Test Components

Theory Part 2: Introduction to IO500

Conclusion

Aasish Kumar Sharma

IO500 Benchmark Suite: Understanding and Running The Tests

High-Performance Computing System Administration (HPCSA)

Aasish Kumar Sharma HPCSA 1/32

Course Structure

Session Breakdown (90 minutes total)

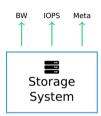
- → Part 1: Theory (20-25 min) Benchmarking concepts, components, and metrics
- → Part 2: Theory (30-35 min) IO500 Benchmark concepts, components, and metrics
- → Part 3: Hands-on (35-40 min) Practical exercises on cluster
- → Part 4: Discussion (10-15 min) Q&A and troubleshooting

Learning Objectives

- By the end of this session, you will be able to:
 - ▶ Understand IO500 test components and scoring
 - ▶ Install and configure IO500 on HPC systems
 - ► Run benchmarks and interpret results
 - ► Diagnose common storage performance issues

Aasish Kumar Sharma HPCSA 2/32

Outline


- 1 Theory Part 2: Introduction to IO500
- 2 Test Components

- 5 Running & Analyzing

Aasish Kumar Sharma **HPCSA** 3/32

What is 10500?

- Industry standard storage benchmark suite
- Measures real-world storage performance
- Used by supercomputing centers worldwide
- Provides comparable results across systems
- Tests both bandwidth and metadata

Real-World Analogy

- Traditional benchmarks are like testing a car's top speed on an empty highway.
- IO500 tests how it performs in real traffic, with turns, hills, and stops.

Aasish Kumar Sharma HPCSA 4/32

Why IO500 for HPC?

Research Computing Challenges

- Scientific workflows mix large data transfers with many small files
- Checkpointing requires consistent write performance
- Data analysis involves random access patterns
- Shared systems need fair resource allocation

Traditional Benchmarks:

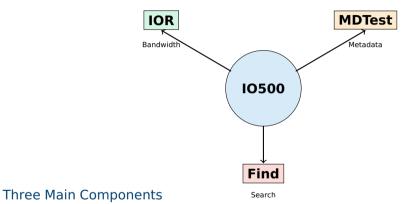
- Single workload
- Peak performance
- Limited applicability

IO500 Approach:

- Mixed workloads
- Sustained performance
- Real-world relevance

Aasish Kumar Sharma HPCSA 5/32

Outline


- 2 Test Components

- 5 Running & Analyzing

Aasish Kumar Sharma **HPCSA** 6/32

10500 Test Suite

Theory Part 2: Introduction to IO500

- IOR Measures data throughput (GiB/s)
- MDTest Measures metadata operations (kIOPS)
 - Find Measures file discovery performance (kIOPS)

Aasish Kumar Sharma **HPCSA** 7/32

Conclusi

IOR: Interleaved Or Random Bandwidth Tests

Test	Access	Block	Workload
Easy Write	File-per-process	2 MiB	Checkpoint
Easy Read	File-per-process	2 MiB	Analysis
Hard Write	Shared file	47 KB	Logging
Hard Read	Shared file	47 KB	Database

Easy vs Hard

Easy: Each process works independently (parallelizes well)

■ **Hard:** Processes share files (tests coordination overhead)

Aasish Kumar Sharma HPCSA 8/32

MDTest: Metadata Operations

Operations Tested:

- File creation
- File stat (metadata guery)
- File reading
- File deletion

Why This Matters for Research

- Version control systems (Git)
- Simulation output (millions of small files)
- Backup and archival operations
- Build systems and compilation

Directory Structures:

■ Easy: Flat (single level)

Conclusi

■ Hard: Nested (tree)

Aasish Kumar Sharma HPCSA 9/32

Conclus

- 2 Test Components
- 3 Performance Metrics
- 5 Running & Analyzing

Aasish Kumar Sharma **HPCSA** 10/32 Theory Part 2: Introduction to IO500

Geometric Mean Formula

- Uses geometric mean to prevent good result from hiding
- One poor performance elsewhere could average the good one.

Bandwidth Score:

$$BW = \sqrt[4]{\prod IOR_{tests}}$$

Test Components

Total Score:

IOPS Score:

$$IO500 = \sqrt{BW \times IOPS}$$

$$IOPS = \sqrt[n]{\prod MD_{tests}}$$

This ensures balanced performance across all workload types

11/32 Aasish Kumar Sharma **HPCSA**

Interpreting Results

Score Range	Classification	Typical System
> 10	High Performance	Top supercomputers
1–10	Good Performance	Research clusters
0.1-1	Entry Level	Department systems
< 0.1	Performance Issues	Needs attention

Performance Ratios to Watch

- → Easy/Hard Ratio Reveals coordination overhead
- → Write/Read Ratio Shows caching effectiveness
- → BW/IOPS Balance Indicates system optimization focus

Aasish Kumar Sharma **HPCSA** 12/32

Outline

- 2 Test Components
- 4 Installation & Configuration
- 5 Running & Analyzing

Aasish Kumar Sharma **HPCSA** 13/32

Quick Installation

Prerequisites

```
# Load MPI module
module load openmpi

# Verify MPI installation
mpicc --version
```

Build IO500

```
git clone https://github.com/I0500/io500.git

cd io500

git checkout io500-sc23
./prepare.sh
```

Hands-On Exercises

Minimal Configuration (config-test.ini)

```
[global]
   datadir = ./datafiles
   resultdir = ./results
   [ior-easy]
   transferSize = 2m
   blockSize = 1g
   [ior-hard]
   transferSize = 47008
   blockSize = 47008
   [mdtest-easy]
   files-per-proc = 10000
   [mdtest-hard]
   files-per-proc = 10000
   tree-depth = 2
19
```

Note

- For learning,
 - Use smaller file counts and
 - Shorter runtimes

Theory Part 2: Introduction to IO500

Outline

- 2 Test Components

- 5 Running & Analyzing

Aasish Kumar Sharma **HPCSA** 16/32

Running 10500

Single Node Test

```
1 # Run with 2 processes
 mpirun -np 2 ./io500 config-test.ini
3
 # Monitor progress
 tail -f results/*/result.txt
```

Cluster Test (SLURM)

```
1 #!/bin/bash
2 #SBATCH --nodes=2
з #SBATCH --ntasks-per-node=4
4 #SBATCH --time=01:00:00
6 module load mpi
 mpirun ./io500 config-cluster.ini
```

Reading Results

Example Output

Hands-On Exercises

Conclus

Red Flags in This Output

- INVALID tag indicates data corruption
- Very low bandwidth (< 0.15 GiB/s)
- Good metadata performance (bright spot)

Aasish Kumar Sharma HPCSA 18/32

Outline

- 1 Theory Part 2: Introduction to IO500
- 2 Test Components

Theory Part 2: Introduction to IO500

- J' l'ellottiance Metries
- 4 Installation & Configuratio
- 5 Running & Analyzing
- 6 Hands-On Exercises

7 Conclusion

Aasish Kumar Sharma HPCSA 19/32

Hands-On Exercises

Conclus

Exercise Session Overview

Setup (5 minutes)

- Connect to cluster
- Verify MPI environment
- Clone IO500 repository

Four Exercises (30 minutes)

- 1 (10 min) Installation and basic configuration
- 2 (10 min) Running your first benchmark
- **3** (5 min) Analyzing results
- 4 (5 min) Performance comparison

Wrap-up (5 minutes)

- Discussion of results
- 0&A

Aasish Kumar Sharma HPCSA 20/32

Conclus

Exercise 1: Installation (10 min)

Objective

■ Install IO500 on the cluster and verify the build

Tasks

- SSH to cluster: ssh username@cluster.uni-goettingen.de
- 2 Load MPI module: module load openmpi
- 3 Clone repository: git clone https://github.com/I0500/io500.git
- 4 Checkout version: cd io500 && ait checkout io500-sc23
- 5 Build: ./prepare.sh
- 6 Verify: ls -l io500

Expected Output

■ You should see compiled binaries: io500, ior, mdtest, pfind

Aasish Kumar Sharma HPCSA 21/32

Exercise 2: First Benchmark (10 min)

Objective

Run a minimal IO500 test and observe execution

Tasks

```
1 # 1. Create test configuration
  cp config-minimal.ini config-exercise.ini
3
4 # 2. Edit config (reduce file counts for speed)
5 vim config-exercise.ini
6 # Change files-per-proc to 1000
    3. Run benchmark
  mpirun -np 2 ./io500 config-exercise.ini
    4. Monitor in another terminal
12 tail -f results/*/result.txt
13
```

Ouestions to Consider

■ Which test takes longest? Why?

Conclus

■ What resources are being used?

Aasish Kumar Sharma HPCSA 22/32

Exercise 3: Result Analysis (5 min)

Objective

■ Interpret your benchmark results and identify patterns

Tasks

```
# 1. View summary
cat results/*/result_summary.txt

# 2. Calculate Easy/Hard ratios
# Easy_Write / Hard_Write = ?
# Easy_Read / Hard_Read = ?

# 3. Identify issues
# Are any results marked INVALID?
# Which tests performed best/worst?
```

Group Discussion

Compare your results with neighbors.

Conclus

- ▶ What differences do you see?
- ► Why might they differ?

Aasish Kumar Sharma HPCSA 23/32

Exercise 4: Performance Comparison (5 min)

Objective

■ Test with different configurations and compare

Tasks

```
# 1. Run with different process counts
mpirun -np 4 ./io500 config-exercise.

ini

# 2. Compare results
diff results/run1/result_summary.txt \
results/run2/result_summary.txt

# 3. Analyze scaling
# Does 2x processes = 2x performance?
```

Expected Observation

- Performance rarely scales linearly.
 - Why? (overhead, contention, limits)

Hands-On Exercises

Conclus

Aasish Kumar Sharma HPCSA 24/32

Conclus

Exercise Troubleshooting

Common Issues

- → Build fails Check MPI module: module list, try module load mpi
- → Permission denied Ensure write access: chmod 755 datafiles
- → Slow execution Normal for complete runs; reduce file counts for testing
- → INVALID results May indicate storage issues; check df -h

Get Help

- Check log files in results/*/*.log
- Consult with respective instructors
- Review documentation at https://io500.org

Aasish Kumar Sharma HPCSA 25/32

Outline

- 2 Test Components

- 5 Running & Analyzing
- 7 Conclusion

Aasish Kumar Sharma **HPCSA** 26/32

Conclusio

Key Takeaways

Theory Part 2: Introduction to IO500

Understanding IO500

- Comprehensive benchmark suite for storage systems
- Tests both bandwidth (IOR) and metadata (MDTest)
- Uses geometric mean for balanced scoring
- Reflects real-world application behavior

Practical Skills Gained

- Installation and configuration
- Running benchmarks on HPC systems
- Interpreting performance results
- Identifying storage bottlenecks

Aasish Kumar Sharma HPCSA 27/32

Hands-On Exercises

Official Resources

Theory Part 2: Introduction to IO500

- Website: https://io500.org
- **GitHub:** https://github.com/I0500/io500
- **Documentation:** https://io500.org/documentation
- Results Database: https://io500.org/list

Next Steps

- Run IO500 on your research filesystem
- Compare with other systems in IO500 list
- Experiment with different configurations
- Use results to guide storage optimizations

Aasish Kumar Sharma HPCSA 28/32

Conclusio

Questions & Discussion

Theory Part 2: Introduction to IO500

Learn and Share!

Questions & Discussion

Feedback - Contact:

Aasish Kumar Sharma aasish-kumar.sharma@gwdg.de

Materials:

https://hps.vi4io.org/teaching/ressources/start

Aasish Kumar Sharma HPCSA 29/32

Reference: Complete Config File

```
[global]
datadir = ./datafiles
resultdir = ./results

[debug]
stonewall-time = 300

[ior-easy]
transferSize = 2m
blockSize = 9920000m
API = POSIX

[ior-hard]
transferSize = 47008
blockSize = 47008
API = POSIX
```

Reference: Monitoring Script

```
1 #!/bin/bash
2 # monitor-io500.sh - Real-time monitoring
4 while true; do
      clear
       echo "=== I0500 Monitor $(date) ==="
      echo
       echo "Disk Usage:"
       df -h ./datafiles | tail -1
      echo
      echo "I/O Statistics:"
11
      iostat -x 1 1 | grep -A5 "Device"
12
      echo
13
      echo "Active Processes:"
       ps aux | grep -E '(io500|ior|mdtest)' | grep -v grep
15
       sleep 10
16
17 done
```

Reference: Performance Analysis Checklist

When Analyzing Results

- 1 Check for INVALID markers (data integrity issues)
- 2 Calculate Easy/Hard ratios (coordination overhead)
- 3 Compare Write/Read performance (caching effects)
- Examine BW vs IOPS balance (system optimization)
- 5 Look at individual test durations (bottlenecks)
- 6 Compare with similar systems in IO500 list

Red Flags

- Easy/Hard ratio > 3: Poor shared access handling
- Write/Read ratio > 2: Cache or read path issues
- Any INVALID results: Storage reliability concerns
- Extremely low scores: Configuration or hardware problems