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Learning Objectives

List example problems for distributed systems

Sketch the algorithms for two-phase commit and consistent hashing
Discuss semantics and limitations when designing distributed systems
Explain the meaning of the CAP-theorem

Sketch the 3-tier architecture

Design systems using the RESTful architecture

Describing relevant performance factors for HPDA

Listing peak performance of relevant components

Assessing/Judging observed application performance
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Components for High-Performance Data Analytics

Required components
B Servers, storage, processing capabilities

B User interfaces
Storage
Bl NoSQL databases are non-relational, distributed and scale-out

» Hadoop Distributed File System (HDFS)
» Cassandra, CouchDB, BigTable, MongoDB>®

B Data Warehouses with schemas are useful for well known repeated analysis

Processing capabilities
B Performance is important; goal: interactive processing is difficult

B Available technology offers

» Batch processing (hours to a day processing time)
» "Real-time" processing (seconds to minutes turnaround)

35 See http://nosql-database.org/ for a big list.
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Basic Considerations for High-Performance Analytics

Analysis requires efficient (real-time) processing of data

B New data is continuously coming (Velocity of Big Data)
» How do we technically ingest the data?
* In respect to performance and data quality
» How can we update our derived data (and conclusions)?
¢ Incremental updates vs. (partly) re-computation algorithms

B Storage and data management techniques are needed

» How can we program data processing systems and services? - Distributed algorithms
» How do we map the logical data to physical hardware and organize it?

» How can we diagnose causes for problems with data (e.g., inaccuracies)?

» How can assess observed performance, i.e., what performance can we expect?

Julian M. Kunkel HPDA25 5/56
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How to Write an Algorithm: Programming Paradigms [14]

Programming paradigms: process models [15] for computation

B Fundamental style and abstraction level for computer programming
» Imperative (e.g., Procedural)
» Declarative (e.g., Functional, Dataflow, Logic)
» Data-driven programming (describe patterns and transformations)
» Multi-paradigm support several at the same time (e.g., SQL)
B Goals: productivity of the users and performance upon execution
» Tool support for development, deployment and testing
» Performance depends on single-core efficiency but importantly parallelism
B Parallelism is an important aspect for processing
» In HPC, there are language extensions, libraries to specify parallelism
¢ PGAS, Message Passing, OpenMP, data flow e.g., OmpSs, ...
» In BigData Analytics, libraries and domain-specific languages
* MapReduce, SQL, data-flow, streaming and data-driven

Julian M. Kunkel HPDA25
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Semantics of a Service

Semantics describe operations and their behaviour, i.e., the property of the service

B Application programming interface (API)
B Consistency: Behaviour of simultaneously executed operations

» Atomicity: Are partial modifications visible to other clients
» Visibility: When are changes visible to other clients
» Isolation: Are operations influencing other ongoing operations

B Availability: Readiness to serve operations
» Robustness of the system for typical (hardware and software) errors
» Scalability: availability and performance behaviour depending on the number of clients,
concurrent requests, request size, etc.
» Partition tolerance: Continue to operate even if the network breaks partially
B Durability: Modifications should be stored on persistent storage
» Consistency: Any operation leaves a consistent (correct) system state

Julian M. Kunkel HPDA25
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Wishlist for Distributed Software

High-availability, i.e., still available during interruptions
Fault-tolerance, i.e., sensible error handling

Scalable, i.e., handles increased load well
» Linear scalability with the data volume (or number of users served)
¢ j.e., 2n servers handle 2n the data volume + same processing time

Extensible, i.e., easy to introduce new features and data
Usability: high user productivity, i.e., simple programming models
Ready for the cloud, i.e., can be packaged and deployed as containers
Debuggability, i.e., errors and events can be logged and traced
» In respect to coding errors and performance issues
High Performance
» Real-time/interactive capabilities - user interact with the system without noticing delay

High efficiency, i.e., make good use of resources (compute and storage)

Julian M. Kunkel HPDA25
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Consistency Limitations in Distributed Systems

B Communication is essential in a distributed system but faults are common
B Partitioning: what happens if one half of the system can’t communicate with the other?

CAP-Theorem
B It initially discusses implications, if the network is partitioned3°

» Consistency (here: visibility of changes among all clients)
» Availability (we'll receive a response for every request)
» Any technology can only achieve either consistency or availability

= Itis impossible to meet the attributes together in a distributed system:
» Consistency
> Availability
» Partition tolerance (system operates despite network failures)
B GroupWork (5 min): Discuss with a peer why they cannot be met together
» The proof can be found here https://mwhittaker.github.io/blog/an_illustrated proof of_the_cap_theorem/

36 This means that network failures split the network peers into multiple clusters that cannot communicate.
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Architectural Patterns for Distributed Systems [19]

Architectural patterns provide useful blueprints for structuring distributed systems

B Client-server: server provides service/functionality, client requests
B Multilayered architecture (n-tier): separating functionality
» 3-tier separates: presentation, application processing, data management
B Peer-to-peer: partition workload between equipotent/equal peers
B Shared nothing architecture: no sharing of information between servers
» i.e., each server can work independently
B Object request broker: middleware providing transparency to function execution

» Thus, the user invoking a function doesn’t know where it is executed
» The broker makes the decision where it is executed
» Remote Procedure Calls (RPCs) are executed on any compute node

B Service-oriented architecture (SoA) encapsulates a discrete unit of functionality
» Microservices: collection of loosely coupled service, lightweight protocols
Bl Representational state transfer (REST): discussed later as an example

Julian M. Kunkel HPDA25 11/56
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Multitier architecture [25]

Presentation tier
>GET SALES

The top-most level of the application TORL
is the user interface. The main function
of the interface is to translate tasks
and results to something the user can
understand.

Logic tier

This layer coordinates the
application, processes commands,

makes logical decisions and . GET LIST OF ALL © - ADD ALL SALES
evaluations, and performs SALES MADE a TOGETHER
calculations. It also moves and O LASTAYEAR

processes data between the two
surrounding layers.

SALE 1

QUERY SALE 2
SALE 3

Data tier SALE4
Here information is stored and retrieved
from a database or file system. The

information is then passed back to the
logic tier for processing, and then S—
eventually back to the user f

> -

— Storage
Database
Figure: Source: [25]
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Object Request Broker [24]

B Example: Common Object Request Broker Architecture (CORBA)

» Example of the distributed object paradigm: objects appear local but are anywhere
» Enables communication of systems that are deployed on diverse platforms, OS, programming

languages, hardware
» An OMG standard

B Remote method invocation (RMI)

B Interface Definition Language (IDL)

B Generation of "Stubs" for client and server
B Broker can forward requests to any servant

Julian M. Kunkel

(client) main()

Object
reference —

Generated
stub code

(server) main()

Object
implementation

Generated
skeleton code

Object Request -«—> | Object Request
Broker network Broker
Key:

l:l ORB vendor-supplied code

l:l ORB vendor-tool generated code

l:l User-defined application code

Figure: Example code. Source:
Alksentrs, [24]
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Object Broker: Code Example

Client Interface

public User(){
public:
// load user details from given UserID
User(string userID);

// allow users to change the username to a new name
int changeUserName(string username);

// typical functions to get some data
string getName();
b

Julian M. Kunkel

Client Stub Code

1| class RemoteUser(public User){

2 private:

3 Server server; // responsible for this object

4 i remoteObjectID;

5 public:

6 RemoteUser(string userID) : User(string userID){

7 server = // somehow identify a remote server

8 // create the remote object on the server loading the data
9 Arguments args;

10 args.addStringArgument("userID", userID);

11 ID = server.RMI("createRemoteUser", args);

12 }

13

14 int changeUserName(string username){

15 Arguments args;

16 args.appendStringArgument ("username", username);
17 // handle server faults

18 try{

19 Message result = server.RMI(ID, "changeUserName", args);
20 }eatch(...){

21 // could try to load user data on another server
22 // assign a new server and object ID etc...

23

24 return result;

25 }

26| };

B Note that such code would be
automatically generated!

HPDA25
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Problems and Standard Algorithms [20]

Reliable broadcast: share information across processes

Atomic commit: operation where a set of changes is applied as a single operation
Consensus: distributed system agrees on a common decision

Leader election: choose a single process to lead the distributed system

Mutual exclusion: establish a distributed critical section; only one process enters
Non-blocking data structures: provide global concurrent modification/access
Replication: replicate data/information in a consistent way

Resource allocation: provision/allocate resources to tasks/users

Spanning tree generation

Julian M. Kunkel HPDA25 16/56
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A Typical Problem: Consensus [17]

B Consensus: several processes agree (decide) for a single data value
» Assume: Processes may propose a value (any time)

B Consensus and consistency of distributed processes are related

B Consensus protocols such as Paxos ensure cluster-wide consistency

» They tolerate typical errors in distributed systems
» Hardware faults and concurrency/race conditions
» Byzantine protocols additionally deal with forged (lying) information
B Properties of consensus
» Agreement: Every correct process must agree on the same value
» Integrity: All correct process decide upon at most one value v. If one decides v, then v has
been proposed by some process
» Validity: If all process propose the same value v, then all correct processes decide v
» Termination: Every correct process decides upon a value

Julian M. Kunkel HPDA25 17/56
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Assumptions for Paxos

Requirements and fault-tolerance assumptions [16]

M Processors

» do not collude, lie, or otherwise attempt to subvert the protocol
» operate at arbitrary speed
» may experience failures
» may re-join the protocol after failures (when they keep data durable)
B Messages
» can be send from one processor to any other processor
are delivered without corruption
are sent asynchronously and may take arbitrarily long to deliver
may be lost, reordered, or duplicated

vyvyy

Fault tolerance
B With 2F+1 processors, F faults can be tolerated
B With dynamic reconfiguration more, but < F can fail simultaneously

Julian M. Kunkel HPDA25
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Distributed Transactions [21] (Simplified Consensus Algorithm)

B Goal: Atomic commitment of changes (e.g., transactions for databases)
B Consider the example of an order that requires to change several tables

{0

B User order must update: User

I
» Customer information | Put Order
» Order table

» (product table: item count)

Start Transaction

Y

Update Customer Table

Y

Y

» Tables are on different hosts
» Table keys are distributed

, Commit Transaction

XY Y Y

B Assume the DB is distributed, e.g., | Update Order Table

Order put |

B How can we perform a safe commit?

» With ACID semantics!

» Either all operations or none complete

CO%

Figure: Execution UML; Source: [21]
Julian M. Kunkel HPDA25 19/56
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Microservice Architecture for Bank Example [21]

B An architecture for tables split across nodes (e.g., via microservices)

U | Conductorl | CustomerMicroservice I | OrderMicroservice I
ser
I 1 I I
| Put Order _ | 1 |
— 1 I
1 1 UpdateCustomerFund ‘1 1
I h > '
| | CreateOrder : ‘:
I T T Eall
| Order put | 1 1
l ) 1 1
User | Conductorl | CustomerMicroservice I | OrderMicroservice I

Figure: Source: [21]
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Two-Phase Commit Protocol (2PC) [18]

B Idea: one process coordinates commit and checks that all agree on the decision

Sketch of the algorithm

Prepare phase
Coordinator sends message with transaction to all participants
Participant executes transaction until commit is needed.
Replies yes (commit) or no (e.g., conflict). Records changes in undo/redo logs
Coordinator checks decision by all replies, if all reply yes, decide commit
Commit phase

Coordinator sends message to all processes with decision
Processes commit or rollback the transactions, send acknowledgment
Coordinator sends reply to requester

B Think about: What should happen if the coordinator fails?
B What should a "participant" do upon such failures, how to detect them?

Julian M. Kunkel HPDA25
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2PC for our Bank Example [21]

Julian M. Kunkel

l CustomerMicroservicel l OrderMicroservice I

Create transaction (tid)

PrepareUpdateCustomerFund(tid)
>

PrepareCreateQrder(tid)

_ prepared

prepared

Y

<

CommitCreateorder(tid)

done

<

done

<

Y

I
I
I
|
|
|
I
]
r
| CommitUpdateCustornerFund(tid]_
: Eall
]
T
I
I
)
I
I,
|
|

End transaction (tid)

p—

CustomerMicroservice I l OrderMicroservice I

Figure: Source: [21]
HPDA25
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Consistent Hashing

B Goal: manage key/value data in a distributed system

» Load balancing, i.e., all nodes have a similar number of keys
» Fault tolerant, deal with the loss of nodes/adding of nodes

B Idea: distribute keys and servers (capabilities) on a ring (0-(M-1))
» Fault tolerance: store item multiple times by hashing key multiple times
« Different hash functions could be used or multiple hashing rounds

» Load balancing: hash server multiple times on the ring (e.g., 10x)
B Data allocation: the server with the next bigger number is responsible
B Upon server failure, the items on the server must be replicated again
B Adding/removing servers will only transfer subset of the data

Julian M. Kunkel HPDA25
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Consistent Hashing (2)

f(“venus”)

wodes X
B In this example, server IP addresses Gt >

are hashed to the ring

» They could be hashed several
times for fault tolerance 10.1.2.3

f(“Mars”)

B The items are strings, the hash
determines where they are located

~8E8

“Saturn”
M The arrow shows the server f( )

responsible for the items

Figure: Source: [22]

M For more info, see https://www.youtube.com/watch?v=juxlRh4azhoI and [22], [23]
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REST Architecture

B Representational state transfer (REST) software architecture

» REST APIs are the backbone of various distributed applications
» RESTful: Term indicates the system is conforming to REST constraints
» REST is an architectural style and NOT a protocol

Architectural Constraints / Features
B Client-server architecture
B Statelessness: server does not have to keep any state information
B Cacheability: responses can be cached when labelled so
B Layered system: can utilize proxy (intermediate) or load-balancer

B Uniform interface: Self-descriptive hypermedia messages

» Originally: Responses must be in HTML and descriptive (no docs required)
» Nowadays: wide interpretation of other outputs such as JSON (useful in Webpages)

B Code on demand (optional): deliver code to extend client functionality

Julian M. Kunkel HPDA25
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REST via HTTP [31]

By definition REST is not bound to using HTTP
B Advantages of REST due to HTTP

» URI handled via URL path in request

» Portability: Independent of client and server platform

» Cachable: Read requests can be cached close to the user
» Tracable: Communication can be inspected

Semantics of HTTP request methods [33]
B GET: retrieve a representation of a resource (no updates)
B PUT: create or update resource based on enclosed data
B POST: transfer enclosed data to be processed by server
B DELETE: remove the given URI

B PUT and DELETE are idempotent
» GET also w/o concurrent updates

Julian M. Kunkel HPDA25 27/56
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HTTP Methods

B Depends on the service implementation

B Behaviour usually depends on URI type

» Collections/Directories, e.g., http://test.de/col/
» Items/Files, e.g., http://test.de/col/file

B Define status codes (e.g., 200 OK, 404 Not Found)

Most common semantics [33]

Resource GET PUT POST DELETE
Collection List the collection Replace the collection Create a new entry in the Delete the collection
with new data collection, return the URI of
the created entry
Iltem Retrieve the data Replace the element Not widely used Delete the element in the col-
or create it lection

B Must provide compatible semantics as responses may be cached!

Bl POST semantics is highly flexible

Julian M. Kunkel HPDA25 28/56
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HTTP 1.1 [33]

The Hypertext Transfer Protocol (HTTP) is a stateless protocol
Request via TCP = Response (status and content) via TCP
Request/Response are encoded in ASCII

Include a header with standardized key/value pairs [34]

Non-standard key/value pairs can be added
» Usually prefixed with X for eXtension

B One data section (at the end) according to the media type
B Separation between header and data via one newline

Example HTTP Request

GET /dir/file HTTP/1.1
Host: www.test.de:50070
User-Agent: mozilla
Cache-Control: no-cache
Accept: */*

UswN e
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Media types [35]

B Based on Multi-purpose Internet Mail Extensions (MIME) types

B Media type is composed of type, subtype and optional parameters

» e.g., image/png
» e.g., text/html; charset=UTF-8

B Media types should be registered by the IANA3’
Example HTTP Response
1 HTTP/1.1 200 OK
2 Date: Sun, 06 Dec 2015 16:41:16 GMT
3 Expires: -1
4 Cache-Control: private, max-age=0
5 Content-Type: text/html; charset=IS0-8859-1
6 Server: gws
7 X-XSS-Protection: 1; mode=block
8 X-Frame-Options: SAMEORIGIN
9 Set-Cookie: PREF=ID=11111:FF=0:TM=1449420076:LM=1444476:V=1:5=doD1; expires=Thu, 31-Dec-2015 16:02:17 GMT; path=/; domain=.test.de
10 Set-Cookie: NID=74=UNTSNZy expires=Mon, 06-Jun-2016 16:41:16 GMT; path=/dir; domain=.test.de; HttpOnly
11 Accept-Ranges: none
12 Vary: Accept-Encoding
13 Transfer-Encoding: chunked
14
15 DATA formatted according to content type
37 Internet Assigned Numbers Authority

30/56
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HTTP 2.0+ [50]

B HTTP 2 is a semantically compatible update of HTTP 1.1 for performance
» Data compression of HTTP headers
» HTTP/2 Server Push
» Pipelining of requests
» Multiplexing multiple requests over a single TCP connection
HTTP 3.0
B In 2022, still an Internet draft
B Utilizes QUIC (UDP-based) transport layer network protocol instead of TCP
B Fixes head-of-line blocking (due to TCP)
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Programming: Direct APl Access via TCP

B Connect to the service IP address and port via TCP

B Use any API or tool, for example:

>

vVvyyvyy

Julian M. Kunkel

UNIX sockets for C, Python, ...
Netcat (nc)

curl

Python

Browser

HPDA25
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CURL

B curl transfers data from/to a server
B Useful for scripting / testing of webservers

B Supports many protocols, standards for proxy, authentication, cookies, ...

# -i: include the HTTP header in the output for better debugging

# -L: if the target location has moved, redo the request on the new location
curl -i -L "http://xy/bla"

# Send data provided in myFile using HTTP PUT, use "-" to read from STDIN
curl -i --request PUT "http://xy/bla?param=x&y=z" -d "@myFile"

# To put a binary file use --data-binary

curl -i --request POST --data-binary "@myFile" "http://xy/bla?param=x&y=z"

# Delete a URI

curl -i -request DELETE "http://xy/bla?param=x&y=z"

© ® N o U A W N e
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Python
B The requests package supports HTTP requests quite well

Transferring JSON data

import json, requests

params = {’'parameters’ : [ 'testWorld’ ] }

resp = s.post(url = "http://localhost:5000/compile’,
data = json.dumps(params),
headers = {’content-type’: 'application/json’},
auth = ('testuser’,’'my secret’))

10| print(resp.status_code)

11| print(resp.headers)

1
2
3
4
5/ s = requests.Session() # we use a session in this example
6
7
8
9

13| # assume the response is in JSON
14| data = json.loads(resp.text, encoding="utf-8")

16| # retrieve another URL using HTTP GET
17| resp = s.get(url="http://localhost:5000/status’, auth=('testuser’,’my secret’))

Julian M. Kunkel HPDA25 34/56
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.
Exam,ole. WebHDFS, the Hadoop File System [32]
B Full access to file system via nttp://$host/webhdfs/v1/FILENAME?0p=0PERATION

1| $ host=10.0.0.61:50070

2| $ curl -i -L "http://$host/webhdfs/v1/foo/bar?op=0PEN"

3| HTTP/1.1 307 TEMPORARY_REDIRECT

4| Cache-Control: no-cache

5| Expires: Sun, 06 Dec 2015 16:06:11 GMT

6| Date: Sun, 06 Dec 2015 16:06:11 GMT

7| Pragma: no-cache

8| Content-Type: application/octet-stream

9| Location: http://abul.cluster:50075/webhdfs/v1/foo/bar/file?op=0PEN&namenoderpcaddress=abul.cluster:8020&o0ffset=0

10| Content-Length: @

11| Server: Jetty(6.1.26.hwx)

12

13| HTTP/1.1 200 OK

14| Access-Control-Allow-Methods: GET

15| Access-Control-Allow-0rigin: *

16| Content-Type: application/octet-stream

17| Connection: close

18| Content-Length: 925

19| DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA

20

21| $ curl -i "http://$host/webhdfs/v1/?0p=GETFILESTATUS"

22| HTTP/1.1 200 OK

23| Cache-Control: no-cache

24| Expires: Sun, 06 Dec 2015 16:11:14 GMT

25| Date: Sun, 06 Dec 2015 16:11:14 GMT

26| Pragma: no-cache

27| Content-Type: application/json

28| Transfer-Encoding: chunked

29| Server: Jetty(6.1.26.hwx)

30| {"FileStatus":{"accessTime":0,"blockSize":0,"childrenNum":7,"fileId":16385,"group":"hdfs","length":0, "modificationTime":

31| 1444759104314, "owner":"hdfs", "pathSuffix" ,"permission":"755", "replication”:0,"storagePolicy":0,"type":"DIRECTORY"}}
Julian M. Kunkel HPDA25 35/56



Intro  Motivation Example: Big Data Distributed Algorithms Example Problems REST Architecture High-Level Performance System Characteristics Assessing Performance Summary
000 0O 000000000 0000000000 00000000000 @000 000000 000000000 [e]e]

Outline

H High-Level Performance

Julian M. Kunkel HPDA25 36/56



Intro  Motivation Example: Big Data Distributed Algorithms Example Problems REST Architecture

High-Level Performance System Characteristics Assessing Performance Summary
@00

Goals

B In the context of this lecture, we assume the goal of a system is data processing
B Goal (user perspective): Minimal time to solution
» For Big Data: Workflow from data ingestion, programming, results analysis
» For Science: Workflow until scientific insight/paper
» Programmer/User productivity is important
B Goal (system perspective): cheap total cost of ownership
» Simple deployment and easy management
» Cheap hardware
» Good utilisation of (hardware) resources means less hardware
= In this lecture, we focus on processing a workflow
B Other "performance" alike aspects:
» Productivity of users (user-friendliness)

» Energy-efficiency
» Cost-efficiency

Julian M. Kunkel HPDA25
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Processing Steps

Preparing input data

» Big Data: Ingesting data into our big data environment

» HPC: Preparing data for being read on a supercomputer
Processing a workflow consisting of multiple steps/queries

» Itis a relevant factor for the productivity in data science

» Low runtime is crucial for repeated analysis and interactive exploration

» Multiple steps/different tools can be involved in a complex workflow

For our model, we consider only the execution of one job with any tool

Post-processing of output with (external) tools to produce insight

» Typical strategy of scientists: HPC/Big Data workflow - data transfer - local analysis
» Best: return a final product from the workflow

» For exploratory/novel research, the result is unknown, and may require a long period of manual
analysis
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Performance Factors Influencing Processing Time

B Startup phase
» Distribution of necessary files/scripts
» Allocating resources/containers
» Starting the scripts and loading dependencies
» Usually fixed costs (in the order of seconds to spawn MR/TEZ job, also for HPC jobs!)

B Job execution: computing the product
» Costs for computation and necessary communication and 1/0 depending on

¢ Job complexity
* Software architecture of the big data solution
* Hardware performance and cluster architecture

B Cleanup phase

» Teardown compute environment, free resources
» Usually fixed costs (in the order of seconds)

Julian M. Kunkel HPDA25
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Reminder: Parallel & Distributed Architectures

In practice, systems are a mix of two paradigms:

Distributed memory systems

Shared memory N N
@ | Processor 2| Processor
=] =]

@ | Processor Processor Processor & [ [“Memory g | [Memory

=] \ | \ S| Extra HW 3
o o

1] Network | | |

[°) [ Network(s)

© Memory | | |
& | Processor

B Processors can access a joint memory 2| Memory
» Enables communication/coordination §

B Cannot be scaled up to any size

. . . B Processor can only see own memor
B Very expensive to build one big system y y

B Performance of the network is key
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Big Data Cluster Characteristics
B Usually commodity components
B Cheap (on-board) interconnect, node-local storage
B Communication (bisection) bandwidth between different racks is low

' Rack i Rack |
' Node Node : ' Node Node !
| | |
OGO OrOeaed
1:120 ps R S A
B: 1 GBit/s v \ VooV % vV o
B:4B GRS — =i r— 1 —pe——
B: 10 GBit/s [
\"4 \"4

Switch

Figure: Architecture of a typical big data cluster
Julian M. Kunkel HPDA25 42/56



Intro  Motivation Example: Big Data Distributed Algorithms Example Problems REST Architecture High-Level Performance System Characteristics Assessing Performance Summary
000 OO 000000000 0000000000 00000000000 0000 [slele] lele} 000000000 [e]

HPC Cluster Characteristics

B High-end components
B Extra fast interconnect, global/shared storage with dedicated servers
B Network provides high (near-full) bisection bandwidth. Various topologies are possible.

| | |

u Node _‘ H_‘ Node
A N
| |
\'% \"4

[ [T e

L:0,5 ps /|\ /l\ /I\ /I\
B: 56 GBit/s v v v v
. i Switch Switch
B: 24 TBit/s witch L switc
L:600 ns | |
v v

Cut-Th roug}{hSwitch
1

v
Switch
AN AN N/NL:0,5 us

vV VvV vV VvV V Vv B: 56 GBit/s

1/0- 1/0-
Server Server
—_—e - — e — A ——
r—v 1\ v |

Figure: Architecture of a typical HPC cluster (here fat-tree network topology)
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Hardware Performance
Computation

B CPU performance (frequency x cores x sockets)

» E.g.: 2.5 GHz x 12 cores x 2 sockets = 60 Gcycles/s
» The number of cycles per operation depend on the instruction stream

B Memory (throughput x channels)
» E.g.: 25.6 GB/s per DDR4 DIMM x 3
Communication via the network
B Throughput, e.g., 125 MiB/s with Gigabit Ethernet
B Latency, e.g., 0.1 ms with Gigabit Ethernet

Input/output devices
B HDD mechanical parts (head, rotation) lead to expensive seek
= Access data consecutively and not randomly
= Performance depends on the I/O granularity
» E.g.: 150 MiB/s with 10 MiB blocks
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Hardware-Aware Strategies for Software Solutions

B Java is suboptimal: 1.2x - 2x of cycles compared to C38
B Utilise different hardware components concurrently
» Pipeline computation, I/O, and communication
» At best hide two of them =- 3x speedup vs sequential
» Avoid barriers (waiting for the slowest component)
B Balance and distribute workload among all available servers
» Linear scalability is vital (and not the programming language)
» Add 10x servers, achieve 10x performance (or process 10x data)
B Allow monitoring of components to see their utilisation
B Avoid I/O, if possible (keep data in memory)
B Avoid communication, if possible

Examples for exploiting locality in SQL/data-flow languages

B Foreach, filter are node-local operations
B Sort, group, join need communication

38 This does not matter much compared to the other factors. But vectorization matters.
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Basic Approach

Question
Is the observed performance acceptable?

Basic Approach

Start with a simple model
Measure time for the execution of your workload
Quantify the workload with some metrics

» E.g., amount of tuples or data processed, computational operations needed
» E.g., you may use the statistics output for each Hadoop job

Compute W, the workload you process per time
Compute the expected performance P based on the system’s hardware characteristics
Compare W with P, the efficiency is £ = %
» If E << 1, e.g., 0.01, you are using only 1% of the potential!
Refine the model as needed, e.g., include details about intermediate steps
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Groupwork: Assessing Performance (Compute Only)
Task: Aggregating 10 Million integers with 1 thread

B Vendor-reported performance from [14] indicates improvements

Spark Python DF |
Spark Scala DF |
RDD Python

RDD Scala

0 2 4 6 8 10
Performance of aggregating 10 million int pairs (secs)

Figure: Source: Reference [14]

B These are the advancements when using Spark for the computation
B Can we trust in such numbers? Are these numbers good?
B Discuss these numbers with your neighbour (Time: 3 minutes)
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Assessing Performance of In-Memory Computing

Measured performance numbers and theoretic considerations
W Spark [14]: 160 MB/s, 500 cycles per operation3®
» Invoking external programming languages is even more expensive!
B Python (raw): 0.44s = 727 MB/s, 123 cycles per operation
B Numpy: 0.014s = 22.8 GBY/s, 4 cycles per operation (memory BW limit)
B One line to measure the performance in Python using Numpy:

1| timeit.timeit(stmt="np.sum(d)", setup="import numpy as np; d =
<~ np.array(range(1l,10x1000x1000))", number=1)

B Hence, the big data solution is 125x slower in this example than expected!

39 But it can use multiple threads easily.
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Assessing Compute and Storage Workflow

B Daytona GraySort: Sort at least 100 TB data in files into an output file
» Generates 500 TB of disk I/0 and 200 TB of network I/O [12]
» Drawback: Benchmark is not very compute intense

B Data record: 10 byte key, 90 byte data

B Performance Metric: Sort rate (TBs/minute)

Hadoop MR Spark Spark
Record Record 1PB
Data Size 102.5T8B 100 TB 1000 TB
Elapsed Time 72 mins 23 mins 234 mins
# Nodes 2100 206 190
# Cores 50400 physical 6592 virtualized 6080 virtualized
Cluster disk 3150 GB/s L -
18 GB/s 570 GB/s
[throughput (est.)
Sort Benchmark
es les No

Daytona Rules

idedicated data

virtualized (EC2)

virtualized (EC2)

Network

icenter, 10Gbps 10Gbps network  |LOGbps network
[Sort rate 1.42 TB/min 4.27 TB/min 4.27 TB/min
[Sort rate/node 0.67 GB/min 20.7 GB/min 22.5 GB/min

HPDA25

Figure: Source: Reference [12]
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Assessing Performance of In-Memory Computing

Hadoop
Bl 102.5TBin 4,328 seconds [13]
B Hardware: 2100 nodes, dual 2.3 Ghz 6cores, 64 GB memory, 12 HDDs
B Sortrate: 23.6 GB/s = 11 MB/s per Node = 1 MB/s per HDD
B Clearly this is suboptimal!

Apache Spark (on disk)
Bl 100 TBin 1,406 seconds [13]
B Hardware: 207 Amazon EC2, 2.5 Ghz 32vCores, 244GB memory, 8 SSDs
B Sort rate: 71 GB/s = 344 MB/s per node
B Performance assessment

» Network: 200 TB =- 687 MiB/s per node
Optimal: 1.15 GB/s per Node, but we cannot hide (all) communication
» 1/0: 500 TB = 1.7 GB/s per node = 212 MB/s per SSD

» Compute: 17 M records/s per node = 0.5 M/s per core = 4700 cycles/record
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Executing the Optimal Algorithm on Given Hardware
An utopic algorithm

Assume 200 nodes and well known key distribution
Read input file once: 100 TB
Pipeline reading and start immediately to scatter data (key): 100 TB

Receiving node stores data in likely memory region: 500 GB/node
Assume this can be pipelined with the receiver

Output data to local files: 100 TB
Estimating optimal runtime
Per node: 500 GByte of data; I/0: keep 1.7 GB/s per node
Read: 294s
Scatter data: 434s = Reading can be hidden
One read/write in memory (2 sockets, 3 channels): 6s
Write local file region: 294s
Total runtime: 434 4 294 = 728 = 8.2 T/min = The Spark record is quite good!
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Discussion: Comparing Pig and Hive Big Data Solutions

Benchmark by IBM [16], similar to Apache Benchmark

B Tests several operations, data set increases 10x in size
» Setl: 772 KB; 2: 6.4 MB; 3: 63 MB; 4: 628 MB; 5: 6.2 GB; 6: 62 GB

B Five data/compute nodes, configured to run eight reduce and 11 map tasks

‘ Set 1| Set 2 | Set 3| Set 4 | Set 5 | Set 6
Arithmetic | 32 37 2 300 2633 27821
Filter 10% | 32 53. 59 209 1672 18222

Set 1| Set 2| Set 3 | Set 4 | Set 5 | Set 6
Arithmetic | 32 36 49 83 423 3900
Filter 10% | 32 34 44 66 295 2640

Filter 90% (33 |32 |37 |53 | 197 M| 1657 g“e‘” 90% |31 |32 136 169|331 ) 3320
Group 49 |53 |60 |105 | 497 | 4304 roup f‘ O e B 141 1233
Join 49 |50 |7 150 | 1045mm| 10258 Join 48 |56 110 51T ] 4388 ) -

Distinct 48 53 2 109 - -

Figure: Time for Pig (left) and Hive. Source: B. Jakobus (modified), "Table 2: Averaged performance" [16]

Assessing performance

B How could we model performance here?
B How would you judge the runtime here?
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Errors Increase Processing Time [11]

B An error probability E < 1 increases the processing time P
B Rerun of a job may fail again
B Processing time with errors can be computed: P = (E+E? +..) x P=P/(1 — E)

100

20
1

10
1

B With 50% chance of errors, 2x processing
time
B With 90% chance, 10x

P' (relative batch processing time with errors)

\—17//

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
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Summary

B Designing a distributed system/algorithm requires to think about
» required functionality
» semantics (API, properties)
» Important properties: Availability, Consistency, Fault-tolerance
B Architectural-patterns provide blueprints for distributed systems
B The REST architecture is build on top of HTTP and portable
» Caching of HTTP is important to increase scalability!
B Performance
Goal (user-perspective): Optimise the time-to-solution
Runtime of queries/scripts is the main contributor
Understanding a few HW throughputs help to assess the performance
Linear scalability of the architecture is the crucial performance factor
Basic performance analysis
Estimate the workload
Compute the workload throughput per node
Compare with hardware capabilities
» Error model predicts runtime if jobs must be restarted
» Different big data solutions exhibit different performance behaviours
Julian M. Kunkel HPDA25
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