
DatabasesandDataWarehouses

Julian Kunkel

Department of Computer Science

2025-11-10 HPDA-25

)

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Learning Objectives

■ Define Database, DBMS, and Data Warehouse

■ Create a relational model for a given problem

■ Draw an ER diagram for a given relational model (and vice versa)

■ Normalize a small relational model into a redundant-free model

■ List the result of an inner join of two tables to resolve relationships

■ Formulate SQL queries for a relational model

■ Create a Star-Schema from a relational model (and formulate queries)

■ Sketch the operations for an OLAP cube

■ Appraise the pro/cons of OLAP vs. traditional relational model

■ Describe DBMS optimizations: index, bulk loading, garbage cleaning

Julian M. Kunkel HPDA25 2 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Outline

1 Relational Model

2 Databases and SQL

3 Advanced Features for Analytics

4 Data Warehouses

5 Summary

Julian M. Kunkel HPDA25 3 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Relational Model [10]

■ Database model based on first-order predicate logic
▶ Theoretic foundations: relational algebra and calculus

■ Data is represented as tuples

■ Relation/Table: groups similar tuples
▶ Table consists of rows and named columns (attributes)
▶ No duplicates of complete rows allowed

■ In a pure form, no support for collections in tuples

■ Schema: specify structure of tables
▶ Datatypes (domain of attributes)
▶ Organization and optimizations
▶ Consistency via constraints

Figure: Source: Relational model concepts [11]

Julian M. Kunkel HPDA25 4 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Example Schema for our Students Data

Description

Database for information about students and lectures

Relational model

Matrikel Name Birthday
242 Hans 22.04.1955
245 Fritz 24.05.1995

Table: Student table

ID Name
1 HPDA
2 Hochleistungsrechnen

Table: Lecture table

Matrikel LectureID
242 1
242 2
245 2

Table: Attends table representing a relation
Julian M. Kunkel HPDA25 5 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Relationships

■ Model relationships between data entities

■ Cardinality defines how many entities are related

▶ One-to-many: One entity of type A with many entities of type B
▶ Many-to-many: One-to-many in both directions
▶ One-to-one: One entity of type A with at most one entity of type B

■ Relationships can be expressed with additional columns (this is not optimal!)

▶ Packing data of entities together in the table
▶ Alternatively: provide a “reference” to other tables

Matrikel Name Birthday Lecture ID Lecture Name
242 Hans 22.04.1955 1 HPDA
242 Hans 22.04.1955 2 Hochleistungsrechnen
245 Fritz 24.05.1995 2 Hochleistungsrechnen

Table: Student table with attended lecture information embedded

Julian M. Kunkel HPDA25 6 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Entity Relationship Diagrams

■ Illustrate the relational model and partly the database schema

■ Elements: Entity, relation, attribute

▶ Additional information about them, e.g., cardinality, data types

Student Lecture
* *

attends

NameMatrikel Birthday NameID

Figure: A student/lecture example in modified Chen notation
* is the cardinality and means any number is fine

Julian M. Kunkel HPDA25 7 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Keys [16, 17, 18]

■ A Superkey16 allows addressing specific tuples in a table

■ Superkey: Set of attributes that identify/address each tuple in a table

▶ There can be at most one tuple for each possible key value
▶ A superkey does not have to be minimal

• e.g., all columns together are a Superkey of any table
• After removing an attribute, it can still be a key

▶ Simple key: key is only one attribute
▶ Compound key: consists of at least two attributes

■ Candidate key: a minimal key, i.e., no attribute can be removed

■ Primary key: the selected candidate key for a table

■ Foreign key: inherited key of another table

■ Natural key: key that naturally is unique, e.g., matrikel

■ Surrogate key: artificial key, e.g., numeric ID for a row

16 Often it is just called key
Julian M. Kunkel HPDA25 8 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Example Keys

Table: Student table
Matrikel Name Birthday ...
242 Hans 22.04.1955
245 Fritz 24.05.1995

Table: Lecture table
ID Name Semester
1 HPDA SS15
2 Hochleistungsrechnen WS1516

Table: Attends table representing a relation
Matrikel LectureID
242 1
242 2
245 2

■ Student table

▶ Candidate keys: Matrikel, (name, birthday, city), social insurance ID
▶ Primary key: Matrikel (also a natural key)

■ Lecture table

▶ Candidate keys: ID, (Name, Semester)
▶ Primary key: ID (also a Surrogate Key)

■ Attends table

▶ Candidate key: (Matrikel, Lecture ID)
▶ Primary key: (Matrikel, Lecture ID)

Julian M. Kunkel HPDA25 9 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Normalization [10]: My Simplified Perspective

■ Normalization: process of organizing tables to minimize redundancy[19]

▶ Reduces dependencies within and across tables
▶ Prevents inconsistency across replicated information
▶ Normally, reduces required storage space and speeds up updates

■ There are different normal forms with increasing requirements
▶ 1NF: It follows our notion of a table.

• No collections in the table. A primary key exists.

▶ 2NF: No redundancy of data

• i.e., entities of many-to-many relations are stored in separate tables
• Every column must depend on each candidate key and not a subset

▶ 3NF: Columns are not functional dependent to sth. else than a candidate key
▶ 4NF: Do not store multiple relationships in one table

■ 4NF is a good choice17 for transactional data processing but not big data

17 It has been shown that 4NF can always be achieved for relational data
Julian M. Kunkel HPDA25 10 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Example for Unnormalized Data

Matrikel Name Birthday Name
242 Hans 22.04.1955 [HPDA, Hochleistungsrechnen]

245 Fritz 24.05.1995 Hochleistungsrechnen

Table: Not normalized Student and lecture table/relation, contains identical column names and collections.
Problematic if we want to update the name of an lecture.

Matrikel Name Birthday Lecture Name
242 Hans 22.04.1955 HPDA
242 Hans 22.04.1955 Hochleistungsrechnen
245 Fritz 24.05.1995 Hochleistungsrechnen

Table: Student and lecture table/relation in 1NF, it contains a many-to-many relation. Changing lecture name requires
still to touch multiple rows.

Julian M. Kunkel HPDA25 11 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Example for Unnormalized Data

Matrikel Name Birthday Age
242 Hans 22.04.1955 40
245 Fritz 24.05.1995 20

Table: In 2NF but not 3NF: Age is functional depending on birthday

Matrikel Attended lecture Attended seminar
242 BDA SIW
242 HR SIW
242 BDA NTH
242 HR NTH

Table: In 3NF but not 4NF: Candidate key depends on all three columns

Julian M. Kunkel HPDA25 12 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Outline

1 Relational Model

2 Databases and SQL
Databases
Overview
Schemas
Queries
Joins
Mutating Tables
Performance Aspects

3 Advanced Features for Analytics

4 Data Warehouses

5 SummaryJulian M. Kunkel HPDA25 13 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Databases [29]

■ Database: an organized collection of data

▶ Includes layout (schemes), queries, views
▶ Database models: Relational, graph, document, ...

■ Database management system (DBMS): software application that interacts with the
user, other applications and the database itself to capture and analyze data [29]

▶ Functionality: Definition, creation, update, querying and administration of databases

DBMS functions for managing databases

■ Data definition: Creation, modification of definitions for data organization

■ Update: Insertion, modification and deletion of data

■ Query/Retrieval: Retrieve stored and computing derived data

■ Administration of users, security, monitoring, data integrity, recovery

Julian M. Kunkel HPDA25 14 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Structured Query Language (SQL) [20]

■ Declarative language: specify what to achieve and not how

■ Evolving standard with growing feature set

Language elements

■ Statement: instructions to perform, terminate by ;

▶ Query: alternative name; usually only retrieves/computes data

■ Clause: components of statements

■ Predicates: conditions limiting the affected rows/columns

■ Expressions: produce scalar values or tables

■ Operators: compare values, change column names

■ Functions: transform/compute values

Julian M. Kunkel HPDA25 15 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

PostgreSQL [10]
A popular database implementation
■ Semantics: ACID support for transactions

▶ A transaction is a batch of operations that either fails or succeeds

■ Implements majority of SQL:2011 standard

▶ Syntax may differ from SQL standard and extensions are provided

■ Interactive shell via psql

Excerpt of features
■ Materialized views (create physical tables from virtual table)

■ Fulltext search

■ Regular expression

■ Statistics and histograms

■ User defined objects (functions, operators)

■ Triggers: events upon insert or update statements; may invoke functions

■ New versions support semi-structed data in arrays, XML, JSON18

18 See http://www.postgresql.org/docs/14/arrays.html and .../functions-json.html
Julian M. Kunkel HPDA25 16 / 52

http://www.postgresql.org/docs/14/arrays.html
.../functions-json.html

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Schemas (in Postgres)

Creation of a database and table

1 CREATE ROLE "bigdata" NOSUPERUSER LOGIN PASSWORD ’mybigdata’;
2 CREATE DATABASE bigdata OWNER "bigdata";

To connect to a database we can use psql -W -U < USERNAME > < DBNAME >

Create our tables
1 CREATE TABLE students (matrikel INT, name VARCHAR, birthday DATE, PRIMARY KEY(matrikel));
2 CREATE TABLE lectures (id SERIAL, name VARCHAR, PRIMARY KEY(id));
3 CREATE TABLE attends (matrikel INT, lid INT,
4 FOREIGN KEY (matrikel) REFERENCES students(matrikel),
5 FOREIGN KEY (lid) REFERENCES lectures(id));
6 --\d <TABLE> prints the schema

Constraints (keeps data clean ⇒ data governance)

1 -- minimum length of the name shall be 5
2 ALTER TABLE students ADD CONSTRAINT length CHECK (char_length(name) > 3);
3 -- to remove the constraint later: ALTER TABLE students DROP CONSTRAINT length ;
4 -- minimum age of students should be 10 years
5 ALTER TABLE students ADD CONSTRAINT age CHECK (extract(’year’ from age(birthday)) > 10);
6 -- disallow NULL values in students
7 ALTER TABLE students ALTER COLUMN birthday SET NOT NULL; -- during CREATE with "birthday DATE NOT NULL"
8 ALTER TABLE students ALTER COLUMN name SET NOT NULL;

Julian M. Kunkel HPDA25 17 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Populating the Tables

1 -- Explicit specification of columns, not defined values are NULL
2 INSERT INTO students (matrikel, name, birthday)
3 VALUES (242, ’Hans’, ’22.04.1955’);
4 -- Insertation of the same name twice could be prevented using a constraint
5 INSERT INTO students (matrikel, name) VALUES (246, ’Hans’);
6 -- Order is expected to match the columns in the table
7 INSERT INTO students VALUES (245, ’Fritz’, ’24.05.1995’);
8 INSERT INTO lectures VALUES (1, ’HPDA’);
9 INSERT INTO lectures VALUES (2, ’Hochleistungsrechnen’);

10

11 -- Populate relation
12 INSERT into attends VALUES(242, 1);
13 INSERT into attends VALUES(242, 2);
14 INSERT into attends VALUES(245, 2);
15

16 -- Insertations that will fail due to table constraints:
17 INSERT INTO students (matrikel, name) VALUES (250, ’Hans’);
18 -- ERROR: null value in column "birthday" violates not-null constraint
19 INSERT INTO students VALUES (250, ’Hans’, ’22.04.2009’);
20 -- ERROR: new row for relation "students" violates check constraint "age"
21 INSERT INTO students VALUES (245, ’Fritz’, ’24.05.1995’);
22 -- ERROR: duplicate key value violates unique constraint "students_pkey"
23 -- DETAIL: Key (matrikel)=(245) already exists.

Julian M. Kunkel HPDA25 18 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Queries [20]

■ A query retrieves/computes a (sub)table from tables
▶ It does not change/mutate any content of existing tables

■ Statement: SELECT < column1 >,< column2 >, ...

■ Subqueries: nesting of queries is possible to create temporary tables

Supported clauses

■ FROM: specify the table(s) to retrieve data

■ WHERE: filter rows returned

■ GROUP BY: group rows together that match conditions

■ HAVING: filters grouped rows

■ ORDER BY: sort the rows

1 SELECT Matrikel, Name FROM students WHERE Birthday=’22.04.1955’;
2 -- Returns a table with one row:
3 -- matrikel | name
4 -- ----------+------
5 -- 242 | Hans

Julian M. Kunkel HPDA25 19 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

More Queries
Ordering of results

1 -- Example comment, alternatively /* */
2 select * from students
3 where (name != ’fritz’ and name != ’nena’) -- two constraints
4 order by name desc; -- descending sorting order

Aggregation functions

1 -- There are several aggregate functions such as max, min, sum, avg
2 select max(birthday) from students;
3 -- 1995-05-24
4

5 -- It is not valid to combine reductions with non-reduced columns e.g.
6 select matrikel, max(birthday) from students; -- Erroneous...

Counting the number of students

1 -- Number of students in the table and rename the column to number
2 SELECT count(*) AS number FROM students;
3 -- number
4 -- 2

Julian M. Kunkel HPDA25 20 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Subqueries

A subquery creates a new (virtual) named table to be accessed

Identify the average age

1 -- Identify the min, max, avg age; we create a new table and convert the date
2 select min(age), avg(age), max(age) from
3 -- Here we create the virtual table with the name ageTbl
4 (SELECT age(birthday) as age from students) as ageTbl;
5 -- min | avg | max
6 -- 20 years 3 mons 30 days | 40 years 4 mons 15 days 12:00:00 | 60 years ...

Identify students which are not attending any course

1 -- We use a subquery and comparison with the set
2 select matrikel from students
3 where matrikel not in -- compare a value with entries in a column
4 (select matrikel from attends);

Subquery expressions: exists, in, some, all, (operators, e.g., <) 19

19 See http://www.postgresql.org/docs/14/functions-subquery.html
Julian M. Kunkel HPDA25 21 / 52

http://www.postgresql.org/docs/14/functions-subquery.html

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Grouping of Data

Data can be grouped by one or multiple (virtual) columns
It leads to errors when including non-grouped / non-reduced values

Identify students with the same name and birthday, count them

1 select name, birthday, count(*) from students group by name, birthday;
2 -- name | max | count
3 ---------+------------+-------
4 -- Fritz | 1995-05-24 | 1
5 -- Hans | 1955-04-22 | 1

Figure out the number of people starting with the same letter

1 select upper(substr(name,1,1)) as firstletter, count(*) from students
2 group by firstletter;
3 -- firstletter | count
4 ---------------+------------
5 -- F | 1
6 -- H | 1

Julian M. Kunkel HPDA25 22 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Filtering Groups of Data

■ With the HAVING clause, groups can be filtered

■ ORDER BY is the last clause and can be applied to aggregates

Identify students with the same name and birthday, and return the total number of
non-“duplicates”

1 select sum(mcount) from
2 (select count(*) as mcount from students
3 group by name, birthday having count(*) = 1 order by count(*)) as groupCount;
4 -- sum
5 -- 2
6

7 -- Alternatively in a subquery you can use:
8 select sum(count) from
9 (select count(*) as count from students

10 group by name, birthday) as groupCount
11 where count = 1;

Julian M. Kunkel HPDA25 23 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Joins [10]

A join combines records from multiple tables

■ Used to resolve relations of entities in normalized schemes

■ Usually filtering tuples according to a condition during this process

Types of joins

■ CROSS JOIN: Cartesian product of two tables (all combination of rows)

■ NATURAL JOIN: All combinations that are equal on their common attributes (i.e, both
tables contain the matrikel column)

■ INNER JOIN: Return all rows that have matching records based on a condition

■ OUTER JOIN: Return all rows of both tables even if they are not matching the condition

▶ LEFT OUTER JOIN: Return all combinations and all tuples from the left table
▶ RIGHT OUTER JOIN: ... from the right table
▶ FULL OUTER JOIN: Return all combinations

Julian M. Kunkel HPDA25 24 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Example Joins

1 select * from students as s1 CROSS JOIN students as s2;
2 -- matrikel | name | birthday | matrikel | name | birthday
3 ------------+-------+------------+----------+-------+------------
4 -- 242 | Hans | 1955-04-22 | 242 | Hans | 1955-04-22
5 -- 242 | Hans | 1955-04-22 | 245 | Fritz | 1995-05-24
6 -- 245 | Fritz | 1995-05-24 | 242 | Hans | 1955-04-22
7 -- 245 | Fritz | 1995-05-24 | 245 | Fritz | 1995-05-24
8

9 select * from students NATURAL JOIN attends;
10 -- matrikel | name | birthday | lid
11 -- ----------+-------+------------+-----
12 -- 242 | Hans | 1955-04-22 | 1
13 -- 242 | Hans | 1955-04-22 | 2
14 -- 245 | Fritz | 1995-05-24 | 2
15

16 select * from students INNER JOIN attends ON students.matrikel = attends.matrikel;
17 -- matrikel | name | birthday | matrikel | lid
18 ------------+-------+------------+----------+-----
19 -- 242 | Hans | 1955-04-22 | 242 | 1
20 -- 242 | Hans | 1955-04-22 | 242 | 2
21 -- 245 | Fritz | 1995-05-24 | 245 | 2

Julian M. Kunkel HPDA25 25 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Example Joins
1 -- This join returns NULL values for Fritz as he has not the selected matrikel
2 select * from students LEFT OUTER JOIN attends ON students.matrikel = 242;
3 -- matrikel | name | birthday | matrikel | lid
4 ----------+-------+------------+----------+-----
5 -- 242 | Hans | 1955-04-22 | 242 | 1
6 -- 242 | Hans | 1955-04-22 | 242 | 2
7 -- 242 | Hans | 1955-04-22 | 245 | 2
8 -- 245 | Fritz | 1995-05-24 | |
9 select * from students as s FULL OUTER JOIN attends as a ON s.matrikel = a.lid;

10 -- matrikel | name | birthday | matrikel | lid
11 ------------+-------+------------+----------+-----
12 -- | | | 242 | 1
13 -- | | | 242 | 2
14 -- | | | 245 | 2
15 -- 242 | Hans | 1955-04-22 | |
16 -- 245 | Fritz | 1995-05-24 | |
17 -- Now identify all lectures attended by Hans
18 select s.name, l.name from students as s INNER JOIN attends as a ON s.matrikel

↪→ = a.matrikel INNER JOIN lectures as l ON a.lid=l.id;
19 -- name | name
20 ---------+----------------------
21 -- Hans | HPDA
22 -- Hans | Hochleistungsrechnen
23 -- Fritz | Hochleistungsrechnen

Julian M. Kunkel HPDA25 26 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Mutating Tables

■ UPDATE statement changes values of columns

■ DELETE statement removes rows

■ Each operation yields the ACID semantics20

■ Transactions allow to batch operations together

1 -- Change the name of Fritz
2 UPDATE students SET name=’Fritzchen’ WHERE matrikel=245;
3

4 -- Remove Fritzchens attendance in Hochleistungsrechnen
5 DELETE FROM attends WHERE matrikel=242 and lid=2;
6

7 -- Subqueries can be used to select rows that are updated/deleted
8 -- Remove Fritzchen attendence with the name
9 DELETE from attends WHERE matrikel=242 and lid = (SELECT id from lectures where name =

↪→ ’Hochleistungsrechnen’);

20 In fact, when AUTOCOMMIT is enabled, every statement is wrapped in a transaction. To change this behavior on
the shell, invoke: SET AUTOCOMMIT [OFF|ON]

Julian M. Kunkel HPDA25 27 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Transactions

■ Transaction: A sequence of operations executed with ACID semantics

▶ It either succeeds and becomes visible and durable; or it fails
▶ Note: Complex data dependencies of concurrent operations may create a unresolvable state

that requires restart of the transaction

■ Isolation: queries access data in the version when the transaction started

▶ The isolation level can be relaxed, e.g., to see uncommited changes

■ Internally, complex locking schemes ensure conflict detection

Example: Atomic money transfer between bank accounts

1 START TRANSACTION;
2 UPDATE account SET balance=balance-1000.40 WHERE account=4711;
3 UPDATE account SET balance=balance+1000.40 WHERE account=5522;
4

5 -- if anything failed, revert to the original state
6 IF ERRORS=0 COMMIT; -- make the changes durable
7 IF ERRORS!=0 ROLLBACK; -- revert

Julian M. Kunkel HPDA25 28 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Group Work

■ Discuss the creation of a relational schema for organizing music (albums)

▶ Describe a schema (there is really wrong answer)
▶ List 1-2 operations and their implementation using SQL

■ Time: 10 min

■ Organization: breakout groups - please use your mic or chat

Julian M. Kunkel HPDA25 29 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Performance Aspects
Problem: When searching for a variable with a condition, e.g., x=y, the table data needs to be
read completely (full scan)

Indexes

■ Index allows lookup of rows for which a condition (likely) holds

■ Postgres supports B-tree, hash, GiST, SP-GiST and GIN indexes21

1 CREATE INDEX ON students (name);

Optimizing the execution of operations (query plan)
■ Postgres uses several methods to optimize the query plan

▶ The query planer utilizes statistics about access costs
▶ Knowing how values are distributed helps optimizing access

■ ANALYZE statement triggers collection of statistics

■ Alternatively: automatically collect statistics

■ EXPLAIN statement: describes the query plan (for debugging)

21 See http://www.postgresql.org/docs/14/sql-createindex.html
Julian M. Kunkel HPDA25 30 / 52

http://www.postgresql.org/docs/14/sql-createindex.html

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Performance Aspects (2) [22]

Bulk Loads/Restores

■ Combine several INSERTS into one transaction

■ Perform periodic commits

■ Create indexes/foreign key/constraints after data was inserted

Garbage cleaning / vacuuming: Cleaning empty space

■ When changing or inserting rows, additional space is needed

■ It is expensive to identify deleted / empty rows and compact them

⇒ Just append new data
▶ Mark data, e.g., in a bitmap as outdated

■ Periodically space is reclaimed and data structures are cleaned

■ VACCUUM statement also triggers cleanup

■ ANALYZE also estimates the amount of garbage to optimize queries

Julian M. Kunkel HPDA25 31 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Outline

1 Relational Model

2 Databases and SQL

3 Advanced Features for Analytics
Views
Processing Geospatial Data

4 Data Warehouses

5 Summary

Julian M. Kunkel HPDA25 32 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Views
■ View: virtual table based on a query

▶ Can be used to re-compute complex dependencies/apply joins
▶ The query is evaluated at runtime, which may be costly

■ Materialized view: copies data when it is created/updated22

▶ Better performance for complex queries
▶ Suitable for data analytics of data analysts
▶ Export views with permissions and reduce knowledge of schema

1 CREATE VIEW studentsView AS
2 SELECT s.matrikel, s.name as studentName, l.name as lectureName, age(birthday) as age from students as s

↪→ INNER JOIN attends as a ON s.matrikel = a.matrikel INNER JOIN lectures as l ON a.lid=l.id;
3

4 select * from studentsView;
5 -- matrikel | studentname | lecturename | age
6 ------------+-------------+----------------------+-------------------------
7 -- 242 | Hans | HPDA | 60 years 5 mons 1 day
8 -- 242 | Hans | Hochleistungsrechnen | 60 years 5 mons 1 day
9 -- 245 | Fritz | Hochleistungsrechnen | 20 years 3 mons 30 days

10 -- To replace the data with new data
11 REFRESH MATERIALIZED VIEW studentsView;

22 www.postgresql.org/docs/14/sql-creatematerializedview.html
Julian M. Kunkel HPDA25 33 / 52

www.postgresql.org/docs/14/sql-creatematerializedview.html

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Regular Expressions

■ PostgreSQL supports several styles of regular expressions23

■ We will look at POSIX regular expressions (regex)
■ Operator: ∼ for matching and ∼* for not matching
■ regexp_matches(string, pattern) returns text array with all matches

Examples

1 -- Any lecture which name contains Data
2 select name from lectures where name~*’data’;
3 -- HPDA
4
5 -- Lectures starting with HP
6 select name from lectures where name~’^HP.*$’;
7 -- HPDA
8
9 -- Students whose name contain at least two vocals
10 select name from students where name~’(i|a|o|u).*(a|i|o|u)’;
11
12 -- Students whose name contain at least one vacal and at most three
13 select name from students where name~’^([^auiu]*(i|a|o|u)[^aiou]*){1,3}$’;
14
15 -- Retrieve all lower case letters in the names
16 select regexp_matches(name, ’[a-z]’, ’g’) as letter from students;
17 -- {a}, {n} ...

23 See http://www.postgresql.org/docs/14/functions-matching.html
Julian M. Kunkel HPDA25 34 / 52

http://www.postgresql.org/docs/14/functions-matching.html

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Array Operations

■ Operations allow manipulation of multidimensional arrays24

■ Useful operators: unnest, array_agg, array_length

■ JSON support in new PostgreSQL version (not discussed here)

1 -- Alternative schema for our student/lecture example using an array for the attends relationship
2 CREATE TABLE studentsA (matrikel INT, name VARCHAR, birthday DATE, attends INT[], PRIMARY KEY(matrikel));
3 CREATE TABLE lectures (id SERIAL, name VARCHAR, PRIMARY KEY(id));
4
5 INSERT INTO studentsA VALUES (242, ’Hans’, ’22.04.1955’, ’{1,2}’);
6 INSERT INTO studentsA VALUES (245, ’Fritz’, ’24.05.1995’, ’{2}’);
7
8 -- Addressing array elements: first lecture attended by each student
9 SELECT attends[1] from studentsA;
10 -- Slicing is supported: First three lectures
11 SELECT attends[1:3] from studentsA;
12
13 -- Retrieve the lecture name attended for each student
14 SELECT s.name, l.name from studentsA AS s INNER JOIN lectures AS l ON l.id = ANY(s.attends);
15 -- Hans | HPDA
16 -- Hans | Hochleistungsrechnen
17 -- Fritz | Hochleistungsrechnen
18
19 -- Now retrieve the lectures in an array per person
20 SELECT s.name, array_agg(l.name) from studentsA AS s INNER JOIN lectures AS l ON l.id = ANY(s.attends) GROUP by s.matrikel;
21 -- Hans | {"HPDA",Hochleistungsrechnen}
22 -- Fritz | {Hochleistungsrechnen}

24 See http://www.postgresql.org/docs/14/arrays.html
Julian M. Kunkel HPDA25 35 / 52

http://www.postgresql.org/docs/14/arrays.html

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Processing Geospatial Data with PostGIS [30, 31]

■ PostGIS is a PostgreSQL extension providing datatapes and functions for
▶ Topology: Faces, Edges and Nodes

• Defines constraints on data, e.g., sharing of edges in maps

▶ Geometry/Geography: coordinates according to SRID

• Spatial Reference System Identifier (SRID) defines coordinate system
• Lon/Lat coordinates on a sphere with the unit degrees
• Points, lines, poligones

▶ Raster data: like pixels, square-based split of a 2D plane

• Example: Import / export of images

■ QGIS viewer25 can visualize geometry and raster data

25 http://qgis.org/
Julian M. Kunkel HPDA25 36 / 52

http://qgis.org/

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

PostGIS: Example [31]

1 -- Creating a database with geography data (SRID 4326 => WGS 84 => for GPS => lon/lat)
2 CREATE TABLE cities(gid serial PRIMARY KEY, n TEXT, loc geography(POINT,4326));
3 CREATE INDEX cities_idx ON cities USING GIST (loc);
4

5 -- Insert three cities with Lon/Lat coordinates
6 INSERT INTO cities (n, loc) VALUES(’Hamburg’,ST_GeographyFromText(’POINT(9.99 53.5)’));
7 INSERT INTO cities (n, loc) VALUES(’Tokio’,ST_GeographyFromText(’POINT(139.8 35.65)’));
8 INSERT INTO cities (n, loc) VALUES(’Aleppo’,ST_GeographyFromText(’POINT(37 36)’));
9

10 -- Compute distance between Hamburg and Tokio
11 SELECT ST_Distance((Select loc from cities where n = ’Hamburg’),
12 (Select loc from cities where n = ’Tokio’));
13 -- 9012369.89691784 == 9012 km
14

15 -- How far is Allepo from a plane flying from Hamburg to Tokio, here as text
16 SELECT ST_Distance(’LINESTRING(9.99 53.5, 139.8 35.65)’::geography,
17 ’POINT(37 36)’:: geography);
18 -- 2833 km

Julian M. Kunkel HPDA25 37 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Outline

1 Relational Model

2 Databases and SQL

3 Advanced Features for Analytics

4 Data Warehouses
Data Warehouses vs. Databases vs. BigData
Typical OLAP Operations
Alternative Schemas

5 Summary

Julian M. Kunkel HPDA25 38 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Data Warehouse

“A data warehouse (DW or DWH), also known as an enterprise data warehouse (EDW), is a
system used for reporting and data analysis.” [27]

■ Central repository for structured data

■ Integrates data from multiple inhomogeneous sources

■ Data analysts use a simplified data model: a multidimensional data cube

■ Provides tools for the data analyst to support descriptive analysis

■ May provide some tools for predictive analysis

■ Many queries are executed periodically and used in reports

■ Often used for business data

Julian M. Kunkel HPDA25 39 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Databases vs. Data Warehouses for Structured Data

Database management systems (DBMS)

■ Standardized systems and methods to process structured data

■ Use the relational model for data representation

■ Use SQL for processing

Online Transaction Processing (OLTP)

■ Real-time processing

■ Offer ACID qualities

■ Relies on normalized schemes (avoid redundant information)

Online Analytical Processing (OLAP)

■ Systems and methods to analyze large quantities of data

■ Utilizes data warehouses with non-normalized schemes

■ Extract, Transform and Load (ETL): import data from OLTP

Julian M. Kunkel HPDA25 40 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

OLAP

■ Online analytical process with large quantities of business data

■ Utilizes denormalized dimensional model to avoid costly joins

■ Technology alternatives:

▶ MOLAP (Multidimensional OLAP): problem-specific solution
▶ ROLAP: use relational databases to represent cube

• Star schema
• Snowflake schema

■ Dimensional modeling: design techniques and concepts [26]

1 Choose the business process, e.g., sales situation
2 Declare the grain: what does the model focus on, e.g., item purchased
3 Identify the dimensions
4 Identify the facts

Julian M. Kunkel HPDA25 41 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

The OLAP Cube: Typical Operations [27]

■ Slice: Fix one value to reduce the dimension by one
■ Dice: Pick specific values of multiple dimensions
■ Roll-up: Summarize data along a dimension

▶ Formulas can be applied, e.g., profit = income - expense

■ Pivot: Rotate the cube to see the faces

Dimension 1

D
im

en
sio

n
 2

Dim
ension 3

Fact FactFact Fact

Figure: Example 3D cube
Julian M. Kunkel HPDA25 42 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

The OLAP Cube: Slice [27]

■ Slice: Fix one value to reduce the dimension by one

■ Example: Sales (in Euro) for worlwide stores

Tim
e

23 232345 232

IT

Kitchen

Entertainment

Accessoires

P
ro

d
u

ct

Area (Shop)
EU Asia US JP

2015
2014

2013

23 232345 232

IT

Kitchen

Entertainment

Accessoires
2014

Slice

EU Asia US JP

23

53

Figure: Example cube for sales in stores

Julian M. Kunkel HPDA25 43 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

The OLAP Cube: Dice [27]

■ Dice: Pick specific values of multiple dimensions

2015

IT

Kitchen

Entertainment

Accessoires

EU Asia US JP

2015
2014

2013

IT

Kitchen

Entertainment

Accessoires

Dice

EU JP

2013

Figure: Example cube for sales in stores

Julian M. Kunkel HPDA25 44 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

The OLAP Cube: Drill Down/Up [27]

■ Drill Down/Up: Navigate the aggregation level

▶ Drill down increases the detail level
▶ Drill up decreases the detail level

IT

Kitchen

Entertainment

Accessoires

EU Asia US JP

2015
2014

2013

Drill down

Drill up

Microwave

Freezer

.Cupboard

EU Asia US JP
2015

2014
2013

Figure: Example cube for sales in stores

Julian M. Kunkel HPDA25 45 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Star (and Snowflake) Schemas [23]

Implement the OLAP cube in relational databases

Data model

■ Fact table: records measurements/metrics for a specific event

▶ Center of the star
▶ Transaction table: records a specific event, e.g., sale
▶ Snapshot table: record facts at a given point in time, e.g., account

balance at the end of the month
▶ Accumulating table: aggregate facts for a timespan, e.g.,

month-to-date sales for a product
⇒ A fact table retains information at a low granularity and can be huge

■ Dimension tables: describe the facts in one dimension

▶ Contains, e.g., time, geography, product (hierarchy), employee, range
▶ The fact table contains a FOREIGN KEY to all dimension tables
⇒ Comparably small tables

Snowflake schema normalizes dimensions to reduce storage costs
Julian M. Kunkel HPDA25 46 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Star Schema Example Model

Customer
Date
Geography
Product

Fact table

ID
Name
Age
City ...

Customer

ID
Hour
Day
Month
Year

Date

ID
Store
Region
Country

Geography

ID
Name
Category
Description

Product
Price
Units_Sold

Figure: Star schema

Julian M. Kunkel HPDA25 47 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Star Schema: Example Query

Analyze the sales of TVs per country and brand [23]

1 SELECT P.Brand, S.Country AS Countries, SUM(F.Units_Sold)
2 FROM Fact_Sales F
3 INNER JOIN Date D ON (F.Date_Id = D.Id)
4 INNER JOIN Store S ON (F.Store_Id = S.Id)
5 INNER JOIN Product P ON (F.Product_Id = P.Id)
6

7 WHERE D.Year = 1997 AND P.Product_Category = ’tv’
8

9 GROUP BY
10 P.Brand,
11 S.Country

Julian M. Kunkel HPDA25 48 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Star Schema [23]

Advantages

■ Simplification of queries and performance gains

■ Emulates OLAP cubes

Disadvantages

■ Data integrity is not guaranteed

■ No natural support for many-to-many relations

Julian M. Kunkel HPDA25 49 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Snowflake Schema Example Model

Customer
Date
Geography
Product

Fact table

ID
Name
Age
City ...

Customer

ID
Hour
Day

Date

ID
Store
City

Geography
ID
Name
Category
Description

Product

Price
Amount

City
Country

Country
Region

Day
Month

Month
Year

Category
ParentCat

Figure: Snowflake schema

Julian M. Kunkel HPDA25 50 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Summary

■ ER-diagrams visualize the relational data model

■ Keys allow addressing of tuples (rows)

■ Normalization reduces dependencies

▶ Avoids redundancy, prevents inconsistency

■ SQL combines data retrieval/modification and computation

▶ Insert, Select, Update, Delete
▶ Joins combine records

■ Transactions executes a sequence of operations with ACID semantics

■ A database optimizes the execution of the queries (query planer)

■ Semi-structured data analysis is possible within JSON and XML

■ OLAP (Cube) deals with multidimensional business data

■ Data warehouses store facts along their dimensions

■ Star-schema implements OLAP in a relational schema

Julian M. Kunkel HPDA25 51 / 52

Intro Relational Model Databases and SQL Advanced Features for Analytics Data Warehouses Summary

Bibliography

10 Wikipedia

11 https://en.wikipedia.org/wiki/Relational_model

16 https://en.wikipedia.org/wiki/Superkey

17 https://en.wikipedia.org/wiki/Candidate_key

18 https://en.wikipedia.org/wiki/Unique_key

19 https://en.wikipedia.org/wiki/Database_normalization

20 https://en.wikipedia.org/wiki/SQL

21 PostgreSQL Documentation http://www.postgresql.org/docs/14/

22 https://wiki.postgresql.org/wiki/Performance_Optimization

23 https://en.wikipedia.org/wiki/Star_schema

24 https://en.wikipedia.org/wiki/Data_mart

25 https://en.wikipedia.org/wiki/Snowflake_schema

26 https://en.wikipedia.org/wiki/Dimensional_modeling

27 https://en.wikipedia.org/wiki/OLAP_cube

28 https://en.wikipedia.org/wiki/Data_warehouse

29 https://en.wikipedia.org/wiki/Database

30 http://www.bostongis.com/?content_name=postgis_tut01

31 http://postgis.net/docs/manual-dev/

Julian M. Kunkel HPDA25 52 / 52

https://en.wikipedia.org/wiki/Relational_model
https://en.wikipedia.org/wiki/Superkey
https://en.wikipedia.org/wiki/Candidate_key
https://en.wikipedia.org/wiki/Unique_key
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/SQL
http://www.postgresql.org/docs/14/
https://wiki.postgresql.org/wiki/Performance_Optimization
https://en.wikipedia.org/wiki/Star_schema
https://en.wikipedia.org/wiki/Data_mart
https://en.wikipedia.org/wiki/Snowflake_schema
https://en.wikipedia.org/wiki/Dimensional_modeling
https://en.wikipedia.org/wiki/OLAP_cube
https://en.wikipedia.org/wiki/Data_warehouse
https://en.wikipedia.org/wiki/Database
http://www.bostongis.com/?content_name=postgis_tut01
http://postgis.net/docs/manual-dev/

