

Lorenz Glißmann

Scientific Writing

Scientific Writing and Structure Your Work

Table of contents

1 Writing Style

2 Document Structure

3 Chapters

4 Typical Mistakes

5 Writing styles

6 Practice: Spot and Fix

Basic Common Structure for CS

English title(s)	German title(s)	Core goal
1. Introduction	Einleitung	einleiten
2. Foundation / Basics	Grundlagen	einführen
3./4. Related Work	Literatur	einordnen
4./3. Analysis	Analyse	analysieren
5. Approach / Methodology	Methodik	planen
6. Case Study / Evaluation	Evaluation / Fallstudie	dokumentieren
7. Results	Ergebnisse	präsentieren
8. Discussion, Limitations	Diskussion	diskutieren
9. Summary, Outlook	Fazit / Ausblick	zusammenfassen

Note: We rarely have an "Implementation"

A typical document from...

Software Engineering

- 1 Introduction
- 2 Foundations
- 3 Related Work
- 4 Approach
- 5 Case Study
- 6 Summary and Outlook

Theoretical CS

- 1 Introduction
- 2 Basics
- 3 Analysis
- 4 Proof
- 5 Conclusion

High-Performance-Computing

- 1 Introduction
- 2 Background and Related Work
- 3 Methodology
- 4 Evaluation
- 5 Results
- 6 Discussion
- 7 Conclusion

A typical document from...

Software Engineering

- 1 Introduction
- 2 Foundations
- 3 Related Work
- 4 Approach
- 5 Case Study
- 6 Summary and Outlook

Theoretical CS

- 1 Introduction
- 2 Basics
- 3 Analysis
- 4 Proof
- 5 Conclusion

High-Performance-Computing

- 1 Introduction
- 2 Background and Related Work
- 3 Methodology
- 4 Evaluation
- 5 Results
- 6 Discussion
- 7 Conclusion

Core difference: **Case Study** (with humans), **Proof, Metrics** evaluation

Finding the right structure for your thesis

- Not every work needs every chapter
- You often do not know in advance
- A good strategy:
 - 1 Add all possible chapters
 - 2 Add goals to chapter beginning (bulletpoints are ok): "What to say here"
 - 3 Start writing
 - 4 Remove / Merge chapters as makes sense
- Ask your supervisors!

Prioritize

- Not every part of a thesis is equally important
- For papers a rule of thumb is[1]:
 - 1 Polish page 1 for acceptance
 - 2 Use the remaining pages to avoid rejection
- While this is not true for theses, the core idea is important
- First impressions count for a lot
- Some parts of your thesis might not be read!
- ⇒ Focus on the introduction

[1] <https://maxwellforbes.com/posts/how-to-get-a-paper-accepted/>

Abstract

- Research goal, often also motivation
- Brief description of approach
- Core outcomes: results and/or conclusions
- Example:
 - ▶ When building new data centers power usage needs to be accounted for...
 - ▶ To determine power usage, we developed a predictive model based on...
 - ▶ We trained this model on ... and evaluated its accuracy against ...
 - ▶ We show that our model is easy to implement and X% accurate but ...

Introduction

- Introducing the topic
- Motivation (relevant + important, **not** personal) / Problem Statement
- Research goals, research questions (if applicable)
- Structure of your thesis
- *Example:*
 - ▶ Open Source Software (OSS) is often seen as less user-friendly than proprietary software.
 - ▶ We want to improve user acceptance of OSS.
 - ▶ For this we need to know: Why is OSS seen as less user-friendly?
 - ▶ To answer this question, we designed and conducted a case study ...
 - ▶ The thesis is structured as follows. In ...

Introduction Extended

It is possible, but not always advisable, to extend the introduction:

- Related work
 - ▶ If some related work is at the core of your thesis (extending/applying)
 - ▶ Just for context
- Other approaches / Overview
- A guiding example
 - ▶ To explain / demonstrate some method
 - ▶ To provide motivation or goals
- Pre-empting important outcomes
 - ▶ Generally avoid.
 - ▶ E.g. when unexpected findings shape your general approach
 - ▶ If you do this, make it very clear!

Foundations / Basics

- Basic knowledge needed to understand your thesis
- Can be text book knowledge, avoid broadly accepted common knowledge
- Define terminology

Related Work

- Present other research that either aims at similar goals or uses similar methods
- Compare/Contrast with your work, put your work into a greater context
- *Different approaches for this chapter:*
 - ▶ Integrative i.e. summarize multiple works within one section e.g. chronologically
 - ▶ Separately i.e. multiple sections for comparing e.g. against different approaches
 - ▶ Comparatively i.e. provide multiple summarizations, then compare them all

Analysis

- Identify requirements
- Disect and analyze problems, gain knowledge
- *Note: There might not be a clear difference to Approach; sometimes people already propose solutions in Analysis*

Approach / Methodology

- How you aim to answer your research question(s)
- Avoid implementation details, avoid source code; this is planning, not results!

Case Study

- Report on your case study (when, where, how, notable events)
- *Use past tense here, as you are reporting past events*
- *In many case studies, this chapter also includes Results*

Results, Discussion

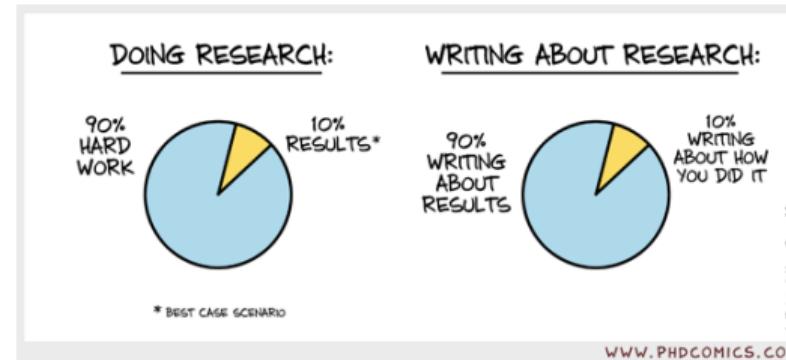
■ Results

- ▶ Presents only observations, not inferences or opinions
- ▶ *Results is often Results+Discussion (but separated!)*

■ Discussion

- ▶ Interpretation of the raw results
- ▶ Answering research questions
- ▶ Limitations (also sometimes separately)

Conclusion, Outlook


- What did you do in your thesis?
- Summarize major outcomes
- (Sometimes) Mention limitations
- What are (possible) next steps?

Typical Mistakes

- Unclear introduction
 - ▶ The introduction is like a blueprint for the entire work
 - ▶ Provide valid goal: Improve, Find out, Prove
- Unimportant foundations
 - ▶ Only present what's useful, important & relevant
- No or too much related work
 - ▶ Ideally 1-3 important AND relevant publications

Typical Mistakes

- Source Code from a software implementation
 - ▶ Describe concepts, not implementations
 - ▶ Examples, procedures can be ok
 - ▶ *Note: Opinions differ a lot here, from "should" to "must never"*
- No separation between approach and case study / results
- No separation between results and discussion
- Wrong / Overreaching conclusions

Scientific "We"

■ Writing as "we":

- ▶ "We asked participants to estimate the size of the object."
- ▶ "We" is the default in papers, even for single authors. Good default for theses.
- ▶ Easy to understand, takes responsibility but not too much focus on the individual.

■ Use active (in english):

- ▶ Avoid: "Participants we asked to estimate the size of the object."
- ▶ Passive is harder to understand and creates distance.

■ Tenses:

- ▶ Present for everything, except for...
- ▶ Past for what happened in studies (> 90% in Results / Case Study)

Simple Language

- Use short sentences.
- Each sentence makes its own statement.
- Avoid fancy adjectives/adverbs and filler words.
- Use meaningful connectors like "Therefore", "However", "Furthermore", "Because of", "Although", "Consequently", "Firstly", "Finally"

Clean Writing

- Repetition is acceptable.
- Do not use forward references.
 - ▶ *Exceptions: abstract, introduction, (chapter overview)*
 - ▶ If you cannot do without, you probably need to improve your structure
- Avoid paragraphs with only one sentence.
- Use headings for structure, not paragraphs.
- Don't repeat yourself (first: explain, afterwards: only reference)
- Be consistent!

Adjectives

- "This result is obviously wrong."
 - ▶ Avoid judgmental adjectives like "obvious", "apparent", ...

Figures

- Reference and briefly describe them in the section.
- Captions can guide focus
 - ▶ Ok: "Total precipitation per month in 1995 and, for comparison, 1994."
 - ▶ Better: "Total precipitation in 1995 peaked in august and was consistently higher than in 1994."

Images, Tables and Code

- Use figure, table, listing environments
- Set a label and use `ref` or `Cref` to reference in text
 - ▶ Always use this for discussing them
- Use high-resolution images
- Ensure tables are readable
 - ▶ Use alternating row colors, highlighting
- Use code highlighting
 - ▶ Only show relevant code snippets, not entire files

Citations

- Be consistent
- See upcoming lecture on citations
- Default style (IEEE)
 - ▶ "Doe et al. show that the sky is blue [4]."
 - ▶ "The sky is typically considered to be blue[4,10-14]."

Footnotes

- Generally: avoid.
- Ok: Referencing information that is not cited.
- Not good: Commenting your thesis.

Acknowledgements

- Should be its own chapter in the beginning of your work
- Should be used to make contributions transparent.
 - ▶ Important: *Selbstständigkeitserklärung*
- Don't put acknowledgements into text:
 - ▶ Avoid: "The university provided us with high-speed cameras."
 - ▶ Better: "We used high-speed cameras to ..."

Making AI usage transparent

- The university requires making AI usage transparent.
- Can be described in the thesis.
- Better: Fill the new question template from the university.
- *Be complete but not too detailed. < 2 pages*

Task: Using GPTZero.me

- 1 The task involves submitting the prepared narrative text to GPTZero.me.
- 2 The aim is to evaluate its originality and detect possible AI-generated content.
- 3 To ensure academic integrity and verify that the narrative reflects authentic human writing.
- 4 Addresses the growing concern over AI-assisted writing in scholarly and creative work.

Scientists are Professional Writers

■ Inform & Communicate

- ▶ Most scientific communication is written
- ▶ Great writing makes your work more visible

■ Writing is Thinking

- ▶ Formalize ideas
- ▶ Identify gaps & errors
- ▶ *Get ideas out of your head*

■ Recommendation: Write a lot

- ▶ Personal note-taking
- ▶ Focus on content, not form
- ▶ Practice free writing

Tips for Bottom-up Writers

- Reuse pre-written texts for your drafts
- Create a mind-map to sort your ideas
- Prepare a rough structure to guide your writing

Tips for Top-down Writers

- Start writing even without perfect structure
- Just write without fixing to get to the first draft
- Practice free writing to overcome writer's block

Free Writing

👤 Individual Task ⏳ 5 Min

- Open any writing app or text editor.
- Choose a topic (e.g., seminar ideas, your day, or something on your mind).
- Write continuously for 5 minutes without stopping.
- Do **not** edit, fix typos, or rewrite while writing.
- You will **not** be asked to share your text.

💡 Tip: Free writing helps overcome the blank page and get ideas flowing.

Exercise: Clarity and Precision

👤 Individual Task ⏳ 10 Min

Identify and improve unclear sentences.

- 1 The experiment was kind of successful in most cases.
- 2 Many different aspects were analyzed in various ways.
- 3 It is obvious that the results are good.
- 4 The data was handled somehow by the algorithm.

💡 **Hint:** Replace vague words (*kind of*, *various*, *obvious*, *somewhat*) with precise and measurable expressions.

Exercise: Active vs. Passive Voice

PAIR Task ⏱ 10 Min

Rewrite the sentences using active voice.

- 1 The model was trained by the team for several days.
- 2 A solution was implemented by the researchers.
- 3 The data was collected by multiple institutions.
- 4 Errors were detected by the program.

💡 Hint: Start sentences with the acting subject to make them more direct.

Exercise: Objectivity and Tone

Group Task ⏱ 10 Min

Detect and rewrite unscientific or biased language.

- 1 Our algorithm is the best and solves all problems.
- 2 Surprisingly, the results were totally amazing!
- 3 This method is much cooler than the previous one.
- 4 The user obviously made a stupid mistake.

💡 Hint: Keep tone neutral and factual. Avoid emotional or subjective expressions.