( GEORG-AUGUST-UNIVERSITAT .
AT COTTINGEN Department of Computer Science

Julian Kunkel

Databasesand Data Warehouses

2025-11-10 HPDA-25



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary
oeo

Learning Objectives

Define Database, DBMS, and Data Warehouse

Create a relational model for a given problem

Draw an ER diagram for a given relational model (and vice versa)
Normalize a small relational model into a redundant-free model

List the result of an inner join of two tables to resolve relationships
Formulate SQL queries for a relational model

Create a Star-Schema from a relational model (and formulate queries)
Sketch the operations for an OLAP cube

Appraise the pro/cons of OLAP vs. traditional relational model

Describe DBMS optimizations: index, bulk loading, garbage cleaning

Julian M. Kunkel HPDA25 2/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary
ooe 000000000 0000000000000 00000O 000000 0000000000000 [e]e]

Outline

=

Relational Model

™)

Databases and SQL

o]

Advanced Features for Analytics

Data Warehouses

]

Summary

Julian M. Kunkel HPDA25 3/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary
@00
Relational Model [10]
B Database model based on first-order predicate logic
» Theoretic foundations: relational algebra and calculus
B Data is represented as tuples
B Relation/Table: groups similar tuples
» Table consists of rows and named columns (attributes)
» No duplicates of complete rows allowed
B In a pure form, no support for collections in tuples
B Schema: specify structure of tables (ablenamey  Attrbuts (Column) {unordered)
\ \ N\ Headi
» Datatypes (domain of attributes) ¥ - 4 e
» Organization and optimizations R Ai A, |& )
» Consistency via constraints Value » rﬁ —
' ‘; Body | (Table)
., \
<V )
Figure: Source: Relational model concepts [11] Tuple (Row) {unordered}
Julian M. Kunkel HPDA25 4/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary
oeo

Example Schema for our Students Data

Description
Database for information about students and lectures

Relational model

Matrikel Name Birthday ID Name

242 Hans  22.04.1955 1 HPDA

245 Fritz 24.05.1995 2  Hochleistungsrechnen
Table: Student table Table: Lecture table

Matrikel LecturelD

242 1
242 2
245 2

Table: Attends table representing a relation

Julian M. Kunkel HPDA25 5/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses
ooce

Summary

Relationships

B Model relationships between data entities
B Cardinality defines how many entities are related
» One-to-many: One entity of type A with many entities of type B
» Many-to-many: One-to-many in both directions
» One-to-one: One entity of type A with at most one entity of type B
B Relationships can be expressed with additional columns (this is not optimal!)

» Packing data of entities together in the table
» Alternatively: provide a “reference” to other tables

Matrikel Name Birthday Lecture ID Lecture Name

242 Hans 22.04.1955 | 1 HPDA

242 Hans  22.04.1955 | 2 Hochleistungsrechnen
245 Fritz 24.05.1995 | 2 Hochleistungsrechnen

Table: Student table with attended lecture information embedded

Julian M. Kunkel HPDA25

6/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Entity Relationship Diagrams

B lllustrate the relational model and partly the database schema
B Elements: Entity, relation, attribute
» Additional information about them, e.qg., cardinality, data types

Student Lecture

Matrikel Name Birthday @ @

Figure: A student/lecture example in modified Chen notation
* is the cardinality and means any number is fine

Julian M. Kunkel HPDA25 7/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses

Summary

Keys [16, 17, 18]

B A Superkey'® allows addressing specific tuples in a table
B Superkey: Set of attributes that identify/address each tuple in a table

» There can be at most one tuple for each possible key value
» A superkey does not have to be minimal

¢ e.g., all columns together are a Superkey of any table
« After removing an attribute, it can still be a key

» Simple key: key is only one attribute
» Compound key: consists of at least two attributes

Candidate key: a minimal key, i.e., no attribute can be removed
Primary key: the selected candidate key for a table

|

|

B Foreign key: inherited key of another table

B Natural key: key that naturally is unique, e.g., matrikel
|

Surrogate key: artificial key, e.g., numeric ID for a row

16 Often it is just called key
Julian M. Kunkel HPDA25

8/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses

Summary

Example Keys

Table: Student table Table: Lecture table
Matrikel Name Birthday ID Name Semester
242 Hans 22.04.1955 1 HPDA SS15
245 Fritz 24.05.1995 2 Hochleistungsrechnen WS1516

Table: Attends table representing a relation
Matrikel LecturelD

242 1
242 2
245 2

B Student table

» Candidate keys: Matrikel, (name, birthday, city), social insurance ID
» Primary key: Matrikel (also a natural key)

M Lecture table

» Candidate keys: ID, (Name, Semester)
» Primary key: ID (also a Surrogate Key)

B Attends table

» Candidate key: (Matrikel, Lecture ID)
» Primary key: (Matrikel, Lecture ID)

Julian M. Kunkel HPDA25

9/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses

Summary

Normalization [10]: My Simplified Perspective

B Normalization: process of organizing tables to minimize redundancy[19]
» Reduces dependencies within and across tables
» Prevents inconsistency across replicated information
» Normally, reduces required storage space and speeds up updates
B There are different normal forms with increasing requirements
» 1NF: It follows our notion of a table.
* No collections in the table. A primary key exists.
» 2NF: No redundancy of data

¢ ji.e., entities of many-to-many relations are stored in separate tables
¢ Every column must depend on each candidate key and not a subset

» 3NF: Columns are not functional dependent to sth. else than a candidate key
» 4NF: Do not store multiple relationships in one table

B 4NF is a good choicel” for transactional data processing but not big data

17 1t has been shown that 4NF can always be achieved for relational data

Julian M. Kunkel HPDA25

10/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Example for Unnormalized Data

Matrikel Name Birthday | Name
242 Hans 22.04.1955 | [HPDA, Hochleistungsrechnen]
245 Fritz 24.05.1995 | Hochleistungsrechnen

Table: Not normalized Student and lecture table/relation, contains identical column names and collections.
Problematic if we want to update the name of an lecture.

Matrikel Name Birthday Lecture Name

242 Hans  22.04.1955 | HPDA

242 Hans  22.04.1955 | Hochleistungsrechnen
245 Fritz 24.05.1995 | Hochleistungsrechnen

Table: Student and lecture table/relation in 1NF, it contains a many-to-many relation. Changing lecture name requires
still to touch multiple rows.

Julian M. Kunkel HPDA25 11/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses

Summary

Example for Unnormalized Data

Matrikel Name Birthday Age
242 Hans  22.04.1955 40
245 Fritz 24.05.1995 20

Table: In 2NF but not 3NF: Age is functional depending on birthday

Matrikel Attended lecture Attended seminar

242 BDA SIw
242 HR SIW
242 BDA NTH
242 HR NTH

Table: In 3NF but not 4NF: Candidate key depends on all three columns

Julian M. Kunkel HPDA25

12/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary
[e]e]e} 000000000 ®000000000000000000 000000 0000000000000 [e]e]

Outline

Databases and SQL
m Databases
Overview
Schemas
Queries
Joins
Mutating Tables
Performance Aspects

Julian M. Kunkel HPDA25 13/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Databases [29]

B Database: an organized collection of data

» Includes layout (schemes), queries, views
» Database models: Relational, graph, document, ...

B Database management system (DBMS): software application that interacts with the
user, other applications and the database itself to capture and analyze data [29]

» Functionality: Definition, creation, update, querying and administration of databases

DBMS functions for managing databases
B Data definition: Creation, modification of definitions for data organization
B Update: Insertion, modification and deletion of data
B Query/Retrieval: Retrieve stored and computing derived data
B Administration of users, security, monitoring, data integrity, recovery

Julian M. Kunkel HPDA25 14/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses
[e]

Summary

Structured Query Language (SQL) [20]

B Declarative language: specify what to achieve and not how
B Evolving standard with growing feature set

Language elements

B Statement: instructions to perform, terminate by ;
» Query: alternative name; usually only retrieves/computes data

Clause: components of statements

Predicates: conditions limiting the affected rows/columns
Expressions: produce scalar values or tables

Operators: compare values, change column names

Functions: transform/compute values

Julian M. Kunkel HPDA25

15/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses
L]

Summary

PostgreSQL [10]

A popular database implementation
B Semantics: ACID support for transactions

» A transaction is a batch of operations that either fails or succeeds
B Implements majority of SQL:2011 standard
» Syntax may differ from SQL standard and extensions are provided

B Interactive shell via psql

Excerpt of features
B Materialized views (create physical tables from virtual table)

Fulltext search

Regular expression

Statistics and histograms

User defined objects (functions, operators)

Triggers: events upon insert or update statements; may invoke functions

New versions support semi-structed data in arrays, XML, JSON'8

18 See http://www.postgresql.org/docs/14/arrays.html and .../functions-json.html

Julian M. Kunkel HPDA25

16/52


http://www.postgresql.org/docs/14/arrays.html
.../functions-json.html

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary
L Je]

Schemas (in Postgres)

Creation of a database and table

[

CREATE ROLE "bigdata" NOSUPERUSER LOGIN PASSWORD ’'mybigdata’;
2| CREATE DATABASE bigdata OWNER "bigdata";

To connect to a database we can use psql -W -U < USERNAME > < DBNAME >

Create our tables

1| CREATE TABLE students (matrikel INT, name VARCHAR, birthday DATE, PRIMARY KEY(matrikel));
2| CREATE TABLE lectures (id SERIAL, name VARCHAR, PRIMARY KEY(id));

3| CREATE TABLE attends (matrikel INT, lid INT,

4 FOREIGN KEY (matrikel) REFERENCES students(matrikel),

5 FOREIGN KEY (lid) REFERENCES lectures(id));

6| --\d <TABLE> prints the schema

0O

onstraints (keeps data clean = data governance)

-- minimum length of the name shall be 5

ALTER TABLE students ADD CONSTRAINT length CHECK (char_length(name) > 3);

-- to remove the constraint later: ALTER TABLE students DROP CONSTRAINT length ;

-- minimum age of students should be 10 years

ALTER TABLE students ADD CONSTRAINT age CHECK (extract(’'year’ from age(birthday)) > 10);

-- disallow NULL values in students

ALTER TABLE students ALTER COLUMN birthday SET NOT NULL; -- during CREATE with "birthday DATE NOT NULL"
ALTER TABLE students ALTER COLUMN name SET NOT NULL;

©® NV A WN

Julian M. Kunkel HPDA25 17/52



Intro

Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses
oe

Summary

Populating the Tables

-- Explicit specification of columns, not defined values are NULL
INSERT INTO students (matrikel, name, birthday)
VALUES (242, 'Hans’, '22.04.1955');
-- Insertation of the same name twice could be prevented using a constraint
INSERT INTO students (matrikel, name) VALUES (246, 'Hans’);
-- Order is expected to match the columns in the table
INSERT INTO students VALUES (245, 'Fritz’, '24.05.1995');
INSERT INTO lectures VALUES (1, 'HPDA’);
INSERT INTO lectures VALUES (2, 'Hochleistungsrechnen’);

-- Populate relation

INSERT into attends VALUES(242, 1);
INSERT into attends VALUES(242, 2);
INSERT into attends VALUES(245, 2);

-- Insertations that will fail due to table constraints:

INSERT INTO students (matrikel, name) VALUES (250, 'Hans’);

-- ERROR: null value in column "birthday" violates not-null constraint
INSERT INTO students VALUES (250, 'Hans’, '22.04.2009');

-- ERROR: new row for relation "students" violates check constraint "age"
INSERT INTO students VALUES (245, 'Fritz’, '24.05.1995');

-- ERROR: duplicate key value violates unique constraint "students_pkey"
-- DETAIL: Key (matrikel)=(245) already exists.

Julian M. Kunkel HPDA25

18/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

@0000

I Queries [20]

B A query retrieves/computes a (sub)table from tables
» It does not change/mutate any content of existing tables

B Statement: SELECT < columnl >, < column2 >, ...

B Subqueries: nesting of queries is possible to create temporary tables
Supported clauses

B FROM: specify the table(s) to retrieve data

B WHERE: filter rows returned

B GROUP BY: group rows together that match conditions

B HAVING: filters grouped rows

B ORDER BY: sort the rows

1| SELECT Matrikel, Name FROM students WHERE Birthday='22.04.1955";
2| -- Returns a table with one row:

3| -- matrikel | name

F ] e tommm-

5| -- 242 | Hans

Julian M. Kunkel HPDA25 19/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary
(o] lelele]
More Queries
Ordering of results
1| -- Example comment, alternatively /* */
2| select * from students
3 where (name !'= 'fritz’ and name != 'nena’) -- two constraints
4| order by name desc; -- descending sorting order
Aggregation functions
1| -- There are several aggregate functions such as max, min, sum, avg
2| select max(birthday) from students;
3| -- 1995-05-24
4
5| -- It is not valid to combine reductions with non-reduced columns e.g.
6| select matrikel, max(birthday) from students; -- Erroneous...
Counting the number of students
1| -- Number of students in the table and rename the column to number
2| SELECT count(x) AS number FROM students;
3| -- number
4f -- 2
Julian M. Kunkel HPDA25 20/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary
00e00

Subqueries

A subquery creates a new (virtual) named table to be accessed

Identify the average age

-- Identify the min, max, avg age; we create a new table and convert the date
select min(age), avg(age), max(age) from

-- Here we create the virtual table with the name ageTbl

(SELECT age(birthday) as age from students) as ageTbl;
-- min | avg | max
-- 20 years 3 mons 30 days | 40 years 4 mons 15 days 12:00:00 | 60 years ...

o U A W N e

o

entify students which are not attending any course

-- We use a subquery and comparison with the set

select matrikel from students

where matrikel not in -- compare a value with entries in a column
(select matrikel from attends);

AW N e

Subquery expressions: exists, in, some, all, (operators, e.g., <) °

19 See http://www.postgresql.org/docs/14/functions-subquery.html

Julian M. Kunkel HPDA25 21/52


http://www.postgresql.org/docs/14/functions-subquery.html

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary
000e0
Grouping of Data
Data can be grouped by one or multiple (virtual) columns
It leads to errors when including non-grouped / non-reduced values
Identify students with the same name and birthday, count them
1| select name, birthday, count(x) from students group by name, birthday;
2| -- name | max | count
] T R
4| -- Fritz | 1995-05-24 | 1
5| -- Hans | 1955-04-22 | 1
Figure out the number of people starting with the same letter
1| select upper(substr(name,1,1)) as firstletter, count(x) from students
2 group by firstletter;
3| -- firstletter | count
4 mmmmmm e R
5| -- F | 1
6| -- H | 1
Julian M. Kunkel HPDA25 22/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses
[e]ele]e] }

Summary

Filtering Groups of Data

B With the HAVING clause, groups can be filtered
B ORDER BY is the last clause and can be applied to aggregates

Identify students with the same name and birthday, and return the total number of
non-“duplicates”

1| select sum(mcount) from
2 (select count(*x) as mcount from students
3 group by name, birthday having count(x) = 1 order by count(x)) as groupCount;
4| -- sum
5| -- 2
6
7| -- Alternatively in a subquery you can use:
8| select sum(count) from
9 (select count(*x) as count from students
10 group by name, birthday) as groupCount
11 where count = 1;
Julian M. Kunkel HPDA25

23/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses
@00

Summary

I Joins [10]

A join combines records from multiple tables
B Used to resolve relations of entities in normalized schemes
B Usually filtering tuples according to a condition during this process

Types of joins

B CROSS JOIN: Cartesian product of two tables (all combination of rows)

Bl NATURAL JOIN: All combinations that are equal on their common attributes (i.e, both

tables contain the matrikel column)
B INNER JOIN: Return all rows that have matching records based on a condition

Bl OUTER JOIN: Return all rows of both tables even if they are not matching the condition

» LEFT OUTER JOIN: Return all combinations and all tuples from the left table
» RIGHT OUTER JOIN: ... from the right table
» FULL OUTER JOIN: Return all combinations

Julian M. Kunkel HPDA25

24/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary
(o] le}
Example Joins
1| select * from students as sl CROSS JOIN students as s2;
2| -- matrikel | name | birthday | matrikel | name | birthday
] IR o R B o Fomm e
4 -- 242 | Hans | 1955-04-22 | 242 | Hans | 1955-04-22
5| -- 242 | Hans | 1955-04-22 | 245 | Fritz | 1995-05-24
6| -- 245 | Fritz | 1995-05-24 | 242 | Hans | 1955-04-22
7| -- 245 | Fritz | 1995-05-24 | 245 | Fritz | 1995-05-24
8
9| select * from students NATURAL JOIN attends;
10| -- matrikel | name | birthday | lid
1 I e R e
12| -- 242 | Hans | 1955-04-22 | 1
13 - - 242 | Hans | 1955-04-22 | 2
14| - - 245 | Fritz | 1995-05-24 | 2
15
16| select * from students INNER JOIN attends ON students.matrikel = attends.matrikel;
17| -- matrikel | name | birthday | matrikel | lid
18| == ========== +------ L R LR ] +-----
19 - - 242 | Hans | 1955-04-22 | 242 | 1
20| - - 242 | Hans | 1955-04-22 | 242 | 2
21| -- 245 | Fritz | 1995-05-24 | 245 | 2
Julian M. Kunkel HPDA25 25/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary
ooe
Example Joins
1| -- This join returns NULL values for Fritz as he has not the selected matrikel
2| select * from students LEFT OUTER JOIN attends ON students.matrikel = 242;
3| -- matrikel | name | birthday | matrikel | lid
e e Fommm - o +o-- -
5| -- 242 | Hans | 1955-04-22 | 242 | 1
6| - - 242 | Hans | 1955-04-22 | 242 | 2
7| -- 242 | Hans | 1955-04-22 | 245 | 2
8| -- 245 | Fritz | 1995-05-24 | |
9| select * from students as s FULL OUTER JOIN attends as a ON s.matrikel = a.lid;
10| -- matrikel | name | birthday | matrikel | lid
[ R Fomme - R e e
12| -- | | | 242 | 1
13 - - | | | 242 | 2
14 -- | | | 245 | 2
15] - - 242 | Hans | 1955-04-22 | |
16| - - 245 | Fritz | 1995-05-24 | |
17| -- Now identify all lectures attended by Hans
18| select s.name, l.name from students as s INNER JOIN attends as a ON s.matrikel
< = a.matrikel INNER JOIN lectures as 1 ON a.lid=1.id;
19| -- name | name
20| --------- L R R
21| -- Hans | HPDA
22| -- Hans | Hochleistungsrechnen
23| -- Fritz | Hochleistungsrechnen
Julian M. Kunkel HPDA25 26/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary
@00

Mutating Tables

B UPDATE statement changes values of columns
B DELETE statement removes rows

B Each operation yields the ACID semantics?°

B Transactions allow to batch operations together

-- Change the name of Fritz
UPDATE students SET name='Fritzchen’ WHERE matrikel=245;

-- Remove Fritzchens attendance in Hochleistungsrechnen
DELETE FROM attends WHERE matrikel=242 and 1id=2;

-- Subqueries can be used to select rows that are updated/deleted

-- Remove Fritzchen attendence with the name

DELETE from attends WHERE matrikel=242 and lid = (SELECT id from lectures where name =
< 'Hochleistungsrechnen’);

© ©® N U AW N e

20 |n fact, when AUTOCOMMIT is enabled, every statement is wrapped in a transaction. To change this behavior on
the shell, invoke: SET AUTOCOMMIT [OFF|ON]

Julian M. Kunkel HPDA25 27/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary
(o] le]

Transactions

B Transaction: A sequence of operations executed with ACID semantics

» It either succeeds and becomes visible and durable; or it fails
» Note: Complex data dependencies of concurrent operations may create a unresolvable state
that requires restart of the transaction

B |solation: queries access data in the version when the transaction started
» The isolation level can be relaxed, e.g., to see uncommited changes

B Internally, complex locking schemes ensure conflict detection

Example: Atomic money transfer between bank accounts

START TRANSACTION;
UPDATE account SET balance=balance-1000.40 WHERE account=4711;
UPDATE account SET balance=balance+1000.40 WHERE account=5522;

-- 1if anything failed, revert to the original state
IF ERRORS=0 COMMIT; -- make the changes durable
IF ERRORS!=0 ROLLBACK; -- revert

N o U s W N e

Julian M. Kunkel HPDA25 28/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses
ooe

Summary

Group Work

B Discuss the creation of a relational schema for organizing music (albums)

» Describe a schema (there is really wrong answer)
» List 1-2 operations and their implementation using SQL

B Time: 10 min
B Organization: breakout groups - please use your mic or chat

Julian M. Kunkel HPDA25

29/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary
[ Je]

Performance Aspects
Problem: When searching for a variable with a condition, e.g., x=y, the table data needs to be

read completely (full scan)

Indexes
B Index allows lookup of rows for which a condition (likely) holds
B Postgres supports B-tree, hash, GiST, SP-GiST and GIN indexes?!

1 CREATE INDEX ON students (name);

Optimizing the execution of operations (query plan)
B Postgres uses several methods to optimize the query plan

» The query planer utilizes statistics about access costs
» Knowing how values are distributed helps optimizing access

B ANALYZE statement triggers collection of statistics
B Alternatively: automatically collect statistics
B EXPLAIN statement: describes the query plan (for debugging)

21 See http://www.postgresql.org/docs/14/sql-createindex.html

Julian M. Kunkel HPDA25 30/52


http://www.postgresql.org/docs/14/sql-createindex.html

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses
oe

Summary

Performance Aspects (2) [22]

Bulk Loads/Restores
B Combine several INSERTS into one transaction
B Perform periodic commits
B Create indexes/foreign key/constraints after data was inserted

Garbage cleaning / vacuuming: Cleaning empty space

B When changing or inserting rows, additional space is needed
B It is expensive to identify deleted / empty rows and compact them

= Just append new data
» Mark data, e.g., in a bitmap as outdated

B Periodically space is reclaimed and data structures are cleaned
B VACCUUM statement also triggers cleanup
B ANALYZE also estimates the amount of garbage to optimize queries

Julian M. Kunkel HPDA25

31/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary
[e]e]e} 000000000 000000000000 000000O @00000 0000000000000 [e]e]

Outline

Advanced Features for Analytics
m Views
m Processing Geospatial Data

Julian M. Kunkel HPDA25 32/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary
@00

Views

B View: virtual table based on a query
» Can be used to re-compute complex dependencies/apply joins
» The query is evaluated at runtime, which may be costly

B Materialized view: copies data when it is created/updated??
» Better performance for complex queries
» Suitable for data analytics of data analysts
» Export views with permissions and reduce knowledge of schema

CREATE VIEW studentsView AS
SELECT s.matrikel, s.name as studentName, l.name as lectureName, age(birthday) as age from students as s
< INNER JOIN attends as a ON s.matrikel = a.matrikel INNER JOIN lectures as 1 ON a.lid=1l.id;

N

4| select * from studentsView;

5| -- matrikel | studentname | lecturename | age

[ IEEEEEEEEEEEE] LCEEE R L R R R LR R LRl
7| -- 242 | Hans | HPDA | 60 years 5 mons 1 day

8| -- 242 | Hans | Hochleistungsrechnen | 60 years 5 mons 1 day

9| -- 245 | Fritz | Hochleistungsrechnen | 20 years 3 mons 30 days
10| -- To replace the data with new data

11| REFRESH MATERIALIZED VIEW studentsView;

22 www.postgresql.org/docs/14/sql- creatematerializedview.html
Julian M. Kunkel HPDA25 33/52


www.postgresql.org/docs/14/sql-creatematerializedview.html

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary
(o] o}

Regular Expressions

B PostgreSQL supports several styles of regular expressions?3

B We will look at POSIX regular expressions (regex)

B Operator: ~ for matching and ~* for not matching

B regexp_matches(string, pattern) returns text array with all matches

Examples

-- Any lecture which name contains Data
select name from lectures where name~x'data’;
-- HPDA

1

2

3

4

5| -- Lectures starting with HP

6| select name from lectures where name~'"HP.x$’;
7
8

-- HPDA
9| -- Students whose name contain at least two vocals
10| select name from students where name~’(i|alo|u).*(a|ilo|u)’;
11
12| -- Students whose name contain at least one vacal and at most three
13| select name from students where name~’'”([“auiul*(i|a|o|u)[~aiou]*){1,3}$";
14
15| -- Retrieve all lower case letters in the names
16| select regexp_matches(name, '[a-z]’, 'g’) as letter from students;
17| -- {a}, {n} ...

23 See http://www.postgresql.org/docs/14/functions-matching.html
Julian M. Kunkel HPDA25 34/52


http://www.postgresql.org/docs/14/functions-matching.html

Intro

Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses

ooe

Summary

Array Operations

B Operations allow manipulation of multidimensional arrays?*

B Useful operators: unnest, array_agg, array_length

B JSON support in new PostgreSQL version (not discussed here)

0 NO U A WN

9
10
11
12
13
14
15
16
17
18
19
20
21
22

-- Alternative schema for our student/lecture example using an array for the attends relationship

CREATE TABLE studentsA (matrikel INT, name VARCHAR, birthday DATE, attends INT[], PRIMARY KEY(matrikel));

CREATE TABLE lectures (id SERIAL, name VARCHAR, PRIMARY KEY(id));

INSERT INTO studentsA VALUES (242, 'Hans’, '22.04.1955', '{1,2}’' );
INSERT INTO studentsA VALUES (245, 'Fritz’, ’'24.05.1995', '{2}');

-- Addressing array elements: first lecture attended by each student
SELECT attends[1] from studentsA;

-- Slicing is supported: First three lectures

SELECT attends[1:3] from studentsA

-- Retrieve the lecture name attended for each student

SELECT s.name, l.name from studentsA AS s INNER JOIN lectures AS 1 ON l.id = ANY(s.attends);
-- Hans | HPDA

-- Hans | Hochleistungsrechnen

-- Fritz | Hochleistungsrechnen

-- Now retrieve the lectures in an array per person

SELECT s.name, array_agg(l.name) from studentsA AS s INNER JOIN lectures AS 1 ON 1.id = ANY(s.attends)
-- Hans | {"HPDA",Hochleistungsrechnen}

-- Fritz | {Hochleistungsrechnen}

GROUP by s.matrikel;

24

Julian

See http://www.postgresql.org/docs/14/arrays.html

M. Kunkel HPDA25

35/52


http://www.postgresql.org/docs/14/arrays.html

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses

Summary

Processing Geospatial Data with PostGIS [30, 31]

B PostGIS is a PostgreSQL extension providing datatapes and functions for
» Topology: Faces, Edges and Nodes
« Defines constraints on data, e.g., sharing of edges in maps
» Geometry/Geography: coordinates according to SRID

* Spatial Reference System Identifier (SRID) defines coordinate system
¢ Lon/Lat coordinates on a sphere with the unit degrees
¢ Points, lines, poligones

» Raster data: like pixels, square-based split of a 2D plane
e Example: Import / export of images

B QGIS viewer? can visualize geometry and raster data

25 http://qgis.org/

Julian M. Kunkel HPDA25

36/52


http://qgis.org/

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

PostGIS: Example [31]

-- Creating a database with geography data (SRID 4326 => WGS 84 => for GPS => lon/lat)
CREATE TABLE cities(gid serial PRIMARY KEY, n TEXT, loc geography(POINT,4326) );
CREATE INDEX cities_idx ON cities USING GIST ( loc );

1
2

3

4

5| -- Insert three cities with Lon/Lat coordinates

6| INSERT INTO cities (n, loc) VALUES(’'Hamburg’,ST_GeographyFromText(’POINT(9.99 53.5)'));
7| INSERT INTO cities (n, loc) VALUES(’'Tokio’,ST_GeographyFromText('POINT(139.8 35.65)'));
8| INSERT INTO cities (n, loc) VALUES(’Aleppo’,ST_GeographyFromText(’POINT(37 36)'));

9

10| -- Compute distance between Hamburg and Tokio

11| SELECT ST_Distance( (Select loc from cities where n = 'Hamburg’),

12 (Select loc from cities where n = 'Tokio’));

13| -- 9012369.89691784 == 9012 km

15| -- How far is Allepo from a plane flying from Hamburg to Tokio, here as text
16| SELECT ST_Distance(’LINESTRING(9.99 53.5, 139.8 35.65)'::geography,

17 "POINT(37 36)':: geography);

18| -- 2833 km

Julian M. Kunkel HPDA25 37/52



Data Warehouses Summary

Advanced Features for Analytics
®000000000000 [e]e]

Databases and SQL
000000

Intro Relational Model
0000000000000 000000

[e]e]e} 000000000

Outline

Bl Data Warehouses
m Data Warehouses vs. Databases vs. BigData
m Typical OLAP Operations
m Alternative Schemas

Julian M. Kunkel HPDA25 38/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary
@00

Data Warehouse

“A data warehouse (DW or DWH), also known as an enterprise data warehouse (EDW), is a
system used for reporting and data analysis.” [27]

B Central repository for structured data

Integrates data from multiple inhomogeneous sources

Data analysts use a simplified data model: a multidimensional data cube
Provides tools for the data analyst to support descriptive analysis

May provide some tools for predictive analysis

Many queries are executed periodically and used in reports

Often used for business data

Julian M. Kunkel HPDA25 39/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary
oeo

Databases vs. Data Warehouses for Structured Data

Database management systems (DBMS)
B Standardized systems and methods to process structured data
B Use the relational model for data representation
B Use SQL for processing
Online Transaction Processing (OLTP)
B Real-time processing
B Offer ACID qualities
B Relies on normalized schemes (avoid redundant information)

Online Analytical Processing (OLAP)

B Systems and methods to analyze large quantities of data
B Utilizes data warehouses with non-normalized schemes
B Extract, Transform and Load (ETL): import data from OLTP

Julian M. Kunkel HPDA25 40/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses

Summary

OLAP

B Online analytical process with large quantities of business data
B Utilizes denormalized dimensional model to avoid costly joins

B Technology alternatives:

» MOLAP (Multidimensional OLAP): problem-specific solution
» ROLAP: use relational databases to represent cube
e Star schema
* Snowflake schema
B Dimensional modeling: design techniques and concepts [26]

Choose the business process, e.g., sales situation

Declare the grain: what does the model focus on, e.g., item purchased
Identify the dimensions

Identify the facts

Julian M. Kunkel HPDA25

41/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary
@000

The OLAP Cube: Typical Operations [27]

B Slice: Fix one value to reduce the dimension by one
B Dice: Pick specific values of multiple dimensions
B Roll-up: Summarize data along a dimension
» Formulas can be applied, e.g., profit = income - expense
B Pivot: Rotate the cube to see the faces

L L L 2
ﬁ////

Fact |Fact | Fact |Fact

Z uoisuawiq

SN

)
€
Dimension 1

Cintira: Evarmnla 2N ~itha

Julian M. Kunkel HPDA25 42/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

The OLAP Cube: Slice [27]

B Slice: Fix one value to reduce the dimension by one
B Example: Sales (in Euro) for worlwide stores

z ~ 7
4 zZ Z 7
Slice

o 2 IT
=] % Kitch
8_ Kitchen 5 | 23 |2323| 232 :) itchen 45 |23 |2323)232
¢ Entertainment o1 Entertainment
(2] )
=k Accessoires 01 3 Accessoires %014

201 ’\& EU Asia US JP

Area (Shop’)

EU Asia US JP

Figure: Example cube for sales in stores

Julian M. Kunkel HPDA25 43/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary
[e]e] o]
The OLAP Cube: Dice [27]
B Dice: Pick specific values of multiple dimensions
S 7L L A
. Z Z
/ Dice IT
IT /
. ) Kitchen
Kitchen /
Entertainment /5013 Entertainment
. 2013
Accessoires 014 Accessoires 2015
2015 EU JP

EU Asia US JP

Figure: Example cube for sales in stores

Julian M. Kunkel HPDA25

44/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary
[e]e]e] ]
The OLAP Cube: Drill Down/Up [27]
B Drill Down/Up: Navigate the aggregation level
» Drill down increases the detail level
» Drill up decreases the detail level
L L 7
Drill down
IT |:> Microwave
Kitchen Freezer
. 2013
Entertainment 013 ot .Cupboard 2014
rill up
3 2014 - 2015
Accessoires 5015 EU Asia US JP
EU Asia US JP

Julian M. Kunkel

Figure: Example cube for sales in stores

HPDA25

45/52



Intro Relational Model Databases and SQL Advanced Features for Analytics

Summary

Star (and Snowflake) Schemas [23]

Implement the OLAP cube in relational databases

Data model
B Fact table: records measurements/metrics for a specific event

» Center of the star

» Transaction table: records a specific event, e.g., sale

» Snapshot table: record facts at a given point in time, e.g., account
balance at the end of the month

» Accumulating table: aggregate facts for a timespan, e.g.,
month-to-date sales for a product

= A fact table retains information at a low granularity and can be huge

Bl Dimension tables: describe the facts in one dimension

» Contains, e.g., time, geography, product (hierarchy), employee, range
» The fact table contains a FOREIGN KEY to all dimension tables
= Comparably small tables

Snowflake schema normalizes dimensions to reduce storage costs

Julian M. Kunkel HPDA25

46/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary
0000000000000000000 000000 0000000008000 00

—

Star Schema Example Model

Customer

ID

Name \

Age \ Fact table

City ... > Customer /
Date
Geography \

Product  Product Geography

D Pri(_:e

e Units_Sold

Category

Description

Figure: Star schema

Julian M. Kunkel HPDA25 47/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary
00e00
Star Schema: Example Query
Analyze the sales of TVs per country and brand [23]
1| SELECT P.Brand, S.Country AS Countries, SUM(F.Units_Sold)
2| FROM Fact_Sales F
3| INNER JOIN Date D ON (F.Date_Id = D.Id)
4| INNER JOIN Store S ON (F.Store_Id = S.Id)
5| INNER JOIN Product P ON (F.Product_Id = P.Id)
6
7| WHERE D.Year = 1997 AND P.Product_Category = "tv’
8
9| GROUP BY
10 P.Brand,
11 S.Country
Julian M. Kunkel HPDA25 48/52



Intro Relational Model

Advanced Features for Analytics Data Warehouses Summary
0000000000080

Star Schema [23]

Advantages

B Simplification of queries and performance gains
B Emulates OLAP cubes

Disadvantages
B Data integrity is not guaranteed
B No natural support for many-to-many relations

Julian M. Kunkel HPDA25 49/52



Intro Relational Model

Databases and SQL Advanced Features for Analytics Data Warehouses Summary
000 000000000 0000000000000 000000 000000 000000000000 e [e]e]
Snowflake Schema Example Model

; Date
Customer : { Month
ID : /Day / Year
Name \ ! TMonth
Age Fact table
City ... Customer !
Date I

Geography \ |- - - - _
Product

1| Price
| Amount

Figure: Snowflake-schema - - - -
Julian M. Kunkel HPDA25

50/52



Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary
[ Je]

Summary

B ER-diagrams visualize the relational data model
B Keys allow addressing of tuples (rows)
B Normalization reduces dependencies
» Avoids redundancy, prevents inconsistency
B SQL combines data retrieval/modification and computation

» Insert, Select, Update, Delete
» Joins combine records

Transactions executes a sequence of operations with ACID semantics
A database optimizes the execution of the queries (query planer)
Semi-structured data analysis is possible within JSON and XML

OLAP (Cube) deals with multidimensional business data

Data warehouses store facts along their dimensions

Star-schema implements OLAP in a relational schema

Julian M. Kunkel HPDA25 51/52



Intro
[e]e]e}

Relational Model Databases and SQL Advanced Features for Analytics
000000000 0000000000000 000000 000000

Data Warehouses
0000000000000

Summary
oe

Bibliography

10
11
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Wikipedia

https://en.wikipedia.org/wiki/Relational_model
https://en.wikipedia.org/wiki/Superkey
https://en.wikipedia.org/wiki/Candidate_key
https://en.wikipedia.org/wiki/Unique_key
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/SQL

PostgreSQL Documentation http://www.postgresql.org/docs/14/
https://wiki.postgresql.org/wiki/Performance_Optimization
https://en.wikipedia.org/wiki/Star_schema
https://en.wikipedia.org/wiki/Data_mart
https://en.wikipedia.org/wiki/Snowflake_schema
https://en.wikipedia.org/wiki/Dimensional_modeling
https://en.wikipedia.org/wiki/OLAP_cube
https://en.wikipedia.org/wiki/Data_warehouse
https://en.wikipedia.org/wiki/Database
http://www.bostongis.com/?content_name=postgis_tut@l

http://postgis.net/docs/manual-dev/

Julian M. Kunkel HPDA25

52/52


https://en.wikipedia.org/wiki/Relational_model
https://en.wikipedia.org/wiki/Superkey
https://en.wikipedia.org/wiki/Candidate_key
https://en.wikipedia.org/wiki/Unique_key
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/SQL
http://www.postgresql.org/docs/14/
https://wiki.postgresql.org/wiki/Performance_Optimization
https://en.wikipedia.org/wiki/Star_schema
https://en.wikipedia.org/wiki/Data_mart
https://en.wikipedia.org/wiki/Snowflake_schema
https://en.wikipedia.org/wiki/Dimensional_modeling
https://en.wikipedia.org/wiki/OLAP_cube
https://en.wikipedia.org/wiki/Data_warehouse
https://en.wikipedia.org/wiki/Database
http://www.bostongis.com/?content_name=postgis_tut01
http://postgis.net/docs/manual-dev/

