

CS3DP: Introduction to Distributed and Parallel Computing

Julian Kunkel and Christopher Maynard

Learning Outcomes

After the session, a participant should be able to:

- Recite system characteristics for distributed/parallel/computational science
- Describe use-cases and challenges in the domain of D/P/S computing
- Sketch generic D/P system architectures
- Describe how the scientific method relies on D/P/S computing
- Name big data challenges and the typical workflow

Outline

000000

- 1 Distributed Computing
- 2 Parallel Computing
- 3 Computational Science
- 4 BigData Challenges
- 5 Organization of the Module
- 6 Summary

Distributed ComputingParallel ComputingComputational ScienceBigData ChallengesOrganization of the ModuleSummary●00000000000000000000000000000000000

Distributed Computing

Field in computer science that studies distributed systems¹

Definition

- System which components² are located on different networked computers
- Components communicate and coordinate actions by passing messages
- Components interact to achieve a common goal
- *In the wider sense*: autonomous processes coordinated by passing messages

Characteristics

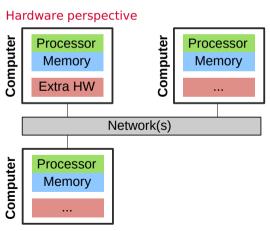
- Distributed memory: components have their own (private) memory
- Concurrency of components: different components compute at the same time
- Lack of a global clock: clocks may diverge
- Independent failure of components, e.g., due to power outage

https://en.wikipedia.org/wiki/Distributed_computing

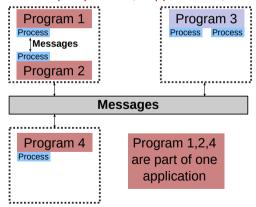
²In this context, means a component from a software architecture.

Example Distributed System and Distributed Program

- A **distributed program** (DP) runs on a distributed system
 - ▶ Processes are instances of one program running on one computer
- A distributed applications/algorithm may involve various DPs/different vendors



Software perspective (mapped to hw)



Example Distributed Applications and Algorithms

Applications

- The Internet and telecommunication networks
- Cloud computing
- Wireless sensor networks
- The Internet of Things (IoT) "everything is connected to the Internet"

Algorithms (selection from real world examples)

- Consensus: reliable agreement on a decision (malicious participants?)
- Leader election
- Reliable broadcast (of a message)
- Replication

Distributed ComputingParallel ComputingComputational ScienceBigData ChallengesOrganization of the ModuleSummary000 ●000000000000000000000000000000000000

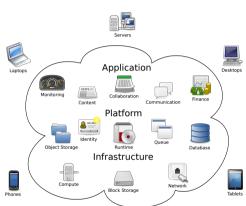
Cloud Computing

Definition

- On-demand availability of computer system resources (data storage and computing)
 - ▶ Without direct active management by the user
- Typically relates to distributed resources
 - provided by data centers
 - to many users
 - over the Internet
- Fog/Edge Computing: brings cloud closer to user

Examples

- Applications: Dropbox, Google Mail, Office 365
- Infrastructure: Amazon, Google, Microsoft, Oracle



Cloud computing

Summary

Some Facts: Cloud Computing and Data Centers

- Server workload (VMs or hardware): 350 Million, about 10 instances per server
- Data Center storage capacity: 1.750 Exabyte (10¹⁸), 720 Exabyte actually stored
 - ▶ 180 Exabyte from Big Data
- Global data center IP traffic: 14 Zettabyte (10²¹), 440 Terabyte/s
 - ▶ 15% volume communicated to the user: 20 KB/s per human
- Power consumption: US data centers alone 40% UK or 3% of global energy³
 - ▶ 416 Terawatt = energy bill: 50 Billion £ (12 cents/kWh)
 - Estimate for 2025: 20% worldwide for all DCs?

Distributed Computing

For 2017: https://www.forbes.com/sites/forbestechcouncil/2017/12/15/ why-energy-is-a-big-and-rapidly-growing-problem-for-data-centers/ Estimate for 2019: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/ global-cloud-index-gci/white-paper-c11-738085.pdf

Challenges

Distributed Computing

- Programming: concurrency introduces new types of programming mistakes
 - ▶ It is difficult to think about all cases of concurrency
 - ▶ Must coordinate between programs
 - ▶ No global view and debugging
- Resource sharing: system shares resources between all users
- Scalability: system must be able to grow with the requirements
 - numbers of users/data volume/compute demand
 - retain performance level (response time)
 - requires to add hardware, though
- Fault handling: detect, mask, and recover from failures
 - ▶ Failures are innevitable and the normal mode of operation
- Heterogenity: system consists of different hardware/software
- Transparency: Users do not care about how/where code/data is
- Security: Availability of services, confidentiality of data

Outline

000000

- 1 Distributed Computing
- 2 Parallel Computing
 - Overview
 - Architectures
 - High-Performance Computing
 - Challenges
- 3 Computational Science
- 4 BigData Challenges
- 5 Organization of the Module
- 6 Summary

Definition: Parallel Computing

Many calculations **or** the execution of processes are carried out simultaneously

Characteristics

- Goal is to improve performance for an application
 - ▶ Either allowing to solve problems within a deadline or increased accuracy
- Application/System must coordinate the otherwise independent parallel processing
 - ▶ There are various programming models for parallel applications
- Different architectures to speed up computation: **may use** distributed systems

Levels of parallelism (from hardware perspective)

- Bit-level: process multiple bits concurrently (e.g., in an ALU)
- Instruction-level: process multiple instructions concurrently on a CPU
- Data: run the same computation on **different data**
- Task: run **different** computations concurrently

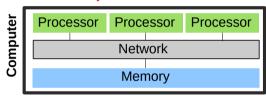
⁴https://en.wikipedia.org/wiki/Parallel_computing

Distributed Computing Parallel Computing Computational Science BigData Challenges Organization of the Module Summary 000000 00000000 00000000000 00000 0

Parallel Architectures

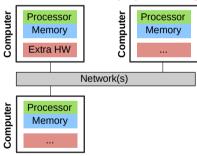
In practice, systems are a mix of two paradigms:

Shared memory



- Processors can access a joint memory
 - ► Enables communication/coordination
- Cannot be scaled up to any size
- Very expensive to build one big system

Distributed memory systems (again!)

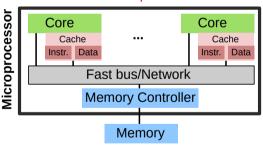


- Processor can only see own memory
- Performance of the network is key

Parallel Programs

A parallel program runs on parallel hardware In the strict sense: A parallel application coordinates concurrent processing

Schema of a multicore processor



Processor provides all levels of parallelism

- Multiple ALU/other units
- Pipelining of processing stages
- SIMD: Single Instruction Multiple Data
 - Same operation on multiple data
 - Instruction set: SSE, AVX
- Multiple cores
 - Each with own instruction pointer

 Parallel Computing
 Computational Science
 BigData Challenges
 Organization of the Module
 Sum

 0000 ● 00
 00000000
 000000000
 00000
 0

High-Performance Computing

Definitions

Distributed Computing

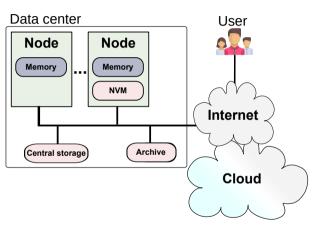
- HPC: Field providing massive compute resources for a computational task
 - ▶ Task needs too much memory or time for a normal computer
 - ⇒ Enabler of complex challenging simulations, e.g., weather, astronomy
- Supercomputer: aggregates power of many compute devices
 - ▶ Nowadays: 100-1,000s of servers that are clustered together

Example: Summit (Oak Ridge National Laboratories)

- Compute: 4,608 nodes; 2.4 Million cores
 - ► Peak 200 Petaflop/s (10¹⁵)
 - 2x IBM POWER9 22C 3.07GHz; 6x NVIDIA Volta V100 GPU
- 10 Petabyte memory (DRAM + HBM + GPU)
- Network: 100G Infiniband; 12.5 GB/s per node; 115 TB/s bisection bandwidth
- Storage: 32 PB capacity; 1 TB/s throughput

The Top500 is a list of the most performant supercomputers

Supercomputers & Data Centers



Credits: STFC

JASMIN Cluster at RAL / STFC Used for data analysis of the Centre for Environmental Data Analysis (CEDA)

Challenges

Distributed Computing

- Programming: imports errors from distributed computed
 - ▶ Low-level APIs and code-optimization to achieve performance
 - ▶ Performance-optimized code is difficult to maintain
 - ▶ Expensive and challenging to debug 1'000 concurrently running processes
 - Utilizing all compute resources efficiently (load balancing)
 - Grand challenges are difficult to test, as nobody knows the true answer
- Scalability: stricter than distributed systems
 - ▶ Strong-scaling: same problem, more parallelism shall improve performance
 - Weak-scaling: data scales with processors, retain time-to-solution
- Environment: bleeding edge and varying hardware/software systems
 - ▶ Obscure special-purpose hardware (FPGA/ASIC Application-Specific Integrated Circuit)
 - ▶ Limited knowledge to administrate, use, and to compare performance

Outline

000000

- 1 Distributed Computing
- 2 Parallel Computing
- 3 Computational Science
 - Overview
 - Scientific Method
 - Relevance
- 4 BigData Challenges
- 5 Organization of the Module
- 6 Summary

 Parallel Computing
 Computational Science
 BigData Challenges
 Organization of the Module

 0000000
 0 0000000
 00000000000
 00000

Computational Science

Definitions

- Multidiciplinary field using advanced computing capabilities to understand and solve complex problems
 - ▶ Typically using mathematical models and computer simulation
 - Problems are motivated by industrial or societal challenges
- May utilize single computer, distributed systems, or supercomputers

Examples utilizing distributed computing

- Finding the higgs boson (CERN)
- Bioinformatics applications, e.g., gene sequencing

Examples utilizing high-performance computing

- Computing the weather forecast for tomorrow / next week
- Simulating a tokamak fusion reactor

https://en.wikipedia.org/wiki/Computational_science

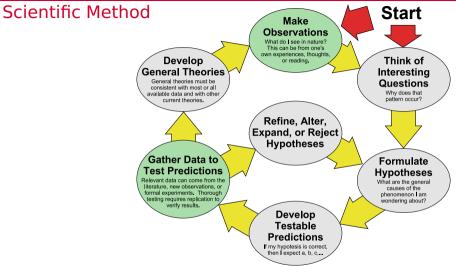
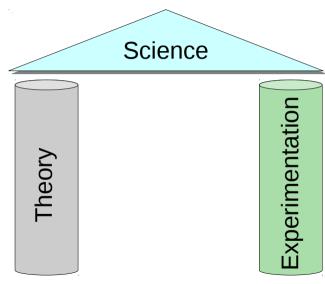
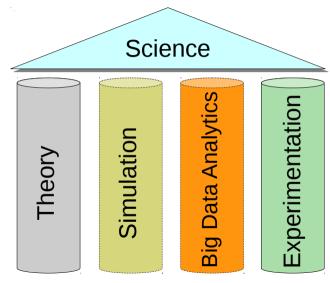


Figure: Based on "The Scientific Method as an Ongoing Process", ArchonMagnus https://en.wikipedia.org/wiki/Scientific_method

Pillars of the Scientific Method



Pillars of Science: Modern Perspective



Distributed Computing Parallel Computing Computational Science BigData Challenges Organization of the Module Summary 000000 00000000 00000000000 00000 0

Relation of the Scientific Method to D/P/S Computing

Simulation models real systems to gain new insight

- Instrument to make observations, e.g., high-resolution and fast timescale
- Typically used to validate/refine theories, identify new phenomen
- Classical computational science: hard facts (based on models)
- The frontier of science needs massive computing resources on supercomputers
- Data-intensive sciences like climate imposes challenges to data handling, too

Big Data Analytics extracts insight from data

- Provides a data pool to identify/mine new insight and to validate theories
- In business often approximate insight is enough (a small advantage)
- Distributed and parallel systems are needed to manage and analyze the data
- Gained knowledge is often made available as part of the cloud (for money)...

Big Data Analytics

Definition

- Extracting insight from data to support decisions
 - Vast amounts of data are available
 - ▶ Many different/heterogene data sources that can be correlated
 - ► Raw data is of low value (fine grained)

Analytics

- Analyzing data ⇒ Insight == value
 - For academia: knowledge
 - ► For industry: business advantage and money
- Levels of insight primary abstraction levels of analytics
 - **Exploration**: study data and identify properties of (subsets) of data
 - ▶ Induction/Inference: infer properties of the full population
- Big data tools allow to construct a theory/model and validate it with data
 - ▶ Statistics and machine learning provide algorithms and models
 - ▶ Visual methods support data exploration and analysis

Relevance of Big Data and Parallel Computing

- Big Data Analytics is emerging, relevance increases compared to supercomputing
- Nowadays all processors provide parallelism, thus, experts are needed

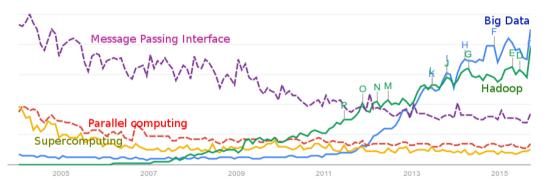


Figure: Google Search Trends, relative searches

Outline

- 1 Distributed Computing
- 2 Parallel Computing
- 3 Computational Science
- 4 BigData Challenges
 - Overview
 - Volume
 - Velocity
 - Variety
 - Veracity
 - Value
 - Value Chain
 - Data Lake

BigData Challenges & Characteristics

Dealing with large data is challenging in Big Data Analytics but also in Computational Science

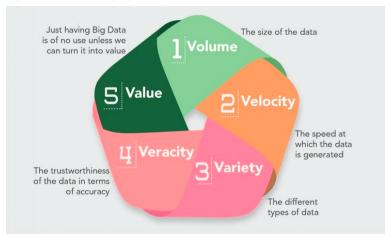


Figure: Source: MarianVesper (Forrester Big Data Webinar. Holger Kisker, Martha Bennet. Big Data: Gold Rush Or Illusion?)

Volume: The size of the Data

27/42

What is Big Data

Terrabytes to 10s of petabytes

What is not Big Data

A few gigabytes

Examples

- Wikipedia corpus with history ca. 10 TByte
- Wikimedia commons ca. 23 TByte
- Google search index ca. 46 Gigawebpages⁵
- YouTube per year 76 PByte (2012⁶)

⁵http://www.worldwidewebsize.com/

⁶https://sumanrs.wordpress.com/2012/04/14/youtube-yearly-costs-for-storagenetworking-estimate/

Velocity: Data Volume per Time

What is Big Data

30 KiB to 30 GiB per second (902 GiB/year to 902 PiB/year)

What is not Big Data

A never changing data set

Examples

- LHC (Cern) with all experiments about 25 GB/s ⁷
- Square Kilometre Array 700 TB/s (in 2018) 8
- 50k Google searches per s 9
- Facebook 30 Billion content pieces shared per month ¹⁰

⁷http://home.web.cern.ch/about/computing/processing-what-record

⁸http://venturebeat.com/2014/10/05/how-big-data-is-fueling-a-new-age-in-space-exploration/

⁹http://www.internetlivestats.com/google-search-statistics/

¹⁰https://blog.kissmetrics.com/facebook-statistics/

Data Sources

Enterprise data

- Serves business objectives, well defined
- Customer information
- Transactions, e.g., purchases

Experimental/Observational data (EOD)

- Created by machines from sensors/devices
- Trading systems, satellites
- Microscopes, video streams, smart meters

Social media

- Created by humans
- Messages, posts, blogs, Wikis

Variety: Types of Data

- Structured data
 - ▶ Like tables with fixed attributes
 - ▶ Traditionally handled by relational databases
- Unstructured data
 - Usually generated by humans
 - Examples: natural language, voice, Wikipedia, Twitter posts
 - Must be processed into (semi-structured) data to gain value
- Semi-structured data
 - ▶ Has some structure in tags but it changes with documents
 - ► Examples: HTML, XML, JSON files, server logs

What is Big Data

- Use data from multiple sources and in multiple forms
- Involve unstructured and semi-structured data

Distributed Computing Parallel Computing Computational Science **BigData Challenges** Organization of the Module Summary 000000 0000000 00000 00000 00000 00000 0

Veracity: Trustworthiness of Data

What is Big Data

- Data involves some uncertainty and ambiguities
- Mistakes can be introduced by humans and machines
- Examples
 - People sharing accounts
 - Like sth. today, dislike it tomorrorw
 - Wrong system timestamps

Data Quality is vital!

Analytics and conclusions rely on good data quality

- Garbage data + perfect model => garbage results
- Perfect data + garbage model => garbage results

GIGO paradigm: Garbage In - Garbage Out

Value of Data

What is Big Data

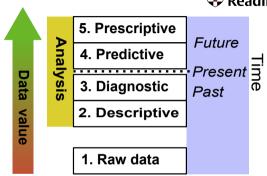
- Raw data of Big Data is of low value
 - ▶ For example, single observations of the weather, a bill
- The output of a large scale climate simulation that cost 10k to run
 - ▶ It still needs to be analyzed to come to conclusions!

Analytics and theory about the data increases the value

Analytics transform big data into smart (valuable) data!

Abstraction Levels of Analytics and the Value of Data

- 5. Prescriptive analytics
 - "What should we do and why?"
- 4. Predictive analytics
 - "What will happen?"
- 3. Diagnostic analytics
 - "What went wrong?"
 - "Why did this happen"
- Descriptive analytics¹¹
 - "What happened?"
- 1. Raw (observed) data



Relation to Computational Science

- These analysis steps are still done just by running computational experiments
- Also the output of the simulation must be analyzed

¹¹Decriptive and diagnostic analysis are like forensics

Analytics Abstraction Level

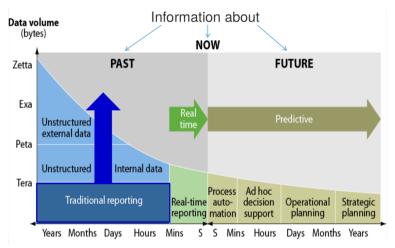


Figure: Source: Forrester report. Understanding The Business Intelligence Growth Opportunity. 20-08-2011

Data Analysis Workflow

The traditional approach proceeds in phases:

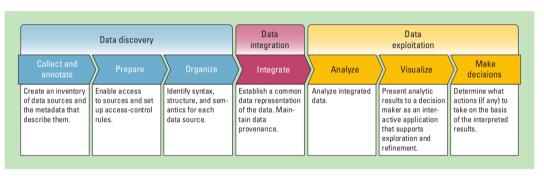


Figure: Source: Gilbert Miller, Peter Mork From Data to Decisions: A Value Chain for Big Data.

- Analysis tools: machine learning, statistics, interactive visualization
- Limitation: Interactivity by browsing through prepared results
- Indirect feedback between visualization and analysis

From Big Data to the Data Lake

- With cheap storage costs, people promote the concept of the data lake
- Combines data from many sources and of any type
- Allows for conducting future analysis and not miss any opportunity

Attributes of the data lake

- Collect everything: all time all data: raw sources and processed data
 - Decide during analysis which data is important, e.g., no "schema" until read
- Dive in anywhere: enable users across multiple business units to
 - Refine, explore and enrich data on their terms
- Flexible access: shared infrastructure supports various patterns
 - Batch, interactive, online, search

Distributed Computing

Outline

000000

- 1 Distributed Computing
- 2 Parallel Computing
- 3 Computational Science
- 4 BigData Challenges
- 5 Organization of the Module
- 6 Summary

 Parallel Computing
 Computational Science
 BigData Challenges
 Organization of the Module

 0000000
 000000000
 0●000

Organization of the Module: Components

Summary

- Lecture (1h / week)
 - ▶ Delivers concepts and gives an overview
 - 4 lectures about distributed computing
 - 4 lectures about parallel computing
 - ▶ 1 invited talk (and this overview presentation)
- Practical (1h / week) follows the schedule after the tutorial
 - ▶ Part 1: Students present their solution/questions to exercise tasks
 - Part 2: We discuss the new excercise such that everyone understands the questions
- Exercise (prescribed 3h / week)
 - ▶ Self-study to practice lecture content (feel free to team up!)
 - ▶ Each task comes with an estimated time for you to spend on it
 - Contains introductory and harder tasks
 - Store your work in a Git Repository the portfolio of the course
- Group work: Some time of practical/tutorial may be used for group work

Distributed Computing

 Parallel Computing
 Computational Science
 BigData Challenges
 Organization of the Module
 Summary

 0000000
 00000000
 000000000
 00 ●00
 0

Role of Exercises and Group Work

Assessment

Distributed Computing

- Module: Assessment is 100% exam, however,
- Exercises and group work is formative assessment that prepares for the exam
- Feedback of the lecturer during practicals/tutorials
- Some quizes are provided during lecture and for your self-study

Group work

- Discuss/Critice exercises of peers (groups of 2-4)
- Brainstorm/Design/Solve small tasks (groups of 2-4)
- The outcome should be stored in the Git portfolio

Distributed Computing Parallel Computing Computational Science BigData Challenges **Organization of the Module** Summary 000000 0000000 00000000000 000●0 0

Proposed Learning Strategy/How to Achieve Good Marks university of

- Understand learning outcomes (provided in each slide deck)
- Participate in exercises
 - ▶ To understand the topic, types of questions, and how to solve issues
 - ▶ To get feedback from the lecturer (e.g., if you present) and from peers
- Schedule time for the exercises, best to team up in learning groups
 - Try to do the 3h/week!
 - ▶ Always do the easy tasks, if you are busy you may miss some harder tasks
 - Partial solutions are better than no attempt
- Do the quizzes
- Do further reading of topics you are interested in
- Team up again to prepare for the exam
- Ask questions to colleagues and to us
- We will support your learning journey but **YOU** are responsible for it

Communication

000000

- Blackboard provides
 - ▶ Slides for lectures/practical, exercise sheets
 - Most important announcements
 - Reading lists for topics
- Teams channel for communication/tutorial
 - ▶ We use it for any announcement
 - ▶ Please use it for any purpose around the topic!
 - ▶ To solve exercises, to share an interesting link, to ask a question
 - To find peers to work with

Summary

000000

- Simulation and Big data analytics is a pillar of science
 - Supports building of hypothesis and experimentation
- Challenges: 5 Vs Volume, velocity, variety, veracity, value

Characteristics and Differences of DC/PC

	Distibuted computing	Parallel computing
Motivation	Decentrality/low costs	Performance/feasability
Enables	business/cloud/big data analytics	interactivity/computational science
Communication	message passing	may use shared resources
Fault-tolerance	tolerate errors	needs reliable hardware
Application	Weakly-coupled	Tightly-coupled
	Multiple programs/vendors	Single application/vendor