
StreamProcessing

Julian Kunkel

Department of Computer Science

2025-12-15 HPDA-25

)

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Outline

1 Overview

2 Storm

3 Architecture of Storm

4 Programming and Execution

5 Higher-Level APIs

6 Spark Streaming

7 Apache Flink

8 Summary
Julian M. Kunkel HPDA25 2 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Learning Objectives

■ Define stream processing and its basic concepts

■ Describe the parallel execution of a Storm topology

■ Illustrate how the at-least-once processing semantics is achieved via tuple tracking

■ Describe alternatives for obtaining exactly-once semantics and their challenges

■ Sketch how a data flow could be parallelized and distributed across CPU nodes on an
example

Julian M. Kunkel HPDA25 3 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Stream Processing [12]

■ Stream processing paradigm = dataflow programming
■ Programming

▶ Implement operations (kernel) functions and define data dependencies
▶ Uniform streaming: Operation is executed on all elements individually
⇒ Default: no view of the complete data at any time

■ Advantages
▶ Pipelining of operations and massive parallelism is possible
▶ Data is in memory and often in CPU cache, i.e., in-memory computation
▶ Data dependencies of kernels are known and can be dealt at compile time

Element Element Element Element

stream

Overcoming restrictions of the programming model

■ Windowing: sliding (overlapping) windows contain multiple elements

■ Stateless vs. stateful (i.e., keep information for multiple elements)

Julian M. Kunkel HPDA25 4 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Outline

1 Overview

2 Storm
Overview
Data Model

3 Architecture of Storm

4 Programming and Execution

5 Higher-Level APIs

6 Spark Streaming

7 Apache Flink

8 Summary

Julian M. Kunkel HPDA25 5 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Storm Overview [37, 38]

■ Real-time stream-computation system for high-velocity data

▶ Performance: Processes a million records/s per node

■ Implemented in Clojure (LISP in JVM), (50% LOC Java)

■ User APIs are provided for Java

■ Utilizes YARN to schedule computation

■ Fast, scalable, fault-tolerant, reliable, “easy” to operate

■ Example general use cases:

▶ Online processing of large data volume
▶ Speed layer in the Lambda architecture
▶ Data ingestion into the HDFS ecosystem
▶ Parallelization of complex functions

■ Support for some other languages, e.g., Python via streamparse [53]

■ Several high-level concepts are provided

Julian M. Kunkel HPDA25 6 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Data Model [37, 38]
■ Tuple: an ordered list of named elements

▶ e.g., fields (weight, name, BMI) and tuple (1, “hans”, 5.5)
▶ Dynamic types (i.e., store anything in fields)

■ Stream: a sequence of tuples
■ Spouts: a source of streams for a computation

▶ e.g., Kafka messages, tweets, real-time data
■ Bolts: processors for input streams producing output streams

▶ e.g., filtering, aggregation, join data, talk to databases
■ Topology: the graph of the calculation represented as network

▶ Note: the parallelism (tasks) is statically defined for a topology

Spout 1

Bolt: Filter

Bolt: Join
 & Reduce

Broadcast

Spout 2

Bolt: Join

Output

Figure: Example topology
Julian M. Kunkel HPDA25 7 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Partitions and Stream Groupings [38]
■ Multiple instances (tasks) of spouts/bolts each processes a partition
■ Stream grouping defines how to transfer tuples between partitions
■ Selection of groupings (we note similarities to YARN)

▶ Shuffle: send a tuple to a random task
▶ Field: send tuples which share the values of a subset of fields to the same task, e.g., for

counting word frequency
▶ All: replicate/Broadcast tuple across all tasks of the target bolt
▶ Local: prefer local tasks if available, otherwise use shuffle
▶ Direct: producer decides which consumer task receives the tuple

Figure: Source: [38]

Julian M. Kunkel HPDA25 8 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Use Cases

Several companies (still) utilize Storm [50]

■ Twitter: personalization, search, revenue optimization, ...

▶ 200 nodes, 30 topologies, 50 billion msg/day, avg. latency <50ms

■ Yahoo: user events, content feeds, application logs

▶ 320 nodes with YARN, 130k msg/s

■ Spotify: recommendation, ads, monitoring, ...

▶ 22 nodes, 15+ topologies, 200k msg/s

Julian M. Kunkel HPDA25 9 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Outline

1 Overview

2 Storm

3 Architecture of Storm
Components
Execution Model
Processing of Tuples
Exactly-Once Semantics
Performance Aspects

4 Programming and Execution

5 Higher-Level APIs

6 Spark Streaming

7 Apache Flink

8 Summary

Julian M. Kunkel HPDA25 10 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Architecture Components [37, 38, 41]

■ Nimbus node (Storm master node)

▶ Upload computation jobs (topologies)
▶ Distribute code across the cluster
▶ Monitors computation and reallocates workers

• Upon node failure, tuples and jobs are re-assigned
• Re-assignment may be triggered by users

■ Worker nodes runs Supervisor daemon which start/stop workers

■ Worker processes execute nodes in the topology (graph)

■ Zookeeper is used to coordinate the Storm cluster

▶ Performs the communication between Nimbus and Supervisors
▶ Stores which services to run on which nodes
▶ Establishes the initial communication between services

Julian M. Kunkel HPDA25 11 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Architecture Supporting Tools

■ Kryo serialization framework [40]

▶ Supports serialization of standard Java objects
▶ e.g., useful for serializing tuples for communication

■ Apache Thrift for cross-language support

▶ Creates RPC client and servers for inter-language communication
▶ Thrift definition file specifies function calls

■ Topologies are Thrift structs and Nimbus offers Thrift service

▶ Allows to define and submit them using any language

Julian M. Kunkel HPDA25 12 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Execution Model [37, 38, 41]

■ Multiple topologies can be executed concurrently

▶ Usually sharing the nodes
▶ With the isolation scheduler, exclusive node use is possible [42]

■ Worker process

▶ Runs in its own JVM
▶ Belongs to one topology
▶ Spawns and runs executor threads

■ Executor: a single thread

▶ Runs one or more tasks of the same bolt/spout
▶ Tasks are executed sequentially!
▶ By default one thread per task
▶ The assignment of tasks to executors can change to adapt the parallelism using the storm

rebalance command

■ Task: the execution of one bolt/spout

Julian M. Kunkel HPDA25 13 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Execution Model: Parallelism [41]

Figure: Source: Example of a running topology [41] (modified)

1 topologyBuilder.setBolt("green-bolt", new GreenBolt(), 2).setNumTasks(4)

Julian M. Kunkel HPDA25 14 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Processing of Tuples [54]

■ A tuple emitted by a spout may create many derived tuples with dependencies

(s1) T 1

(a) T 1

(c) T 5: 1,2,
 ...

Broadcast:
create new T3: 1

(s2) T 2

(b) T 4: 1,2T6

(d) T 7: 1,2,
 ...

■ What happens if the processing of a tuple fails?

■ Storm guarantees execution of tuples!

Julian M. Kunkel HPDA25 15 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Ensuring Consistency

■ At-least-once processing semantics

▶ One tuple may be executed multiple times (on bolts)
▶ If an error occurs, a tuple is restarted from its spout

■ Restarts tuple if a timeout/failure occurs

▶ Timeout: Config.TOPOLOGY_MESSAGE_TIMEOUT_SECS (default: 30)

■ Correct stateful computation is not trivial in this model

Julian M. Kunkel HPDA25 16 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Processing Strategy [11, 54]
■ Track tuple processing

▶ Each tuple has a random 64 Bit message ID
▶ Explicit record all spout tuple IDs a tuple is derived of

■ Acker task tracks the tuple DAG implicitly for each tuple
▶ Spout informs Acker tasks of new tuple
▶ Acker notifies all Spouts if a “derived” tuple completed
▶ Hashing maps spout tuple ID to Acker task

■ Acker uses 20 bytes per tuple to track the state of the tuple tree33

▶ Map contains: tuple ID to Spout (creator) task AND 64 Bit ack value
▶ Ack value is an XOR of all “derived” tuple IDs and all acked tuple IDs
▶ If Ack value is 0, the processing of the tuple is complete

(s1) T 1

(a) T 1

(c) T 5: 1,2,
 ...

Broadcast:
create new T3: 1

(s2) T 2

(b) T 4: 1,2T6

(d) T 7: 1,2,
 ... Spout 1

Bolt: Filter

Bolt: Join
 & Reduce

Broadcast

Spout 2

Bolt: Join

Output

33 Independent of the size of the topology!
Julian M. Kunkel HPDA25 17 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Programming Requirements [11, 54]

■ Fault-tolerance strategy requires developers to:
▶ Acknowledge (successful) processing of each tuple

• Prevent (early) retransmission of the tuple from the spout

▶ Anchor products (derived) tuple to link to its origin

• Defines dependencies between products (processing of a product may fail)

(s1) T 1

(a) T 1

(c) T 5: 1,2,
 ...

Broadcast:
create new T3: 1

(s2) T 2

(b) T 4: 1,2T6

(d) T 7: 1,2,
 ...

Figure: Simplified perspective; dependencies to Spout tuples.
Acknowledge a tuple when it is used, anchor all Spouts tuple IDs

Julian M. Kunkel HPDA25 18 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Illustration of the Processing (Roughly)

s1 Spout creates spout tuple T1 and derives/anchors additional T3 for broadcast
s2 Spout creates spout tuple T2
(a) Bolt anchors T6 with T1 and ack T1
(b) Bolt anchors T4 with T1, T2 and ack T2, T6
(c) Bolt anchors T5 with T1, T2 and ack T3, T4
(d) Bolt anchors T7 with T1, T2 and ack T5

Spout tuple Source XOR
1 Spout 1 T1xT3
2 Spout 2 T2

Table: Table changes after (s2)

Tuple Source XOR
1 Spout 1 (T1xT1xT6xT6)xT3xT4
2 Spout 2 (T2xT2)xT4

Table: Table changes after (b), x is
XOR

(s1) T 1

(a) T 1

(c) T 5: 1,2,
 ...

Broadcast:
create new T3: 1

(s2) T 2

(b) T 4: 1,2T6

(d) T 7: 1,2,
 ...

Figure: Topology’s tuple processing

Julian M. Kunkel HPDA25 19 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Failure Cases and their Handling [54]

■ Task (node) fault
▶ Tuple IDs at the root of tuple tree time out
▶ Start a new task; replay of tuples is started
▶ Requires transactional behavior of spouts

• Allows to re-creates batches of tuples in the exact order as before
• e.g., provided by file access, Kafka, RabbitMQ (message queue)

■ Acker task fault
▶ After timeout, all pending tuples managed by Acker are restarted

■ Spout task fault
▶ Source of the spout needs to provide tuples again (transactional behavior)

Tunable semantics: If reliable processing is not needed

■ Set Config.TOPOLOGY_ACKERS to 0

▶ This will immediately ack all tuples on each Spout

■ Do not anchor tuples to stop tracking in the DAG

■ Do not set a tuple ID in a Spout to not track this tuple

Julian M. Kunkel HPDA25 20 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Exactly-Once Semantics [11, 54]
■ Semantics guarantees each tuple is executed exactly once
■ Operations depending on exactly-once semantics

▶ Updates of stateful computation
▶ Global counters (e.g., wordcount), database updates

Strategies to achieve exactly-once semantics
1 Provide idempotent operations: f(f(tuple)) = f(tuple)

▶ Stateless (side-effect free) operations are idempotent

2 Execute tuples strongly ordered to avoid replicated execution

▶ Create tuple IDs in the spout with a strong ordering
▶ Bolts memorize last seen / executed tuple ID (transaction ID)

• Perform updates only if tuple ID > last seen ID
⇒ ignore all tuples with tuple ID < failure

▶ Requirement: Don’t use random grouping

3 Use Storm’s transactional topology [57]
▶ Separate execution into processing phase and commit phase

• Processing does not need exactly-once semantics
• Commit phase requires strong ordering

▶ Storm ensures: any time only one batch can be in commit phase
Julian M. Kunkel HPDA25 21 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Performance Aspects

■ Processing of individual tuples

▶ Introduces overhead (especially for exactly-once semantics)
▶ But provides low latency

■ Batch stream processing

▶ Group multiple tuples into batches
▶ Increases throughput but increases latency
▶ Allows to perform batch-local aggregations

■ Micro-batches (e.g., 10 tuples) are a typical compromise

Batch
Tuple
Tuple
Tuple

Batch
Tuple
Tuple
Tuple

Batch
Tuple
Tuple
Tuple

Batch
Tuple
Tuple
Tuple

stream

Julian M. Kunkel HPDA25 22 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Outline

1 Overview

2 Storm

3 Architecture of Storm

4 Programming and Execution
Overview
Example Java Code
Running a Topology
Storm Web UI
HDFS Integration
HBase Integration
Hive Integration

5 Higher-Level APIs

6 Spark Streaming

7 Apache Flink

8 Summary

Julian M. Kunkel HPDA25 23 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Overview

■ Java is the primary interface

■ Supports Ruby, Python, Fancy (but suboptimally)

Integration with other tools

■ Hive

■ HDFS

■ HBase

■ Databases via JDBC

■ Update index of Solr

■ Spouts for consuming data from Kafka

■ ...

Julian M. Kunkel HPDA25 24 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Example Code for a Bolt – See [38, 39] for More

1 public class BMIBolt extends BaseRichBolt {
2 private OutputCollectorBase _collector;
3

4 @Override public void prepare(Map conf, TopologyContext context, OutputCollectorBase collector) {
5 _collector = collector;
6 }
7

8 // We expect a tuple as input with weight, height and name
9 @Override public void execute(Tuple input) {

10 float weight = input.getFloat(0);
11 float height = input.getFloat(1);
12 string name = input.getString(2);
13 // filter output
14 if (name.startsWith("h")){ // emit() anchors input tuple
15 _collector.emit(input, new Values(weight, name, weight/(height*height)));
16 }
17 // last thing to do: acknowledge processing of input tuple
18 _collector.ack(input);
19 }
20 @Override public void declareOutputFields(OutputFieldsDeclarer declarer) {
21 declarer.declare(new Fields("weight", "name", "BMI"));
22 }
23 }

Julian M. Kunkel HPDA25 25 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Example Code for a Spout [39]

1 public class TestWordSpout extends BaseRichSpout {
2 public void nextTuple() { // this function is called forever
3 Utils.sleep(100);
4 final String[] words = new String[] {"nathan", "mike", "jackson", "golda",};
5 final Random rand = new Random();
6 final String word = words[rand.nextInt(words.length)];
7 // create a new tuple:
8 _collector.emit(new Values(word));
9 }

10

11 public void declareOutputFields(OutputFieldsDeclarer declarer) {
12 // we output only one field called "word"
13 declarer.declare(new Fields("word"));
14 }
15

16 // Change the component configuration
17 public Map<String, Object> getComponentConfiguration() {
18 Map<String, Object> ret = new HashMap<String, Object>();
19 // set the maximum parallelism to 1
20 ret.put(Config.TOPOLOGY_MAX_TASK_PARALLELISM, 1);
21 return ret;
22 }
23 }

Julian M. Kunkel HPDA25 26 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Example Code for Topology Setup [39]
1 Config conf = new Config();
2 // run all tasks in 4 worker processes
3 conf.setNumWorkers(4);
4

5 TopologyBuilder builder = new TopologyBuilder();
6 // Add a spout and provide a parallelism hint to run on 2 executors
7 builder.setSpout("USPeople", new PeopleSpout("US"), 2);
8 // Create a new Bolt and define Spout USPeople as input
9 builder.setBolt("USbmi", new BMIBolt(), 3).shuffleGrouping("USPeople");

10 // Now also set the number of tasks to be used for execution
11 // Thus, this task will run on 1 executor with 4 tasks, input: USbmi
12 builder.setBolt("thins", new IdentifyThinPeople(),1) .setNumTasks(4).shuffleGrouping("USbmi");
13 // additional Spout for Germans
14 builder.setSpout("GermanPeople", new PeopleSpout("German"), 5);
15 // Add multiple inputs
16 builder.setBolt("bmiAll", new BMIBolt(), 3) .shuffleGrouping("USPeople").shuffleGrouping("GermanPeople");
17

18 // Submit the topology
19 StormSubmitter.submitTopology("mytopo", conf, builder.createTopology());

Rebalance at runtime
1 # Now use 10 worker processes and set 4 executors for the Bolt "thin"
2 $ storm rebalance mytopo -n 10 -e thins=4

Julian M. Kunkel HPDA25 27 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Running Bolts in Other Languages [38]

■ Supports Ruby, Python, Fancy
■ Execution in subprocesses
■ Communication with JVM via JSON messages

1 public static class SplitSentence extends ShellBolt implements IRichBolt {
2 public SplitSentence() {
3 super("python", "splitsentence.py");
4 }
5

6 public void declareOutputFields(OutputFieldsDeclarer declarer) {
7 declarer.declare(new Fields("word"));
8 }
9 }

1 import storm
2

3 class SplitSentenceBolt(storm.BasicBolt):
4 def process(self, tup):
5 words = tup.values[0].split(" ")
6 for word in words:
7 storm.emit([word])
8 SplitSentenceBolt().run()

Julian M. Kunkel HPDA25 28 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Running a Topology

■ Compile Java code 34

1 JARS=$(retrieveJars /usr/hdp/current/hadoop-hdfs-client/ /usr/hdp/current/hadoop-client/
↪→ /usr/hdp/current/hadoop-yarn-client/ /usr/hdp/2.3.2.0-2950/storm/lib/)

2 javac -classpath classes:$JARS -d classes myTopology.java

■ Start topology

1 storm jar <JAR> <Topology MAIN> <ARGS>

■ Stop topology

1 storm kill <TOPOLOGY NAME> -w <WAITING TIME>

■ Monitor topology (alternatively use web-GUI)

1 storm list # show all active topologies
2 storm monitor <TOPOLOGY NAME>

34 The retrieveJars() function identifies all JAR files in the directory.
Julian M. Kunkel HPDA25 29 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Storm User Interface

Figure: Example for running the wc-test topology. Storm UI: http://Abu1:8744

Julian M. Kunkel HPDA25 30 / 63

http://Abu1:8744

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Storm User Interface

Figure: Topology details

Julian M. Kunkel HPDA25 31 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Storm User Interface

Julian M. Kunkel HPDA25 32 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Storm User Interface

Figure: Visualization of the word-count topology with bottlenecks

Julian M. Kunkel HPDA25 33 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Debugging [38]

■ Storm supports local [44] and distributed mode [43]

▶ Like many other BigData tools

■ In local mode, simulate worker nodes with threads

■ Use debug mode to output component messages

Starting and stopping a topology

1 Config conf = new Config();
2 // log every message emitted
3 conf.setDebug(true);
4 conf.setNumWorkers(2);
5

6 LocalCluster cluster = new LocalCluster();
7 cluster.submitTopology("test", conf, builder.createTopology());
8 Utils.sleep(10000);
9 cluster.killTopology("test");

10 cluster.shutdown();

Julian M. Kunkel HPDA25 34 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

HDFS Integration: Writing to HDFS [51]
■ HdfsBolt can write tuples into CSV or SequenceFiles
■ File rotation policy (includes action and conditions)

▶ Move/delete old files after certain conditions are met
▶ e.g., a certain file size is reached

■ Synchronization policy
▶ Defines when the file is synchronized (flushed) to HDFS
▶ e.g., after 1000 tuples

Example [51]
1 // use "|" instead of "," for field delimiter
2 RecordFormat format = new DelimitedRecordFormat().withFieldDelimiter("|");
3 // sync the filesystem after every 1k tuples
4 SyncPolicy syncPolicy = new CountSyncPolicy(1000);
5 // rotate files when they reach 5MB
6 FileRotationPolicy rotationPolicy = new FileSizeRotationPolicy(5.0f, Units.MB);
7

8 FileNameFormat fileNameFormat = new DefaultFileNameFormat().withPath("/foo/");
9 HdfsBolt bolt = new HdfsBolt().withFsUrl("hdfs://localhost:54310")

10 .withFileNameFormat(fileNameFormat).withRecordFormat(format)
11 .withRotationPolicy(rotationPolicy).withSyncPolicy(syncPolicy);

Julian M. Kunkel HPDA25 35 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

HBase Integration [55]

■ HBaseBolt: Allows to write columns and update counters

▶ Map Storm tuple field value to HBase rows and columns

■ HBaseLookupBolt: Query tuples from HBase based on input

Example HBaseBolt [55]

1 // Use the row key according to the field "word"
2 // Add the field "word" into the column word (again)
3 // Increment the HBase counter in the field "count"
4 SimpleHBaseMapper mapper = new SimpleHBaseMapper()
5 .withRowKeyField("word").withColumnFields(new Fields("word"))
6 .withCounterFields(new Fields("count")).withColumnFamily("cf");
7

8 // Create a bolt with the HBase mapper
9 HBaseBolt hbase = new HBaseBolt("WordCount", mapper);

10 // Connect the HBase bolt to the bolt emitting (word, count) tuples by mapping "word"
11 builder.setBolt("myHBase", hbase, 1).fieldsGrouping("wordCountBolt", new Fields("word"));

Julian M. Kunkel HPDA25 36 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Hive Integration [56]

■ HiveBolt writes tuples to Hive in batches
■ Requires bucketed/clustered table in ORC format
■ Once committed it is immediately visible in Hive
■ Format: DelimitedRecord or JsonRecord

Example [56]
1 // in Hive: CREATE TABLE test (document STRING, position INT) partitioned by (word STRING) stored as orc

↪→ tblproperties ("orc.compress"="NONE");
2

3 // Define the mapping of tuples to Hive columns
4 // Here: Create a reverse map from a word to a document and position
5 DelimitedRecordHiveMapper mapper = new DelimitedRecordHiveMapper()
6 .withColumnFields(new Fields("word", "document", "position"));
7

8 HiveOptions hiveOptions = new HiveOptions(metaStoreURI,dbName, "myTable", mapper)
9 .withTxnsPerBatch(10) // Each Txn is written into one ORC subfile

10 // => control the number of subfiles in ORC (will be compacted automatically)
11 .withBatchSize(1000) // Size for a single hive transaction
12 .withIdleTimeout(10) // Disconnect idle writers after this timeout
13 .withCallTimeout(10000); // in ms, timeout for each Hive/HDFS operation
14

15 HiveBolt hiveBolt = new HiveBolt(hiveOptions);

Julian M. Kunkel HPDA25 37 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Outline

1 Overview

2 Storm

3 Architecture of Storm

4 Programming and Execution

5 Higher-Level APIs
Distributed RPC (DRPC)
Trident

6 Spark Streaming

7 Apache Flink

8 Summary

Julian M. Kunkel HPDA25 38 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Distributed RPC (DRPC) [47]

■ DRPC: Distributed remote procedure call
■ Goal: Reliable execution and parallelization of functions (procedures)

▶ Can be also used to query results from Storm topologies

■ Helper classes exist to setup topologies with linear execution
▶ Linear execution: f(x) calls g(...) then h(...)

■ Some similarities to recent concept Function as a Service (FaaS)
▶ With FaaS, you submit a RPC call that is processed remotely by one target
▶ DRPC are pipelined and can be parallelized

Client code

1 // Setup the Storm DRPC facilities
2 DRPCClient client = new DRPCClient("drpc-host", 3772);
3

4 // Execute the RPC function reach() with the arguments
5 // We assume the function is implemented as part of a Storm topology
6

7 String result = client.execute("reach", "http://twitter.com");

Julian M. Kunkel HPDA25 39 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Processing of DRPCs
1 Client sends the function name and arguments to DRPC server
2 DRPC server creates a request ID
3 The Topology registered for the function receives tuple in a DRPCSpout
4 The Topology computes a result
5 Its last bolt returns request id + output to DRPC server
6 DRPC server sends result to the client
7 Client casts output and returns from blocked function

Figure: Source: [47]

Julian M. Kunkel HPDA25 40 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Example Using the Linear DRPC Builder [47]
Function implementation

1 public static class ExclaimBolt extends BaseBasicBolt {
2 // A BaseBasicBolt automatically anchors and acks tuples
3 public void execute(Tuple tuple, BasicOutputCollector collector) {
4 String input = tuple.getString(1);
5 collector.emit(new Values(tuple.getValue(0), input + "!"));
6 }
7 public void declareOutputFields(OutputFieldsDeclarer declarer) {
8 declarer.declare(new Fields("id", "result"));
9 }

10 }
11 public static void main(String[] args) throws Exception {
12 // The linear topology builder eases building of sequential steps
13 LinearDRPCTopologyBuilder builder = new LinearDRPCTopologyBuilder("exclamation");
14 builder.addBolt(new ExclaimBolt(), 3);
15 }

Run example client in local mode
1 LocalDRPC drpc = new LocalDRPC(); // this class contains our main() above
2 LocalCluster cluster = new LocalCluster();
3 cluster.submitTopology("drpc-demo", conf, builder.createLocalTopology(drpc));
4 System.out.println("hello -> " + drpc.execute("exclamation", "hello"));
5 cluster.shutdown(); drpc.shutdown();

Julian M. Kunkel HPDA25 41 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Example Using the DRPC Builder [47]

Running a client on remote DRPC

■ Start DRPC servers using: storm drpc

■ Configure locations of DRPC servers (e.g., in storm.yaml)

■ Submit and start DRPC topologies on a Storm Cluster

1 StormSubmitter.submitTopology("exclamation-drpc", conf, builder.createRemoteTopology());
2 // DRPCClient drpc = new DRPCClient("drpc.location", 3772);

Julian M. Kunkel HPDA25 42 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Trident [48]

■ High-level abstraction for real-time computing

▶ Low latency queries
▶ Construct data flow topologies by invoking functions
▶ Similarities to Spark and Pig

■ Provides exactly-once semantics

■ Allows stateful stream processing

▶ Uses, e.g., Memcached to save intermediate states
▶ Backends for HDFS, Hive, HBase are available

■ Performant

▶ Executes tuples in micro batches
▶ Partial (local) aggregation before sending tuples

■ Reliable

▶ An incrementing transaction id is assigned to each batch
▶ Update of states is ordered by a batch ID

Julian M. Kunkel HPDA25 43 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Trident Functions [58, 59]

■ Functions process input fields and append new ones to existing fields

■ User-defined functions can be easily provided

■ Stateful functions persist/update/query states

List of functions

■ each: apply user-defined function on specified fields for each tuple

▶ Append fields

1 mystream.each(new Fields("b"), new MyFunction(), new Fields("d"));

▶ Filter

1 mystream.each(new Fields("b", "a"), new MyFilter());

■ project: keep only listed fields

1 mystream.project(new Fields("b", "d"))

Julian M. Kunkel HPDA25 44 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Trident Functions [58, 59]

■ partitionAggregate: run a function for each batch of tuples and partition
▶ Completely replaces fields and tuples
▶ e.g., partial aggregations

1 mystream.partitionAggregate(new Fields("b"), new Sum(), new Fields("sum"))

■ aggregate: reduce individual batches (or groups) in isolation

■ persistentAggregate: aggregate across batches and update states

■ stateQuery: query a source of state

■ partitionPersist: update a source of state

■ groupBy: repartitions the stream, group tuples together

■ merge: combine tuples from multiple streams and name output fields

■ join: combines tuple values by a key, applies to batches only

1 // Input: stream1 fields ["key", "val1", "val2"], stream2 ["key2", "val1"]
2 topology.join(stream1, new Fields("key"), stream2, new Fields("key2"),
3 new Fields("key", "val1", "val2", "val21")); // output

Julian M. Kunkel HPDA25 45 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Grouping

Figure: Source: [58]

Julian M. Kunkel HPDA25 46 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Trident Example [48]

■ Compute word frequency from an input stream of sentences

1 TridentTopology topology = new TridentTopology();
2 TridentState wordCounts = topology.newStream("spout1", spout)
3 .each(new Fields("sentence"), new Split(), new Fields("word"))
4 .groupBy(new Fields("word"))
5 .persistentAggregate(new MemoryMapState.Factory(), new Count(), new Fields("count"))
6 .parallelismHint(6);

■ Create a query to retrieve current word frequency for a list of words

1 topology.newDRPCStream("words").each(new Fields("args"), new Split(), new Fields("word"))
2 .groupBy(new Fields("word"))
3 .stateQuery(wordCounts, new Fields("word"), new MapGet(), new Fields("count"))
4 .each(new Fields("count"), new FilterNull()) // remove NULL values
5 .aggregate(new Fields("count"), new Sum(), new Fields("sum"));

■ Submit a query for word frequencies of four words

1 DRPCClient client = new DRPCClient("drpc.server.location", 3772);
2 System.out.println(client.execute("words", "cat dog the man");

Julian M. Kunkel HPDA25 47 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Outline

1 Overview

2 Storm

3 Architecture of Storm

4 Programming and Execution

5 Higher-Level APIs

6 Spark Streaming
Spark Streaming

7 Apache Flink

8 SummaryJulian M. Kunkel HPDA25 48 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Spark Streaming [60]

■ Streaming support in Spark
▶ Data model: Continuous stream of RDDs (batches of tuples)
▶ Fault tolerance: Checkpointing of states

■ Not all data can be accessed at a given time
▶ Only data from one interval or a sliding window
▶ States can be kept for key/value RDDs using updateStateByKey()

■ Not all transformation and operations available, e.g., foreach, collect
▶ Streams can be combined with existing RDDs using transform()

■ Workflow: Build the pipeline, then start it
■ Can read streams from multiple sources

▶ Files, TCP sources, ...

■ Note: Number of tasks assigned > than receivers, otherwise it stagnates

Figure: Source: [16]
Julian M. Kunkel HPDA25 49 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Processing of Streams

Basic processing concept is the same as for RDDs, example:

1 words = lines.flatMap(lambda l: l.split(" "))

Figure: Source: [16]

Julian M. Kunkel HPDA25 50 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Window-Based Operations

1 # Reduce a window of 30 seconds of data every 10 seconds
2 rdd = words.reduceByKeyAndWindow(lambda x, y: x + y, 30, 10)

Figure: Source: [16]

Julian M. Kunkel HPDA25 51 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Example Streaming Application
1 from pyspark.streaming import StreamingContext
2 # Create batches every second
3 ssc = StreamingContext(sc, batchDuration=1)
4 ssc.checkpoint("mySparkCP")
5 # We should use ssc.getOrCreate() to restore a checkpoint, see [16]
6 # Create a stream from a TCP socket
7 lines = ssc.socketTextStream("localhost", 9999)
8
9 # Alternatively: read newly created files in the directory and process them

10 # Move files into this directory to start computation
11 # lines = scc.textFileStream("myDir")
12
13 # Split lines into tokens and return tuples (word,1)
14 words = lines.flatMap(lambda l: l.split(" ")).map(lambda x: (x,1))
15
16 # Track the count for each key (word)
17 def updateWC(val, stateVal):
18 if stateVal is None:
19 stateVal = 0
20 return sum(val, stateVal)
21
22 counts = words.updateStateByKey(updateWC) # Requires checkpointing
23
24 # Print the first 10 tokens of each stream RDD
25 counts.pprint(num=10)
26
27 # start computation, after that we cannot change the processing pipeline
28 ssc.start()
29 # Wait until computation finishes
30 ssc.awaitTermination()
31 # Terminate computation
32 ssc.stop()

Example output
Started TCP server
nc -lk4 localhost
9999

Input: das ist ein test
Output:
Time: 2015-12-27 15:09:43

(’das’, 1)
(’test’, 1)
(’ein’, 1)
(’ist’, 1)

Input: das ist ein haus
Output:
Time: 2015-12-27 15:09:52

(’das’, 2)
(’test’, 1)
(’ein’, 2)
(’ist’, 2)
(’haus’, 1)

Julian M. Kunkel HPDA25 52 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Outline

1 Overview

2 Storm

3 Architecture of Storm

4 Programming and Execution

5 Higher-Level APIs

6 Spark Streaming

7 Apache Flink
Apache Overview

8 SummaryJulian M. Kunkel HPDA25 53 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Flink [62]

■ One of the latest tools; part of Apache since 2015
■ “4th generation of big data analytics platforms” [61]
■ Supports Scala and Java; rapidly growing ecosystem
■ Similarities to Storm and Spark

Features

■ One concept for batch
processing/streaming

■ Iterative computation

■ Optimization of jobs

■ Exactly-once semantics

■ Event-time semantics

Figure: Source: [62]Julian M. Kunkel HPDA25 54 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Programming Model
■ A DAG applies transformations to a stream

Source
DataStream<String> lines = env.addSource(

new FlinkKafkaConsumer<>(…));

DataStream<Event> events = lines.map((line) -> parse(line));

DataStream<Statistics> stats = events
.keyBy("id")
.timeWindow(Time.seconds(10))
.apply(new MyWindowAggregationFunction());

stats.addSink(new RollingSink(path));

Source map()

Transformation

Transformation

Source
Operator

keyBy()/
window()/
apply()

Sink

Transformation
Operators

Sink
Operator

Stream

Sink

Streaming Dataflow

Figure: Source: [65]Julian M. Kunkel HPDA25 55 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Group Work

■ Sketch how the pipeline could be executed in parallel

Source map()
keyBy()/
window()/
apply()

Sink

▶ How can you split the tasks?
▶ How can one parallelize the execution of one task
▶ How would you distribute these tasks across nodes?

■ Time: 10 min

■ Organization: breakout groups - please use your mic or chat

Julian M. Kunkel HPDA25 56 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Parallelization
■ Parallelization via stream partitions and operator subtasks
■ One-to-one streams preserve the order, redistribution changes them

Source map()
keyBy()/
window()/
apply()

Sink

Operator
Subtask

Source
[1]

map()
[1]

keyBy()/
window()/
apply()

[1]

Sink
[1]

Source
[2]

map()
[2]

keyBy()/
window()/
apply()

[2]

Stream
Partition

Operator Stream

Streaming Dataflow
(parallelized view)

Streaming Dataflow
(condensed view)

parallelism = 1parallelism = 2
Figure: Source: [65]

Julian M. Kunkel HPDA25 57 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Execution
■ Master/worker concept can be integrated into YARN
■ The client (Flink Program) is an external process

Flink Program

Client

TaskManager

Task
Slot

Task
Slot

Task

Task
Slot

Task

Network Manager

Actor System

Memory & I/O Manager

JobManager

(Worker)

(Master / YARN Application Master)

Dataflow Graph

Actor System

Actor
System

Deploy/Stop/
Cancel Tasks

Trigger
Checkpoints

Task Status

Heartbeats

Statistics

…

…

TaskManager

Task
Slot

Task
Slot

Task

Task
Slot

Task

Network Manager

Actor System

Memory & I/O Manager

(Worker)

Data Streams

Submit job
(send dataflow) Cancel /

update job

Status
updates Statistics &

results

Program
code

Scheduler

Checkpoint
Coordinator

Optimizer /
Graph Builder

Dataflow graph

Program
Dataflow

Figure: Source: [65]
Julian M. Kunkel HPDA25 58 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Optimization
■ Operator chaining optimizes caching/thread overhead [65]
■ Back pressure mechanism stalls execution if processing is too slow [66]
■ Data plan optimizer and visualizer for the (optimized) execution plan

Figure: Source: [63]
Julian M. Kunkel HPDA25 59 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Semantics [62]
Event Time Semantics [67]

■ Support out-of-order events

■ Need to assign timestamps to events

▶ Stream sources may do this

■ Watermarks indicate that all events before this time
happened

▶ Intermediate processing updates (intermediate)
watermark

Figure: Source: [62]

Figure: Stream (out of order). Source: [67]

Julian M. Kunkel HPDA25 60 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Lambda Architecture using Flink

Figure: Source: Lambda Architecture of Flink [64]

Julian M. Kunkel HPDA25 61 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Summary

■ Streams are series of tuples

▶ Tools: Storm/Spark/Flink

■ Stream groupings defines how tuples are transferred

■ Realization of semantics is non-trivial

▶ At-least-once processing semantics
▶ Reliable exactly-once semantics can be guaranteed

• Internals are non-trivial; they rely on tracking of Spout tuple IDs

▶ Flink: Event-time semantics

■ Micro-batching increases performance

■ Dynamic re-balancing of tasks is possible

■ High-level interfaces

▶ DRPC can parallelize complex procedures
▶ Trident simplifies stateful data flow processing
▶ Flink programming and Trident have similarities

Julian M. Kunkel HPDA25 62 / 63

Intro Overview Storm Architecture of Storm Programming and Execution Higher-Level APIs Spark Streaming Apache Flink Summary

Bibliography
10 Wikipedia
11 Book: N. Marz, J. Warren. Big Data – Principles and best practices of scalable real-time data systems.
12 https://en.wikipedia.org/wiki/Stream_processing
37 http://hortonworks.com/hadoop/storm/
38 https://storm.apache.org/documentation/Tutorial.html
39 Code: https://github.com/apache/storm/blob/master/storm-core/src/jvm/backtype/storm/testing/
40 https://github.com/EsotericSoftware/kryo
41 http://www.michael-noll.com/blog/2012/10/16/understanding-the-parallelism-of-a-storm-topology/
42 http://storm.apache.org/2013/01/11/storm082-released.html
43 https://storm.apache.org/documentation/Running-topologies-on-a-production-cluster.html
44 https://storm.apache.org/documentation/Local-mode.html
45 Storm Examples: https://github.com/apache/storm/tree/master/examples/storm-starter
46 https://storm.apache.org/documentation/Using-non-JVM-languages-with-Storm.html
47 DRPC https://storm.apache.org/documentation/Distributed-RPC.html
48 Trident Tutorial https://storm.apache.org/documentation/Trident-tutorial.html
49 http://www.datasalt.com/2013/04/an-storms-trident-api-overview/
50 http://www.michael-noll.com/blog/2014/09/15/apache-storm-training-deck-and-tutorial/
51 http://storm.apache.org/documentation/storm-hdfs.html
52 http://hortonworks.com/hadoop-tutorial/real-time-data-ingestion-hbase-hive-using-storm-bolt/
53 Python support for Storm https://github.com/Parsely/streamparse
54 https://storm.apache.org/documentation/Guaranteeing-message-processing.html
55 http://storm.apache.org/documentation/storm-hbase.html
56 http://storm.apache.org/documentation/storm-hive.html
57 http://storm.apache.org/documentation/Transactional-topologies.html
58 http://storm.apache.org/documentation/Trident-API-Overview.html
59 http://storm.apache.org/documentation/Trident-state
60 http://spark.apache.org/docs/latest/streaming-programming-guide.html
61 https://www.youtube.com/watch?v=8RJy42bynI0
62 https://flink.apache.org/features.html
63 https://ci.apache.org/projects/flink/flink-docs-release-0.8/programming_guide.html
64 http://www.kdnuggets.com/2015/11/fast-big-data-apache-flink-spark-streaming.html
65 https://ci.apache.org/projects/flink/flink-docs-release-1.2/concepts/index.html
66 http://data-artisans.com/how-flink-handles-backpressure/
67 https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/event_time.html

Julian M. Kunkel HPDA25 63 / 63

https://en.wikipedia.org/wiki/Stream_processing
http://hortonworks.com/hadoop/storm/
https://storm.apache.org/documentation/Tutorial.html
https://github.com/apache/storm/blob/master/storm-core/src/jvm/backtype/storm/testing/
https://github.com/EsotericSoftware/kryo
http://www.michael-noll.com/blog/2012/10/16/understanding-the-parallelism-of-a-storm-topology/
http://storm.apache.org/2013/01/11/storm082-released.html
https://storm.apache.org/documentation/Running-topologies-on-a-production-cluster.html
https://storm.apache.org/documentation/Local-mode.html
https://github.com/apache/storm/tree/master/examples/storm-starter
https://storm.apache.org/documentation/Using-non-JVM-languages-with-Storm.html
https://storm.apache.org/documentation/Distributed-RPC.html
https://storm.apache.org/documentation/Trident-tutorial.html
http://www.datasalt.com/2013/04/an-storms-trident-api-overview/
http://www.michael-noll.com/blog/2014/09/15/apache-storm-training-deck-and-tutorial/
http://storm.apache.org/documentation/storm-hdfs.html
http://hortonworks.com/hadoop-tutorial/real-time-data-ingestion-hbase-hive-using-storm-bolt/
https://github.com/Parsely/streamparse
https://storm.apache.org/documentation/Guaranteeing-message-processing.html
http://storm.apache.org/documentation/storm-hbase.html
http://storm.apache.org/documentation/storm-hive.html
http://storm.apache.org/documentation/Transactional-topologies.html
http://storm.apache.org/documentation/Trident-API-Overview.html
http://storm.apache.org/documentation/Trident-state
http://spark.apache.org/docs/latest/streaming-programming-guide.html
https://www.youtube.com/watch?v=8RJy42bynI0
https://flink.apache.org/features.html
https://ci.apache.org/projects/flink/flink-docs-release-0.8/programming_guide.html
http://www.kdnuggets.com/2015/11/fast-big-data-apache-flink-spark-streaming.html
https://ci.apache.org/projects/flink/flink-docs-release-1.2/concepts/index.html
http://data-artisans.com/how-flink-handles-backpressure/
https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/event_time.html

