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Continue with Your Methodology

■ You have a motivation, goal(s) and context

■ Next is to pose research questions (RQs)

■ RQs in line with thesis goal(s)

■ Determine experiments to address RQs

For example:

■ Goal: Study the viability of (software) tools for use case A

■ Background: Tools for use case A commonly rely on these concepts

■ Related Work: Similar efforts to study use case A

■ RQs:

▶ What tool supports all features of use case A?
▶ What tool solves use case A the fastest?
▶ What tool is the easiest to use?
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Types of Research Questions

■ Yes/No question

▶ What tool supports all features of use case A?
▶ Might also use grades, e.g., feature 1 works but not feature 2

■ Quantitative question

▶ What tool solves use case A the fastest?
▶ Determine numerical metric, e.g., data throughput in MB/s

■ Qualitative question

▶ What tool is the easiest to use?
▶ Requires approach to measure, e.g., grading schema or survey

For your thesis, focus on Yes/No and Quantitative questions

■ Discuss your RQs early on with your supervisor
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High-Level View

■ Scope

▶ The tools and/or settings you are considering in your study
▶ Other tools might also be viable but out of scope
▶ Limit scope based on time and resources available

■ Subject of study

▶ One or more tools/settings
▶ Could also be self-developed

■ Experiments

▶ Embed tools in experiment harness
▶ Harness provides stimulation, i.e., input
▶ Harness measures behavior, e.g., output, monitoring
▶ Include a baseline to ground expectations
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Experiments

■ Designate one or more experiments

▶ Each experiment should contribute to answering RQs
▶ Figure out the standard approach/benchmark
▶ Or design your own and argue why it is representative
▶ Ensure experiment conditions for each subject of study are the same/highly

similar

■ Limitations

▶ Caused by hardware or time limitations
▶ Take note of any limitations that apply
▶ Errors might persist and limit the results derived

■ Fairness

▶ Fairly evaluate all subjects of study
▶ Do not give beneficial treatment to any, even if it is your own development
▶ Be honest about limitations that apply to each
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End-to-End Workflow

1 Goal(s) and Motivation

2 Research Questions (RQs)

3 Scope of Thesis

4 Experiment Design

5 Prepare Experiment Setup

6 Conduct Experiments

7 Evaluate and Visualize Results

8 Address RQs

■ Your experiments may fail, work only partially or negative results

▶ Limit the scope
▶ Ensure your scientific reasoning is on point
▶ With that you can still pass, even with good or great grades
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A Bit of Research Theory

■ Logical reasoning

▶ How valid are the RQ answers based on our experiments?
▶ How can we argue that our answers are valid?
▶ Understand the chain of reasoning

■ Application

▶ Does not need to be stated in full in thesis
▶ Sufficient to understand it
▶ Employ it as a point of guidance
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Formal Research Workflow

1 Define Research Problem/Question (RP)
2 Define Method to address RP
3 Define Inference Conditions for Validity

▶ What must be given for the results to be valid in answering the RP?

4 Perform Measurements and take Notes on Issues
5 Prepare Data for Analysis, including Visualization
6 Perform Descriptive Inference

▶ Look for Patterns, Describe what you see
7 Perform Abductive Inference

▶ What is the most likely Explanation of your Observations?
8 Perform Analogical Inference

▶ Consider whether your Explanations apply to similar Scenarios
▶ Can they be Generalized?

9 Answer your RQs
▶ Can they all be answered or are there Gaps due to Limitations, Scope, Issues?
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Reasoning in Experiments

■ Experiment Inference Conditions

▶ In Methodology
▶ Argue how each experiment serves to address the RQs
▶ Include how the results will answer the RQs

■ Conducting Measurements and Noting Issues

▶ Issues may come up that cannot be reflected in Measurement Data
▶ For instance, software crashes for inputs bigger than 10 GB
▶ Take Notes to consider during Abductive Inference

■ Preparing Data for Analysis

▶ Clean data, prepare for visualization
▶ Create graphs and diagrams
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Reasoning in Data Analysis

■ Descriptive Reasoning
▶ Describe what you see
▶ For example, graph shows an S-curve

■ Abductive Reasoning
▶ Apply the most likely explanation for observations
▶ Consider notes taken along during measurements
▶ For example, all tools having almost identical maximum throughput likely

means a hardware component is bottleneck

■ Analogical Reasoning
▶ Can the explanations be generalized beyond the experiment setup?
▶ Experiments conducted in controlled environment
▶ Can real-world applications be expected to behave the same way?

■ Answering RQs
▶ Can the RQs be answered or are more experiments necessary?
▶ Are limited answers possible?
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Method Selection

■ Assume RQ: "Is tool A or tool B better?"

■ Better at what? Define subsequent questions

▶ What tool supports use case A?
▶ What tool has better performance?
▶ What tool is better maintained?

■ Focus on the performance question, what does it mean?

▶ Which is faster?
▶ Which uses less resources?
▶ Which scales better?

■ These can be quantified and measured

▶ Define representative test cases
▶ Perform measurements
▶ Note down results, hardware specs, software versions
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Measurement Errors
■ Systematic Error

▶ All results are off by the same or a highly similar value
▶ For instance, all time measurements are 10 seconds slower

■ Sources of Systematic Error
▶ Software Misconfiguration
▶ Faulty Hardware
▶ Broken Logic in Benchmarking Script

■ Random Error
▶ Results may be off by a random value that varies between executions
▶ For example, execution is sometimes faster than baseline

■ Sources of Random Error
▶ Operating System Background Noise
▶ Noisy neighbors on Shared Systems
▶ Caching of Results
▶ Hardware throttling due to CPU/GPU temperature
▶ Refresh of RAM electronic charge
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Dealing with Measurement Errors

■ Systematic Error

▶ Be diligent and keep track of configuration changes, notes
▶ Apply reasoning to determine if the results make sense
▶ Due to its nature, systematic error can never be fully excluded

■ Random Error

▶ Repeat experiments multiple times, at least 3, 5, 10 or more times
▶ Increase workload/data, scale up the amount of work
▶ Disable caching
▶ Space out repetitions
▶ Reserve nodes exclusively during benchmarks

■ Null Hypothesis

▶ Possibility that the effect you are looking for does not exist
▶ For instance, measuring different settings and their performance
▶ All performance differences could be due to Random Error
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Data Cleaning

■ Bring data into a standardized format, e.g., csv

▶ Extract data from raw output

■ Handle missing and invalid values

▶ Are non-numerical values supposed to be zero or due to parsing error?
▶ Or should they be mapped to specific values?
▶ Are values missing, if so why?

■ Software Tools

▶ Python
▶ Pandas
▶ Jupyter Notebook
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Mean vs Median

■ Mean is the average

▶ Skewed by outliers

■ Median is the middle most value in the dataset

▶ Reflects the most average actual data point

■ For Uniform large datasets the median and average might be the same

▶ A few large outliers may already shift the average away from the median

■ Harmonic and Geometric Mean

▶ More robust against outliers compared to regular mean
▶ Consider in addition to mean in face of high amount of outliers

■ Standard Deviation

▶ Reflects variation from the mean
▶ High standard deviation indicates high variance in data
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Is the Data Reasonable?

■ Apply descriptive and abductive inference

■ In addition consider, whether data is reasonable

▶ For instance, is the performance for task that was executed appropriate
▶ Consider what to expect from the hardware

■ Example

▶ You study a package manager that needs to download, unpack and install a
large software library

▶ Based on network, CPU and I/O speed we can determine some expectations
▶ If the measurements are multiple orders of magnitude slower than

expectations, consider why
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Box Plot

■ Split data into quartiles

■ Box represents middle 25
to 75% of values

■ Middle line is the median

■ Outliers are noted as dots

■ Sometimes layered with
Scatterplot

■ Large quartiles mean high
standard deviation
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Bar Plot

■ Similar to Box plot

■ Does not show quartiles

■ Can be layered with
Scatterplot or quartiles to
indicate standard deviation
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Line Plot

■ Time on X-Axis

■ Measured Value on
Y-Axis

■ Convey
developments over
time
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Comparable Graphs

■ Make graphs comparable at a glance
▶ Set the same minimum and maximum
▶ Carefully use logarithm scale
▶ Start graphs at 0 if possible

Jonathan Decker Scientific Writing 27 / 33

Decker, The Potential of Serverless Kubernetes-Based FaaS Platforms for Scientific Computing Workloads, 2022



Your Data Workflow Research Workflow in Theory Research Workflow in Practice Data Analysis Data Visualization Your Code

Tools

■ Python

▶ Pandas for its dataframes
▶ Numpy for efficient mathematical operations
▶ Matplotlib as basic plotting library
▶ Seaborn for advanced templates on top of Matplotlib

■ Colorblind friendly Graphs

▶ Do not convey information through color alone
▶ Use patterns in addition to color
▶ Or check for color blind friendly color patterns

■ Explore newer options
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Git

■ Employ Git to manage your working directory

▶ Sync with gitlab.gwdg.de
▶ Ensure that your work is not lost if your work device breaks
▶ Can be used for code, notes, scripts, even TeX files
▶ Ensure proper house keeping to stay efficient

■ .gitignore

▶ Tells git what files not to check in
▶ Exclude files such as intermediate build files or cache files, e.g., __pychache__
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Storing Produced Data

■ Data produced from experiments

▶ Should either be stored or easily reproducible
▶ Strategy depends on amount of data

■ Small Amounts of Data, i.e., less than ∼ 2 GB

▶ Keep in your code repository under data
▶ Can be stored via Git

■ Large Amounts of Data

▶ Provide scripts and documentation for reproducing data
▶ If reproducing is expensive, discuss data management plan with supervisor
▶ For instance, via Zenodo
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Reproducibility

■ Your science must be reproducible
▶ Provide end-to-end documentation in your git repository
▶ Good documentation on how to set up experiments
▶ How to run measurements
▶ Capture as many steps as possible in scripts

■ Code Quality
▶ Do not write throwaway code
▶ Consider that you might need to later update your code

■ Public repository
▶ Create a separate clean repository
▶ Release along with theses to the public, for instance, via Github
▶ Do NOT store credentials or secrets in repo
▶ Add a license file and how to cite
▶ Tag the final version used in the thesis, e.g.,

git tag -a v1.0 -m "Thesis submission"
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“Non-reproducible single occurrences are of no

significance to science.”

— Karl Popper, The Logic of Scientific Discovery, 2002, p. 66
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