support the required speeds.

There is still room for improvements in metadata performance though, but these bot-
tlenecks are actively being tackled, leading to an even better product in the foreseeable
future.
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