
SH

∞

Seminar Report

Comparison of Object Storage Systems

Maximilian Schlensog

MatrNr: 21567922

Supervisor: Michael B. Khani

Georg-August-Universität Göttingen
Institute of Computer Science

March 28, 2025

Abstract
With the increasing prevalence and speed of networks - especially the internet - whilst
the amount and size of data increases as well, Object Storage Systems (OSS), a solution
for storing large amounts of data while being robust and safe, has come into the spotlight
more and more. OSS, a distributed form of architecture for data storage, was proposed
to increase safety and efficiency of exactly the aforementioned situations, cold(er) data
of exorbitant size and amount. In this report I will look at OSS-Architecture in general
to give an overlook of the topic. But since there are a lot of different OSS solutions,
making the product landscape difficult to navigate, some solutions will be presented and
compared. The OSS solutions that shall be compared, will be presented on their own.
After which the results of the benchmarking and testing will be presented and compared
between solutions, with a conclusion/recommendation for specific cases.

i

Declaration on the use of ChatGPT and comparable tools
in the context of examinations

In this work I have used ChatGPT or another AI as follows:

□ Not at all

✓□ During brainstorming

□ When creating the outline

□ To write individual passages, altogether to the extent of 0% of the entire text

✓□ For the development of software source texts

✓□ For optimizing or restructuring software source texts

□ For proofreading or optimizing

□ Further, namely: -

I hereby declare that I have stated all uses completely.
Missing or incorrect information will be considered as an attempt to cheat.

ii

Contents

List of Tables iv

List of Figures iv

List of Listings iv

List of Abbreviations v

1 Introduction 1

2 Services 1
2.1 S3 . 3
2.2 CEPH . 3
2.3 MinIO . 3
2.4 Fields Database . 3

3 Results 3
3.1 MinIO . 4
3.2 FDB . 4
3.3 S3 . 4

4 Comparison 5

5 Conclusion 6

References 7

A Code samples A1

iii

List of Tables
1 Overview of different OSS services, red ones are without detailed results. . 1
2 Results of testing services via boto3. Operations tested were creating a

bucket, up- and download of two files (mentioned in beginning of section
3). Time in seconds, averaged over different amounts of runs. Operations
not displayed usually failed for some or other reason. 5

3 Comparing the two in-depth analyzed solutions, MinIO & AWS S3 6

List of Figures
1 Service Comparison . 2

List of Listings
1 Boto3 python-pseudo-code, shortened for understanding A1

iv

List of Abbreviations
AWS Amazon Web Services

ECMWF European Centre for Medium-Range Weather Forecast

FDB Fields Database

OSS Object Storage System

S3 Simple Storage Solution

v

Comparison of Object Storage Systems

1 Introduction
Object Storage Systems have been proposed in the 1990s, when it was becoming increas-
ingly clear that sizes of data and their amounts will expand and result in tera- or more
byte magnitudes [Fac+05]. While the (then) prevalent architectures of block and file stor-
age are useful to this day, the situation makes the difference. For a brief comparison of
the architectures, see 1.
The hardware-close architecture of the block storage structures its space into equally
large chunks, so-called blocks. Files and data get at least a whole block dedicated whether
or not it is over or under the size of a block. There is no further information on stored
data except for where a coherent part of data/file starts and ends. Being able to access a
Storage thusly can have serious safety implications as there are no encapsulations present
to manage security more detailed other than either having full or no access. Operating
systems usually access their hardware that way usually as the efficiency of such access is
fast and low effort, and security can be handled by the OS.
File storage is one layer more abstracted from block storage and is used when structur-
ing data hierarchically for example in most form of representation for human readability.
In this architecture, data is encapsulated in files, which contain information about for-
mat, block storage addresses (the OS still saves data block-wise), permissions, etc. and
of course the data itself. Files can be kept in hierarchical trees of folders and they them-
selves can have certain user-specific permissions. This is usually what is used for most
GUI-based storage inspection.
The object storage architecture is the most abstract but most convenient for web-based,
scalable and large size storage. Object storage saves data as a coherent so-called object,
which contain both the actual data and metadata needed to comprehend and use the
data. While the service handles the storage in its network, saving it decentralized and
with redundancies for robustness, that makes the performance slower than other archi-
tectures, but still good for large coherent and cold(ish) data. Objects are stored within
buckets which have designated access policies. Usually OSS can be accessed both via API
and GUI.

2 Services
In this section I will give a brief overview of all of the services I intended to test. These
are Amazon Web Services (AWS) Simple Storage Solution (S3), Google Cloud, CEPH,
MinIO and the European Centre for Medium-Range Weather Forecast (ECMWF)’s Fields
Database (FDB).

Provider Target audience Availability Self-Deployment
AWS S3 Amazon Companies Some free activity None
GoogleCloud Google Companies 300$ free for 90 days None
MinIO MinIO Inc Companies, Any Devs Free/part of AIStor Yes
CEPH Open-Source Companies, Any Devs Free Yes
FDB ECMWF In-house Researchers Free Theoretically

Table 1: Overview of different OSS services, red ones are without detailed results.

Section 2 Maximilian Schlensog 1

Comparison of Object Storage Systems

Figure 1: Comparison of the three Storage architectures: Block, File and
Object Storage (taken from https://thecustomizewindows.com/2017/09/
object-storage-vs-block-storage/, last accessed 24.03.2025, 13:00)

Unfortunately, only MinIO and S3 resulted in fully formed experiments,
while the other Services had problems that made it increasingly difficult to
deploy/use them.

Google Cloud, though having a possibility for free usage via a 300$ free contingent
in the beginning, still needs a creditcard for their data, which I did not own, thus ending
the research there prematurely, resulting in no data, and therefore being absent from
the results section. Google Cloud has an s3-compatibility (https://cloud.google.com/
storage/docs/interoperability?hl=de, last accessed 27.03.2025, 13:05)

CEPH on the other hand has a documentation about deploying a cluster yourself.
Even though it is rather complicated and seems to expect quite some knowledge about
clusters, there were some clear cut goals and functioning parts. Unfortunately, self-
deployment worked only so far as to build a cluster with a single node, regularly failing
to get the cluster into a healthy state. Additionally, any other services using CEPH were
also part of products, having no form of free content. CEPH object storage is mostly com-
patible with s3-interfaces (https://docs.ceph.com/en/latest/radosgw/, last accessed,
27.03.2025, 13:03)

FDB unfortunately seems to have never been practically planned to be in any way be
used by the public. Even though promoted thusly and having all necessary dependencies
on github, the installation process did not work out on a Ubuntu device, especially if
considering that it was mostly intended to be used on Apple devices. After contacting
the ECMWF adn asking for help, which unfortunately did not work out either, there are
no useful results from this endeavor.

Section 2 Maximilian Schlensog 2

https://thecustomizewindows.com/2017/09/object-storage-vs-block-storage/
https://thecustomizewindows.com/2017/09/object-storage-vs-block-storage/
https://cloud.google.com/storage/docs/interoperability?hl=de
https://cloud.google.com/storage/docs/interoperability?hl=de
https://docs.ceph.com/en/latest/radosgw/

Comparison of Object Storage Systems

2.1 S3

The AWS Simple Storage Solution is an Object Storage System (OSS) meant for company
usage, with notable customers being The BMW Group or Netflix (AWSCustomers).S3
belongs to the group of AWS. After registering a root user, additional users can be
added to the same contingent. The root user can regulate access to buckets via either
policies/groups, which other users can be added to. Buckets can be made available via
various access points, which themselves have either certain access rights or general rules
like either being available to the internet or not, defining a world-region and more.

2.2 CEPH

Trying to deploy a CEPH cluster was difficult when considering the official documentation.
While bootstrapping a running cluster was indeed possible, the status never was health,
as adding in other nodes from other devices I own did not work. Neither troubleshooting
nor ChatGPT helped in that regard. Next, I tried deploying the cluster in three virtual
Ubuntu server machines on my windows PC, but came no further. Though they had
established communication, no more than one node was ever part of the cluster, though
the architecture needs three(/four) roles, monitor, manager(two to run smoothly) and
object storage demon. The starting node only ever served the monitor and a manager
role, making the cluster unhealthy.

2.3 MinIO

MinIO is available through different kinds of access. It is part of the product AIStor
by MinIO Inc., aimed at companies wanting to use and have access to their own OSS.
Additionally, there is the MinIO playground, an instance hosted by MinIO to test out
the product. Then there is the possibility to host it oneself by installing and managing
the product. The setup is rather simple and requires no extensive knowledge or much
overhead.

2.4 Fields Database

Developed for in-house use at the ECMWF, the Fields database is used in conjunction
with the MARS-Database, while being explicitly optimized for meteorological data in
GRIB file format [SQR17]. It is a self-contained project in the sense that it does not have
any compatability with other services.

3 Results
I tested the available solutions for latency, up and download speeds, user and security
management, ease of deployment/use, customization of the service. The speeds were
tested using two versions of a hubble space telescope picture of the andromeda galaxy,
one 114 megabytes, the other one 1.7 gigabytes large. Originally when considering the
FDB for testing as well, there was a GRIB-File to be tested for speed as well, because of
the specialization of the FDB for that format. It is a file displaying volumetric soil layers
in different depths of soil in an area in north Namibia and south Angola with an extent of

Section 3 Maximilian Schlensog 3

https://aws.amazon.com/de/solutions/case-studies/?customer-references-cards.sort-by=item.additionalFields.sortDate&customer-references-cards.sort-order=desc&awsf.customer-references-location=*all&awsf.customer-references-industry=*all&awsf.customer-references-use-case=*all&awsf.language=language%23german&awsm.page-customer-references-cards=1

Comparison of Object Storage Systems

44x36 km, it is 1.5 megabytes large. All runs of the experiment have been run from my
private internet access in Göttingen, (Speeds at download: 104 mpbs, upload: 41 mpbs)
and the local instance of MinIO I hosted was in that same LAN.

3.1 MinIO

The documentation of MinIO, especially for self-deployment on different platforms is well
made and rather short, with little prior knowledge or many resources needed. Installing
and running the server was easy and light-weight. The GUI of both the MinIO playground
and the self-hosted Server are identical, with easy graphical management of users, policies,
buckets, up- and downloads. Downloads unfortunately did not work for the playground
via API, as even one request threw an error of too many requests.
MinIO allows for extensive user and policy management similar to AWS. Buckets can
be access controlled to both follow policy and user restrictions/access. Users can be
generated and grouped into policies which decide their accesses in larger quantities of
users. Buckets can also be managed to be only accessed by certain users/policies. After
inspecting the local storage of the self-deployed instance, I found that the objects were
stored in a file/folder hierarchy alike the bucket structure established in the system. Data
and Metadata are stored as files, data as several parts and neither of them are human-
readable.

3.2 FDB

After deciding to incorporate this system into this experiment after reading [SQR17], I
tried using the system myself. Finding several repositories that are open to public, includ-
ing all the mentioned dependencies needed for the FDB. Since most of the installations
went smoothly and errors could either be read and solved well or even with the help of
ChatGPT, the FDB was installed on my personal Ubuntu machine, but still it did not
work out. There were both commands missing as well as a missing support for GRIB-files,
which I explicitly downloaded from the ERA5-Product (ECMWF Reanalysis Version 5)
series for this experiment. After opening a ticket for the missing and broken GRIB-File
support, the ECMWF provided me with a slightly adapted installation guide, different
from the original one, which did not solve the problems either. Since then, after spending
a handful working days on that topic, I made no further efforts running the FDB. For
some more details, see (https://jira.ecmwf.int/servicedesk/customer/portal/4/
SD-104679?sda_source=notification-email, account needed to access, last accessed
25.03.2025 15:38)

3.3 S3

After registering an account, one has access to many AWS solutions, one of them the S3.
In the AWS console, any regular bucket and access-management operations are possible.
Creating buckets, up- and downloading objects as well as managing users, accesses and
policies. Buckets are not accessible after creation, access points have to be created with
explicit access rules, even not being able to be reached via internet, adding further to
security. Interestingly enough, any AWS-account can be invited to join the "company"
established by the root AWS user, making collaboration easier. API-wise, the documen-
tation of boto3 - the python library supporting s3-access - is acceptable. Classes and

Section 3 Maximilian Schlensog 4

https://jira.ecmwf.int/servicedesk/customer/portal/4/SD-104679?sda_source=notification-email
https://jira.ecmwf.int/servicedesk/customer/portal/4/SD-104679?sda_source=notification-email

Comparison of Object Storage Systems

objects needed for initial access are not immediately clear, the given examples usually
drive successful applications. The code itself also is light-weight when considering lines,
making it more easy to understand.

4 Comparison

Region Product Operation Time
eu-central-1 MinIO Create Bucket 1.111
eu-central-1 MinIO upload 1.7gb 504.018
eu-central-1 MinIO upload 114mb 47.066
sa-east-1 MinIO Create Bucket 1.096
sa-east-1 MinIO upload 1.7gb 483.46
sa-east-1 MinIO upload 114mb 47.857
local MinIO Create Bucket 1.096
local MinIO downl 1.7gb 63.967
local MinIO downl 114mb 4.384
local MinIO upload 1.7gb 85.107
local MinIO upload 114mb 6.056
eu-central-1 AWS S3 downl 1.7gb 149.360
eu-central-1 AWS S3 downl 114mb 10.311
eu-central-1 AWS S3 upload 1.7gb 350.062
eu-central-1 AWS S3 upload 114mb 24.777
sa-east-1 AWS S3 downl 1.7gb 160.198
sa-east-1 AWS S3 downl 114mb 16.933
sa-east-1 AWS S3 upload 1.7gb 648.254
sa-east-1 AWS S3 upload 114mb 62.099

Table 2: Results of testing services via boto3. Operations tested were creating a bucket,
up- and download of two files (mentioned in beginning of section 3). Time in seconds,
averaged over different amounts of runs. Operations not displayed usually failed for some
or other reason.

Interestingly enough, though finding a difference in latency in the s3 regions, there
seemed to be none when switching the region in the open playground of MinIO, which
suggests that it made no difference (avg. latencies in seconds: play.min.io : 0.572; AWS
eu-central-1: 0.588; AWS sa-east-1: 1.164)

Section 4 Maximilian Schlensog 5

Comparison of Object Storage Systems

MinIO AWS S3
+ - + -
Easy to use not as fast as s3 good speed complicated GUI
Easy to deploy not quite as many

functions as S3
many, many func-
tions...

...maybe too many
in the beginning

Self-Configurable Free Trial, but... no chance of not
paying afterwards

There is both a free
version as well as
a supported version
as part of product

Huge Community /
Support

S3-compatible Established big
player (all oth-
ers look for S3-
Compatibility)

Good security con-
trols

Even better secu-
rity controls with
e.g. access points

Table 3: Comparing the two in-depth analyzed solutions, MinIO & AWS S3

MinIO and S3 have different target audiences and it shows. MinIO supports self-
deployment as a free source for any sort of developer or company, while S3 is definitely
suited for larger companies with a well-made GUI for the AWS-console and way more
control over user-management, access control, further services, etc.

5 Conclusion
It seems that both MinIO and S3 fill their niches. S3 is optimized for large companies
and fulfills that role well, it has both API and GUI access that are well-made, well-
maintained and well documented. It seems to be the gold standard when it comes to
OSS-services. Other storages usually advertise with the fact that they are compatible
with S3-API-libraries, which does indeed speak for itself. S3 has the best speed and way
more functions than other services, as well as having other AWS-services attached to it.
So for companies that do not necessarily have to do with a lot of technical expertise or
wants to have the best solution on the market with good speed and resilience, S3 seems
to be the best choice. MinIO falls in between product and free software as it offers both.
While only the free version was tested, it seems as the use case looks more for companies
that are not quite as large but still need petabyte-scale storages. The fact that MinIO can
be deployed by oneself speaks for usage in academical and other non-economically-focused
environment, where a team of people can handle such a cluster well. Same goes for the
CEPH product, but unfortunately, as it did not work out for me, unknown in quality.
The distinction seems clear: S3 for large companies, stable, fast, many functions, good
security
MinIO for smaller companies/academic environments.

Section 5 Maximilian Schlensog 6

Comparison of Object Storage Systems

References
[Fac+05] M. Factor et al. “Object storage: the future building block for storage sys-

tems”. In: 2005 IEEE International Symposium on Mass Storage Systems and
Technology. 2005, pp. 119–123. doi: 10.1109/LGDI.2005.1612479.

[Mon+24] Anindita Sarkar Mondal et al. Demystifying Object-based Big Data Storage
Systems. 2024. arXiv: 2406.00550 [cs.DB]. url: https://arxiv.org/abs/
2406.00550.

[SQR17] Simon D. Smart, Tiago Quintino, and Baudouin Raoult. “A Scalable Object
Store for Meteorological and Climate Data”. In: Proceedings of the Platform
for Advanced Scientific Computing Conference. PASC ’17. Lugano, Switzer-
land: Association for Computing Machinery, 2017. isbn: 9781450350624. doi:
10.1145/3093172.3093238. url: https://doi.org/10.1145/3093172.
3093238.

[SQR19] Simon D. Smart, Tiago Quintino, and Baudouin Raoult. “A High-Performance
Distributed Object-Store for Exascale Numerical Weather Prediction and Cli-
mate”. In: Proceedings of the Platform for Advanced Scientific Computing
Conference. PASC ’19. Zurich, Switzerland: Association for Computing Ma-
chinery, 2019. isbn: 9781450367707. doi: 10.1145/3324989.3325726. url:
https://doi.org/10.1145/3324989.3325726.

Section Maximilian Schlensog 7

https://doi.org/10.1109/LGDI.2005.1612479
https://arxiv.org/abs/2406.00550
https://arxiv.org/abs/2406.00550
https://arxiv.org/abs/2406.00550
https://doi.org/10.1145/3093172.3093238
https://doi.org/10.1145/3093172.3093238
https://doi.org/10.1145/3093172.3093238
https://doi.org/10.1145/3324989.3325726
https://doi.org/10.1145/3324989.3325726

Comparison of Object Storage Systems

A Code samples

1 import boto3, time, requests
2 from botocore.config import Config
3 # MinIO Playground credentials
4 access_key = "CHANGE"
5 secret_key = "CHANGE"
6 endpoint_url = "https://play.min.io"
7 config = Config(retries={'max_attempts': 1})
8 # Initialize S3 client
9 s3 = boto3.client(

10 's3',
11 aws_access_key_id=access_key, aws_secret_access_key=secret_key,
12 endpoint_url=endpoint_url, region_name='eu-central-1',
13 config=config)
14 bucketNames = []
15 bucketNames.append((bucket_name_eu, s3))
16 bucketNames.append((aws_bucket_eu, aws))
17 bucketNames.append((bucket_name_local, localMin))
18 for bucketName, client in bucketNames:
19 #Create#=============================
20 start_time = time.time()
21 client.create_bucket(Bucket=bucketName)
22 end_time = time.time()
23 #UPLOAD#===========================
24 start_time = time.time()
25 client.upload_file(
26 'andromeda 10k.tif', bucketName, 'andromeda 10k.tif')
27 end_time = time.time()
28 #DOWNLOAD#========================
29 start_time = time.time()
30 client.download_file(
31 bucketName, 'andromeda 10k.tif', 'andromeda 10k.tif')
32 end_time = time.time()

Listing 1: Boto3 python-pseudo-code, shortened for understanding

Section A Maximilian Schlensog A1

	Contents
	List of Tables
	List of Figures
	List of Listings
	List of Abbreviations
	Introduction
	Services
	S3
	CEPH
	MinIO
	Fields Database

	Results
	MinIO
	FDB
	S3

	Comparison
	Conclusion
	References
	Code samples

