GWDG Exercise 1 / 14.10.2025
AG-C User Management (High-Performance Computing System Administration) / WiSe 2025
Freja Nordsiek 35 Minutes Total

Exercise Introduction

In this exercise, you will learn how to

e Use authselect to configure the authentication sources
e Create local groups and users, including SSH access

e Set passwords for local users

Contents

Task 1: Install needed packages (3 min) 1
Task 2: Using authselect (7 min) 1
Task 3: Create a group for your users (3 min) 2
Task 4: Create a normal user (7 min) 2
Task 5: Set a root password for your compute nodes (15 min) 3

Task 1: Install needed packages (3 min)

Install the following packages on the head node:

e authselect
e mkpasswd

e sssd
and the following in the Warewulf image for the compute nodes (no need to reboot yet):

e authselect

e sssd

Task 2: Using authselect (7 min)
On the head node, check which profiles are available for authselect with
authselect list

The two most commonly used ones are minimal and sssd. Read the information on each one and what features
they have available with

authselect show PROFILE
You can see what the /etc/nsswitch.conf is for each profile by running
authselect test PROFILE --nsswitch [FEATURE1l ...]

Quickly compare the head node’s existing /etc/nsswitch.conf and the one of each profile. It helps to filter
each one with grep -E '“["#F]' | sort and put the results in two separate files and compare them with
diff.

On both the head node and in the Warewulf image of the nodes, select the minimal profile with
authselect select PROFILE

You may have to add the -—-force option. Then check the current configuration with authselect check and
authselect current

You do not have to reboot the compute nodes yet.

Task 3: Create a group for your users (3 min)

It is common on clusters to have one or more top-level POSIX groups that all the normal usernames are in
since that can help management and file permissions in various places. First come up with the minimum GIDs
and UIDs you will use. It is considered best practice to separate GID and UID ranges based on role and
source, with the lowest range for system users/groups (e.g. 0 — 1000), a middle range for local non-system
users/groups, and the whole upper range for those from remote sources. This lets authentication using different
sources with SSSD put limits to the ranges so that a remote LDAP isn’t used for local users/groups (low and
middle UID/GIDs) and local files are never used for the centrally managed ones (high UID/GIDs). After you
have picked your mininmum UID and GID for your ranges, edit /etc/login.defs on the head node and set
the values. Then create the POSIX group on the head node for your users with groupadd NAME and check its
GID with getent group NAME

Task 4: Create a normal user (7 min)

Pick your username and the shell you prefer (the most common choice is /bin/bash). Then create your user
on the head node using useradd [0PTIONS] NAME such that its primary group is the group you made in the
last task and its HOME directory is created under where you decided to put HOME directories on the head
node’s NFS share (e.g. /nfs/home). Check that user exists with id NAME and getent passwd NAME and check
that its HOME directory was created. Check that its password is disabled in /etc/shadow (2nd field should
be !!).

On your local machine, either pick an SSH key you already have or generate a new SSH key that you will use
for this user. In the username’s HOME directory on the head node, create their $HOME/ . ssh directory owned
by the user and their primary group and with the permissions set so only that username can access it (700).
Then for that username, create their $H0ME/ . ssh/authorized keys file and paste the public key on one line
(DO NOT PASTE THE PRIVATE KEY). Then change the ownership of the file to be the username and
its primary group and set its permissions to that only that username can access it (600).

If you try to login with SSH with that username now, it will fail with permission denied. This is because
OpenStack when building the head node, configured the SSH server to only accept SSH logins from the cloud
user. Run id cloud to get the primary group of the cloud user. Edit /etc/ssh/sshd_config and find the

HPCSA — Exercise 1 2/3

line AllowUsers cloud and delete that line. Then add the line A1lowGroups CLOUDGROUP YOURGROUP where
CLOUDGROUP is the name of the primary group of the cloud username (you don’t want to lock yourself out)
and YOURGROUP is the name of the group you created earlier. Run sshd -t to check that the SSH server
configuration is valid. Without exiting your current SSH session, restart the SSH server with systemctl
restart sshd

Check that you can still login to the node with the cloud username using a different SSH session (do not close
your current one since you will need it to fix the config if you locked yourself out). Check that you can login
with your new username.

Now rebuild the node overlays so that the syncuser overlay pulls the new group and username into the node’s
runtime overlay.

Task 5: Set a root password for your compute nodes (15 min)

In real clusters, sometimes a node loses its network connections or has some other problem that prevents login
via SSH but the admins still need to login to it to look at the logs and diagnose the problem. Usually this is
done by hooking a keyboard and monitor to the node in person or over the BMC. But for this to work, there
has to be a local user the admins can login as. Usually, this is done with the root username. This requires
a strong root password to be set on the machines that the cluster’s users or any attackers have no hope of
guessing or brute forcing.

Create a strong root password for your compute nodes and write it down some place safe. Now, you will create
the salted hash of the password so you can put it in the node images.

On the head node, run man 5 crypt and look for the available hashing methods section to see the hashing
methods the head node supports. Note, if your head node and compute nodes are running different linux
distributions or version of them, you would need to check both and only consider hashing methods both
support. There are two groups of hashing methods. Ones using traditional hash algorithms like sha256crypt
and shab12crypt that are memory efficient and CPU time cost parameter is linear (number of rounds). Ones
using dedicated password hash algorithms like yescrypt and scrypt that are meant to take a while on the
CPU and cost a lot of RAM, typically having a logarithmic CPU time cost parameter. The former can be
made to take a long time, but is easy to parallelize with GPUs or custom silicon. The latter is very costly to
parallelize due to the needed RAM, which makes it expensive to brute force.

Try making hashed passwords for a method in each group for some trivial password (e.g. ”ab”) and steadily
increase the CPU cost parameter by

mkpasswd —-method=METHOD --rounds=COMPLEXITY

Adjust the COMLEXITY till it takes a few seconds or maxes out for the hash method. Once you have picked out
the hash method and complexity, then either on your own machine if you have mkpasswd or on the head node,
hash the root password that you chose. Then inside the Warewulf image for your compute nodes, set the root
password either by copy-pasting the hash into the respective line in /etc/shadow (2nd field) or with

usermod -p 'PASSWORD' USERNAME

Reboot the compute nodes. After one has rebooted, login to it from the head node using the username you
created earlier. Then, become root with

su

and entering the root password you set. You should now be root.

HPCSA — Exercise 1 3/3

	Task 1: Install needed packages (3 min)
	Task 2: Using authselect (7 min)
	Task 3: Create a group for your users (3 min)
	Task 4: Create a normal user (7 min)
	Task 5: Set a root password for your compute nodes (15 min)

