
SH

∞

Seminar Report

Impact of GIL-less Cpython on
Performance and Compatibility

Frederik Hennecke

MatrNr: 21765841

Supervisor: Patrick Höhn

Georg-August-Universität Göttingen
Institute of Computer Science

March 31, 2025

Abstract
The Global Interpreter Lock (GIL) in CPython has long been a performance bottleneck
for multi-threaded CPU-bound tasks, limiting Python’s ability to use modern multi-core
processors. This study assesses the impact of PEP 703, which proposes an optional GIL-
less CPython, on performance and compatibility. By benchmarking diverse workloads,
including string operations, compression, dictionary manipulations, Input/Output (I/O),
numerical computing (NumPy, Pandas), and machine learning (PyTorch), we analyze the
trade-offs introduced by GIL removal. Results demonstrate performance gains (up to
80%) for CPU-bound multi-threaded tasks like compression and dictionary operations,
confirming the GIL as a critical bottleneck. However, performance deteriorations were
observed in single-threaded execution and libraries such as NumPy and Pandas, likely
due to overhead from the new threading model. While GIL-less Python unlocks true
parallelism for specific workloads, compatibility issues and variable performance outcomes
show the need for further optimization.

i

Statement on the usage of ChatGPT and similar tools
in the context of examinations

In this work, I have used ChatGPT or a similar AI-system as follows:

□ Not at all

□ In brainstorming

□ In the creation of the outline

□ To create individual passages, altogether to the extent of 0% of the whole text

□ For proofreading

✓□ Other, namely: Grammarly for wording

I assure you that I have stated all uses in full.
Missing or incorrect information will be considered as an attempt to cheat.

ii

Contents

List of Figures v

List of Listings v

List of Abbreviations vi

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Objectives . 1
1.3 Structure . 1

2 Methodology 2
2.1 Python . 2
2.2 The Global Interpreter Lock (GIL) . 2
2.3 PEP703: Making the Global Interpreter Lock Optional in CPython 3
2.4 Enabling and Disabling GIL-less Python 4
2.5 Related Work . 4

3 Compatibility 5
3.1 Library Support and Challenges . 5
3.2 Making Libraries Compatible . 5

4 Benchmarks 5
4.1 Setup . 5
4.2 Overview . 6
4.3 Benchmark Scenarios . 7

4.3.1 String Operations . 7
4.3.2 Compress, Decompress . 7
4.3.3 Dictionary (Intersection, Union) . 8
4.3.4 Input and Output Operations . 8
4.3.5 Pure Python Matrix Multiplication 9
4.3.6 Numpy Matrix Computations . 10
4.3.7 Pandas (Filter, Mean, Merge, Lambda) 10
4.3.8 Pytorch . 11

5 Performance Analysis 12
5.1 Benchmarks . 12

5.1.1 String Operations . 12
5.1.2 Compress, Decompress . 14
5.1.3 Dictionary (Intersection, Union) . 15
5.1.4 Input and Output Operations . 16
5.1.5 Pure Python Matrix Multiplication 18
5.1.6 NumPy Matrix Multiplication . 19
5.1.7 Pandas (Filter, Mean, Merge, Lambda) 21
5.1.8 PyTorch . 22

iii

6 Conclusion 23
6.1 Summary of Findings . 23
6.2 Future Work and Outlook . 23

References 24

iv

List of Figures
1 Only one thread can compute at the same time due to the GIL. 3
2 IO operations are faster with multiple threads - even with the GIL.[6] . . . 9
3 String Benchmark . 12
4 Compress/Decompress Benchmark . 14
5 Dictionary Benchmark . 15
6 I/O Benchmark . 16
7 Math Benchmark . 18
8 NumPy Benchmark . 19
9 Pandas Benchmark . 21
10 PyTorch Benchmark . 22

List of Listings
1 Processes string data by reversing and uppercasing each string. 7
2 Compresses and decompresses data slices using zlib. 7
3 Performs sorting dictionary and set operations on a data chunk. 8
4 Writes and reades data chunk into a file. 8
5 Multiplies matrix A and B subsected by start_row to end_row. 9
6 Performs various operations on subsets of NumPy matrices. 10
7 Performs data manipulations on a Pandas dataframe slice. 10
8 Runs inference with a tensor input on a pretrained ResNet model. 11

v

List of Abbreviations
AI Artificial Intelligence

API Application Programming Interface

CPU Central Processing Unit

GIL Global Interpreter Lock

GPU Graphics Processing Unit

I/O Input/Output

JIT Just-In-Time

PEP Python Enhancement Proposal

RAM Random-Access Memory

vi

Impact of GIL-less Cpython on Performance and Compatibility

1 Introduction
1.1 Background and Motivation

One of the most popular programming languages is Python, renowned for its ease of use,
readability, and library ecosystem. The GIL, a feature of CPython that prevents Python
threads from running in true parallel, is one of its more established drawbacks. In order
to prevent multi-core use for Central Processing Unit (CPU)-bound applications, the GIL
ensures that only one thread runs Python bytecode at a time. This design decision has
historically been a major performance bottleneck for multi-threaded systems[2], despite
making memory management and thread safety simpler.

Many programming languages, such as Java, C++, and Go, provide true parallelism
for multi-threaded workloads, allowing efficient use of multi-core processors. In contrast,
Python developers seeking parallel execution have traditionally relied on multiprocessing
(which spawns separate processes instead of threads), C extensions (e.g., NumPy, which
runs multi-threaded computations in C), or Just-In-Time (JIT)-based solutions like PyPy.
While these approaches offer workarounds, they introduce overhead and complexity, mak-
ing Python less competitive for high-performance computing and concurrent applications.

Python Enhancement Proposal (PEP) 703[8] suggests making the GIL optional in
order to get around this restriction and enable Python to function without it as needed. By
removing the GIL, Python may fully utilize multi-core CPUs, which enhances performance
for jobs that depend on multi-threading. New difficulties are brought about by this change,
mainly in the areas of garbage collection, memory management, and compatibility with
current C extensions that depend on the GIL for implicit thread safety.

This study aims to evaluate whether the proposed GIL-free Python offers tangible
performance improvements while maintaining backward compatibility and usability. By
benchmarking different workloads, including numerical computing, data manipulation,
I/O operations, and deep learning inference, this research provides insights into whether
Python can evolve into a truly multi-threaded language without sacrificing its ease of use
and existing ecosystem.

1.2 Objectives

The primary objective of this study is to evaluate the performance and compatibility
of GIL-less Python, as proposed in PEP 703, compared to the traditional GIL-enabled
CPython. We will conduct a series of benchmarks to determine whether removing the
GIL provides benefits for multi-threaded workloads while maintaining single-threaded
performance. Additionally, we examine how well libraries such as NumPy, Pandas, and
PyTorch interact with the new threading model.

This study also investigates compatibility challenges introduced by the removal of the
GIL. Many Python extensions are designed under the assumption that the GIL provides
implicit thread safety, and its removal could result in unexpected behavior.

1.3 Structure

This report has the following structure:

• Section 2: Methodology is an overview of Python and the GIL. Furthermore, we
talk about the proposed changes for the GIL-less CPython implementation.

Section 1 Frederik Hennecke 1

Impact of GIL-less Cpython on Performance and Compatibility

• Section 3: Compatibility examines how Python libraries interact with the new
threading model, and we discuss the potential challenges the developers have to
adapt their existing codebase to work without the GIL.

• Section 4: Benchmarks presents a series of performance tests. These tests include
numerical computing, data manipulation, compression, I/O, and machine learning
inference.

• Section 5: Performance Analysis shows and interprets the benchmark results, high-
lighting the advantages and disadvantages of GIL-less Python.

• Section 6: Conclusion summarizes the key findings and discusses future directions.

2 Methodology
This section will introduce the GIL, which is used in CPython. It will also present its
advantages and disadvantages. Finally, we will also examine PEP 703.

2.1 Python

Python is widely used for its simplicity and ease of development, making it a popular
choice for prototyping and research-oriented applications. However, its design as an in-
terpreted and dynamically typed language introduces significant performance limitations.

One major bottleneck in Python is the GIL. Which we will talk about in subsec-
tion 2.2. Another key limitation is dynamic typing. While it provides flexibility by
allowing variables to change types during execution, this results in increased overhead
since the interpreter must perform type checking at runtime. In contrast, statically typed
languages perform these checks at compile time, making execution faster.

Python also uses automatic memory management, including reference counting and
garbage collection. While these features simplify programming, they introduce unpre-
dictable performance overhead due to periodic memory deallocation pauses, which can
slow down performance.

2.2 The Global Interpreter Lock (GIL)

In CPython, the global interpreter lock, or GIL, is a mutex that protects access to Python
objects, preventing multiple threads from executing Python bytecodes at once.[5] It sim-
plifies memory management by ensuring thread safety for Python objects, making multi-
threaded code much more uncomplicated.

The GIL works by allowing only one thread at a time to execute Python bytecode.
When a thread runs, it acquires the GIL mutex, executes the instructions, and then
releases the GIL so that other threads can follow. This creates a bottleneck in multi-
threaded programs.

However, the GIL is less of an issue for certain tasks, like I/O bounded tasks, or for
specific libraries like NumPy. I/O bounded tasks, such as network or file operations,
where threads spend most of the time waiting for external resources, are not necessarily
worse due to the GIL because some threads can execute their instructions while others

Section 2 Frederik Hennecke 2

Impact of GIL-less Cpython on Performance and Compatibility

are waiting for their external resources. Numpy itself is built around the GIL, but more
on that in section subsubsection 5.1.6.

Figure 1: Only one thread can compute at the same time due to the GIL.

2.3 PEP703: Making the Global Interpreter Lock Optional in
CPython

PEP 703 proposes several modifications to CPython’s runtime that allow Python to run
without the GIL. The primary objectives include:

• Remove the GIL as a Barrier to Concurrency: Enable true parallel execution of
threads, improving performance for multi-threaded programs.

• Maintain Backward Compatibility: The GIL-optional mode should not break exist-
ing code or libraries that rely on the GIL’s behavior.

• Enable Gradual Adoption: The plan is to initially introduce the GIL-optional mode
as an opt-in feature, allowing developers and library maintainers to test and adapt
their code over time.

The main changes are the following:

• GIL-Optional Build Mode: CPython will be modified to support a build mode where
the GIL can be disabled.

• New Threading Model: The internal threading model of CPython will be updated.
This includes changes to memory management, reference counting, and other core
components so that they work without relying on the GIL.

– Atomic Reference Counting: Reference counting will be made atomic to prevent
certain race conditions when multiple threads modify the same object.

Section 2 Frederik Hennecke 3

Impact of GIL-less Cpython on Performance and Compatibility

– Memory Management Changes: The memory allocator and garbage collector
will be updated to make them thread-safe.

• API and ABI Compatibility: The Python C API will be updated to support GIL-
optional mode while maintaining compatibility with existing extensions.

• Performance Optimizations: Various performance optimizations will be implemented
to minimize the overhead of running without the GIL.

2.4 Enabling and Disabling GIL-less Python

Since Python 3.13, users have the option to enable or disable the GIL at runtime or
compile time. Python can be built in either GIL or GIL-less mode. This is done using
a compiler flag. There is also an environment variable that can be used to toggle GIL
behavior without recompiling Python. This can only be used if CPython was compiled
in GIL-less mode.

In GIL-less CPython builds, developers can toggle the GIL dynamically within a
running application. This means that even in a GIL-less environment, a program can
re-enable the GIL if needed for compatibility with existing libraries or legacy code. This
allows a gradual transition toward a fully GIL-free Python system. To ensure compatibil-
ity with libraries and dependencies, applications can check and modify the GIL settings.

While it is possible to toggle between GIL and GIL-less, performance decreases still
occur due to the overhead of the new threading model in the GIL-less version with GIL
enabled.

2.5 Related Work

Several studies have explored ways to improve multi-threading in Python and mitigate the
limitations of the GIL. One notable approach is the integration of OpenMP with Python,
as demonstrated in recent work on native OpenMP implementations for multi-threading.
This research suggests that well-designed OpenMP integrations can significantly improve
performance for computationally intensive tasks, particularly in a GIL-free Python envi-
ronment[7].

Beyond OpenMP, alternative approaches such as JIT compilation (e.g., PyPy) and
multiprocessing-based parallelism have been investigated as potential solutions to Python’s
threading limitations. While PyPy improves execution speed through Just-In-Time com-
pilation, it does not directly address the multi-threading constraints imposed by the
GIL[3]. The multiprocessing module, on the other hand, allows parallel execution by
spawning separate processes but introduces higher memory overhead and inter-process
communication costs[1].

The proposed GIL removal in Python 3.13 (PEP 703) represents the most direct effort
to achieve true parallel execution.

Section 3 Frederik Hennecke 4

Impact of GIL-less Cpython on Performance and Compatibility

3 Compatibility
3.1 Library Support and Challenges

The removal of the GIL introduces challenges for existing Python libraries that rely on
CPython internals or C extensions. Many libraries assume that the GIL ensures thread
safety. This simplifies memory management. But without changes, this becomes prob-
lematic in GIL-less Python. Some challenges include:

• Thread Safety in C Extensions: Many extensions rely on the GIL for memory man-
agement and reference counting. Without it, these libraries must implement their
own thread safety.

• Concurrency Issues: Libraries that interact with low-level threading mechanisms
may need to be refactored to handle concurrent execution safely.

• Performance Considerations: Some operations may experience performance over-
head due to new fine-grained locking mechanisms replacing the GIL.

3.2 Making Libraries Compatible

Below are some considerations and steps the developers can take to achieve compatibility.
These items are mostly for packages written in languages other than Python.

Global variables, class attributes, or shared data structures might need explicit syn-
chronization mechanisms like threading.Lock , threading.RLock , or threading.Semaphore .

Python’s C Application Programming Interface (API) now provides new functions and
macros to manage thread safety explicitly. Library developers may have to switch to the
new API.

Immutable data structures are inherently thread-safe because they cannot be modified
after creation. Datatypes like tuple , frozenset , or libraries like pyrsistent may help
reduce the need for synchronization.

Python allows dynamic toggling of the GIL, enabling developers to transition libraries
gradually rather than requiring an immediate rewrite.

4 Benchmarks
4.1 Setup

We use pyenv, a tool for managing multiple Python versions for the benchmarks. This
allows us to install and switch between different Python builds, including the standard
version and the GIL-less version proposed in PEP 703. We decided to use Python 3.12.8
as the baseline version, Python 3.13.1 with the GIL enabled, and Python 3.13.1 without
the GIL. Installation steps:

• pyenv install 3.12.8 – Installs a standard Python 3.12.8 version.

• python-build 3.13.1 .pyenv/versions/3.13.1-gil – Builds Python 3.13.1 with
the default GIL-enabled configuration.

Section 4 Frederik Hennecke 5

Impact of GIL-less Cpython on Performance and Compatibility

• PYTHON_CONFIGURE_OPTS='--disable-gil' pyenv install 3.13.1 – Installs Python
3.13.1 with the GIL disabled, allowing us to compare performance.

These installations provide a controlled environment for testing and ensure ease of use
across different Python versions.

As for the library versions, we used the following in all Python versions:

• NumPy: 2.2.3

• Pandas: 2.2.3

• PyTorch:

– torch: 2.4.0

– torchvision: 0.19.0

Each benchmark was executed 20 times, and the average runtime was used to ensure
accuracy. The workload for each test was adjusted to ensure that it ran for an adequate
duration, preventing execution times that were too short or too long.

Each benchmark was executed on the following hardware:

• CPU: Intel i7 10700k; 8 cores, 16 threads, 5.10 GHz frequency

• Random-Access Memory (RAM): 32GB DDR4 3000Mhz in dual-channel

• Storage: 2TB SATA SSD

• Graphics Processing Unit (GPU): AMD Radeon RX 7900 XT

We used Debian 12 as our operating system, ensuring that no background processes were
active during the operation. Therefore, we maintain system performance and integrity.

For each benchmark, we have plots showing both the raw runtime and the performance
improvement relative to Python 3.12.8, which serves as the baseline. Each number of
threads has its own baseline, ensuring that we evaluate the performance improvements of
different Python versions independently rather than focusing on whether increasing the
number of threads improves performance.

4.2 Overview

All benchmarks follow a consistent structure to ensure reliable and comparable results.
Each benchmark:

• Runs with 1, 2, 4, 8, and 16 threads to measure scalability and multi-threading
performance.

• Generates data outside of the timed operations to avoid including setup overhead
in the measurements.

• Uses time.perf_counter to get accurate performance measurements.

• Focuses on common Python workloads to evaluate real-world performance impact.

Section 4 Frederik Hennecke 6

Impact of GIL-less Cpython on Performance and Compatibility

The selected benchmarks test frequently used Python capabilities, including numerical
computing (NumPy, pure Python), data manipulation (Pandas, dictionaries), string op-
erations, compression, file I/O, and deep learning (PyTorch).

All our benchmarks can be found in our GitLab repository1.

4.3 Benchmark Scenarios

4.3.1 String Operations

The benchmark seen as a short snippet in Listing 1 evaluates the performance of string
manipulation tasks, such as reversing strings, converting them to uppercase, and con-
catenating strings. The benchmark first generates a list of strings, each 50 characters
long, and distributes the workload across multiple threads. Each thread processes only
its designated subset of the string list.
def process_strings(thread_id, data, start_idx, end_idx, iterations):

result = ""
for _ in range(iterations):

for i in range(start_idx, end_idx):
s = data[i]
processed = s[::-1].upper() + s.upper()
result += processed

Listing 1: Processes string data by reversing and uppercasing each string.

This benchmark was chosen as string manipulation is an important task in text pro-
cessing, logging, data transformation, and natural language processing. Removing the GIL
might improve performance in this benchmark because string operations are CPU-bound,
and multiple threads could execute concurrently without the GIL limiting parallelism.

4.3.2 Compress, Decompress

This benchmark evaluates the performance of data compression and decompression using
the built-in zlib module. The benchmark generates a dataset of strings, each containing
10,000 characters, and distributes the workload across all threads. Each process works on
its distinct dataset and repeatedly compresses and decompresses the strings.
def compression_worker(thread_id, data, start_idx, end_idx, iterations):

for _ in range(iterations):
for i in range(start_idx, end_idx):

text = data[i]
compressed = zlib.compress(text.encode())
decompressed = zlib.decompress(compressed)

Listing 2: Compresses and decompresses data slices using zlib.

We chose this benchmark since CPU-intensive compression algorithms involve signif-
icant memory operations. It is also used in real-world applications like streaming, data
storage, and distributed computing. For this benchmark, the removal of the GIL might
improve performance because compression and decompression are CPU-bound tasks, and
multiple threads could execute concurrently without the GIL limiting parallelism, espe-
cially for large datasets.

1https://gitlab.gwdg.de/frederik.hennecke/pythonnogil

Section 4 Frederik Hennecke 7

https://gitlab.gwdg.de/frederik.hennecke/pythonnogil

Impact of GIL-less Cpython on Performance and Compatibility

4.3.3 Dictionary (Intersection, Union)

This benchmark evaluates the performance of dictionary and set operations in Python,
which are widely used for data manipulation and lookups. Dictionary operations are
essential in caching, data indexing, and fast membership testing. Since these operations
involve significant memory access patterns and hashing, they provide a useful test case
for evaluating multi-threaded performance under a GIL-less Python implementation.
def data_manipulation_worker(thread_id, data, start_idx, end_idx, iterations):

for _ in range(iterations):
data_chunk = data[start_idx:end_idx]
sorted_data = sorted(data_chunk)
dictionary = {i: val for i, val in enumerate(sorted_data)}
for k in range(0, len(sorted_data), 10):

dictionary[k] = dictionary.get(k, 0) + 1
Set operations
data_set = set(sorted_data)
set_intersection = data_set.intersection(set(range(len(data_chunk) // 2)

))
set_union = data_set.union(set(range(len(data_chunk) * 2)))

Listing 3: Performs sorting dictionary and set operations on a data chunk.

The benchmark generates a large dataset of random integers and distributes the work-
load across multiple threads. Each thread processes a subset of the data, performing sort-
ing operations, dictionary manipulations, and set operations. Specifically, the benchmark
sorts the assigned data chunk, constructs a dictionary mapping indices to values, and
modifies selected dictionary entries. Additionally, it performs set operations, including
intersections and unions, which test Python’s handling of hash-based structures.

The removal of the GIL might improve performance in this benchmark because dictio-
nary and set operations are CPU-bound and involve significant memory access patterns.
Without the GIL, multiple threads could execute these operations concurrently, poten-
tially speeding up data manipulation tasks. However, we also have many data operations
simultaneously, which might slow down GIL-less Python due to the added data accessing
overhead.

4.3.4 Input and Output Operations

This benchmark listed in Listing 4 evaluates the performance of concurrent file read and
write operations, which are critical for many real-world applications, including database
management, logging, and data processing. Since file I/O operations often involve signifi-
cant overhead due to disk access and operating system interactions, the performance gain
will probably not be that high.
def write_file(thread_id, chunk_size, iterations):

data = os.urandom(chunk_size)
with open(FILE_PATH, "r+b") as f:

for i in range(iterations):
offset = thread_id * chunk_size
f.seek(offset)
f.write(data)

def read_file(thread_id, chunk_size, iterations):

Section 4 Frederik Hennecke 8

Impact of GIL-less Cpython on Performance and Compatibility

with open(FILE_PATH, "rb") as f:
for i in range(iterations):

offset = thread_id * chunk_size
f.seek(offset)
_ = f.read(chunk_size)

Listing 4: Writes and reades data chunk into a file.

The benchmark first generates a large test file filled with random binary data to
simulate realistic workloads. It then measures the execution time of concurrent read and
write operations across multiple threads. Each thread operates on a distinct section of the
file to minimize contention. The file is accessed using standard Python file handling with
seek(), ensuring that threads write to or read from non-overlapping sections. A bounded
semaphore limits concurrent file access to prevent excessive contention and simulate real-
world constraints.

Removing the GIL is unlikely to improve performance in this benchmark because file
I/O operations are primarily limited by disk speed and operating system interactions and
not CPU-bound tasks. The GIL’s impact should be minimal here since the bottleneck is
I/O latency, not Python’s threading model.

Figure 2: IO operations are faster with multiple threads - even with the GIL.[6]

4.3.5 Pure Python Matrix Multiplication

This benchmark evaluates multi-threaded performance in Python by implementing matrix
multiplication in pure Python. While no one realistically performs matrix multiplication
this way in real-world applications, since optimized libraries like NumPy handle such
operations far more efficiently, it serves as a useful test for evaluating Python’s threading
behavior and potential improvements in a GIL-free environment.
def matrix_multiply(A, B, C, start_row, end_row):

for i in range(start_row, end_row):
for j in range(len(B[0])):

C[i][j] = 0
for k in range(len(B)):

C[i][j] += A[i][k] * B[k][j]

Listing 5: Multiplies matrix A and B subsected by start_row to end_row.

This function performs matrix multiplication for a specific range of rows of the result
matrix, computing the dot product of the row from the first matrix and columns from

Section 4 Frederik Hennecke 9

Impact of GIL-less Cpython on Performance and Compatibility

the second. It works in parallel, allowing multiple instances to compute different parts
of the result matrix simultaneously. In this benchmark, two randomly generated square
matrices are multiplied using threads, with each thread responsible for computing a small
subset of the result matrix’s rows.

The removal of the GIL might improve performance in this benchmark because matrix
multiplication is a CPU-bound task and multiple threads could compute different rows
of the result matrix concurrently without the GIL limiting parallelism. This would allow
for better utilization of multi-core processors.

4.3.6 Numpy Matrix Computations

This benchmark evaluates multi-threaded numerical computations on large matrices, fo-
cusing on common linear algebra operations such as matrix multiplication, element-wise
addition, and transposition. The main goal is to test whether NumPy benefits from
removing the GIL.
def process_matrices(arr, start_idx, end_idx, iterations=1000):

for _ in range(iterations):
for i in range(start_idx, end_idx):

_ = np.dot(arr[i], arr[i])
_ = arr[i] + arr[i]
_ = arr[i] * arr[i]
_ = arr[i].T
_ = np.mean(arr[i])
_ = np.sum(arr[i])

Listing 6: Performs various operations on subsets of NumPy matrices.

NumPy is designed to optimize performance by offloading heavy computations to
compiled C, C++, or Fortran routines. When performing operations such as matrix
multiplication (np.dot) or element-wise arithmetic, NumPy releases the GIL internally,
allowing its underlying native code to run in parallel. Since NumPy already bypasses the
GIL in computationally expensive functions, standard multi-threading in Python often
does not lead to significant speedups. Instead, threading overhead, context switching, and
memory contention between threads can sometimes degrade performance.

In this benchmark, each thread is assigned a subset of the matrix rows to process
independently. However, because NumPy efficiently utilizes multiple cores via optimized
libraries, launching additional Python threads may not meaningfully accelerate the com-
putation. Instead, performance improvements are more likely when using multiprocessing,
which avoids Python’s threading model entirely by spawning separate processes with in-
dependent memory spaces.

4.3.7 Pandas (Filter, Mean, Merge, Lambda)

This benchmark evaluates multi-threaded performance when handling large datasets using
Pandas, a widely used library for data analysis and manipulation in Python. The test
measures operations such as filtering, grouping, merging, and applying transformations,
which are common in real-world data processing tasks like natural language processing.
def pandas_benchmark_worker(thread_id, df, start_idx, end_idx, iterations):

for _ in range(iterations):
sub_df = df.iloc[start_idx:end_idx]

Section 4 Frederik Hennecke 10

Impact of GIL-less Cpython on Performance and Compatibility

filtered_df = sub_df[sub_df["A"] > 50]
grouped_df = filtered_df.groupby("B")["C"].mean()
merged_df = pd.merge(filtered_df, sub_df, on="B", suffixes=('_left', '

_right'))
transformed_df = merged_df["C_left"].apply(lambda x: x ** 2 + random.

randint(1, 100))

Listing 7: Performs data manipulations on a Pandas dataframe slice.

A dataset is generated with three columns: A, containing random integers; B, a cat-
egorical column with repeated values; and C, a floating-point column representing nu-
merical data. The dataset is divided into chunks, with each thread processing a separate
portion of the data.

Each thread executes multiple iterations of data transformations, including filtering
rows where column A exceeds a threshold, grouping data by column B to compute the
mean of C, merging filtered results back with the original dataset, and applying a mathe-
matical transformation to one of the columns. These operations are used in data analysis
workflows like financial modeling, machine learning preprocessing, and large-scale analyt-
ics.

The removal of the GIL might improve performance in this benchmark because Pandas
operations are CPU-bound, and multiple threads could process different chunks of the
dataset concurrently without the GIL limiting parallelism.

4.3.8 Pytorch

This benchmark evaluates the impact of GIL removal on deep learning inference workloads
using PyTorch. It tests whether multi-threaded deep learning model execution benefits
from parallel execution in a GIL-free Python environment.
device = "cuda" if torch.cuda.is_available() else "cpu"
resnet = models.resnet18(pretrained=True).to(device).eval()
input_tensor = torch.randn(1, 3, 224, 224).to(device)
def run_inference(model, input_tensor, iterations):

with torch.no_grad():
for _ in range(iterations):

_ = model(input_tensor)

Listing 8: Runs inference with a tensor input on a pretrained ResNet model.

The benchmark loads a pre-trained ResNet-18 model and runs inference on a ran-
dom input tensor multiple times. To simulate concurrent execution, multiple threads
are launched, each performing a fixed number of inference iterations. By distributing
the workload across threads, this test examines the efficiency of running deep learning
inference in a multi-threaded Python setting. PyTorch’s native operations are heavily
optimized with multi-threading and GPU acceleration. However, in a GIL-constrained
environment, Python threads executing inference may not fully utilize available CPU
cores. This benchmark helps determine whether removing the GIL allows for improved
concurrency and faster inference times in CPU-bound scenarios.

The paper "Using Python for Model Inference in Deep Learning"[4] suggests that the
GIL may be a bottleneck when deploying Artificial Intelligence (AI) models. Therefore,
we suspect that we might get some performance improvements.

Section 5 Frederik Hennecke 11

Impact of GIL-less Cpython on Performance and Compatibility

5 Performance Analysis
5.1 Benchmarks

5.1.1 String Operations

(a) Runtime in seconds for the string benchmark.

(b) Performance boost of string operations with Python 3.12.8 as the baseline.

Figure 3: String Benchmark

The string benchmark presents a dramatic performance discrepancy between Python
3.12.8, Python 3.13.1-gil, and the new threading model in Python 3.13.1.

For Python 3.12.8 and 3.13.1-gil, the runtime remains extremely fast, consistently
below one second, regardless of the number of threads used. However, performance
completely collapses for Python 3.13.1 with the new threading model (both GIL=0 and

Section 5 Frederik Hennecke 12

Impact of GIL-less Cpython on Performance and Compatibility

GIL=1). With one thread, the runtime skyrockets to nearly 3000 seconds. While adding
more threads does improve the performance, even with 16 threads, the runtime is still
around 195 seconds, which is orders of magnitude slower than the other versions.

These results strongly suggest that there may be a significant bug or inefficiency in
the new threading model when handling string operations. Since string manipulation is
a core feature of Python, this could indicate deeper issues in memory allocation, garbage
collection, or internal locking mechanisms introduced in the new model.

The most current Python version as of writing this report is Python 3.14.0a42. With
this version, we get faster performance than our current baseline. But we won’t be looking
further into this result, as that Python version is only an early developer build.

2https://www.python.org/downloads/release/python-3140a4/

Section 5 Frederik Hennecke 13

https://www.python.org/downloads/release/python-3140a4/

Impact of GIL-less Cpython on Performance and Compatibility

5.1.2 Compress, Decompress

(a) Runtime in seconds for the compress/decompress benchmark.

(b) Performance boost of compression/decompression operations with Python 3.12.8 as the base-
line.

Figure 4: Compress/Decompress Benchmark

The results in Figure 4 show that when the GIL is enabled, the runtime remains rela-
tively stable across Python 3.12 and 3.13.1, with only minor deviations. However, running
Python 3.13.1 with the GIL disabled shows noticeable performance increases. With a sin-
gle thread, the performance remains effectively unchanged, which aligns with expectations
since the GIL does not affect single-threaded execution. We observe a 20% performance
improvement with two threads, and with four threads, the improvement grows to over
40%. At eight threads, the performance boost reaches 70%, reducing execution time from
6.43 seconds in Python 3.12 to just 1.89 seconds in Python 3.13.1 with the GIL disabled.
With 16 threads, we get around 80% performance improvement.

Section 5 Frederik Hennecke 14

Impact of GIL-less Cpython on Performance and Compatibility

This result confirms that the GIL is a significant bottleneck in this specific multi-
threaded workload. Although relatively lightweight in computation, the zip benchmark
involves enough concurrent execution to showcase the impact of removing the GIL. Since
Python’s standard threading model under the GIL prevents true parallel execution of
CPU-bound tasks, this benchmark highlights the benefits of a GIL-free environment
where multiple threads can fully utilize available CPU cores. Interestingly, the perfor-
mance with the GIL enabled remains mostly flat even when the number of threads is
increased, showing that traditional multi-threading in Python does not scale well due to
GIL constraints.

5.1.3 Dictionary (Intersection, Union)

(a) Runtime in seconds for the dictionary benchmark.

(b) Performance boost of set operations with Python 3.12.8 as the baseline.

Figure 5: Dictionary Benchmark

Section 5 Frederik Hennecke 15

Impact of GIL-less Cpython on Performance and Compatibility

Looking at the results in Figure 5, Python 3.12.8 and Python 3.13.1 (with the GIL en-
abled) exhibit very similar performance. In fact, Python 3.12.8 is slightly faster, though
the difference is minimal. Additionally, increasing the number of threads in these GIL-
enabled versions does lead to small improvements in runtime, but only by a few percentage
points per thread. However, when running Python 3.13.1 with the GIL disabled, the run-
time performance does change. The single-threaded performance sees a slight decrease
compared to Python 3.12.8, which could be due to internal changes in the interpreter or
modifications required to support a GIL-free execution model. As soon as we introduce
multiple threads, the performance improvements become noticeable.

With two threads, we see nearly a 40% reduction in runtime compared to the single-
threaded case. This scales even further, reaching a 60% improvement with four threads
and a 70% boost with eight threads, which stays the same for 16 threads. For reference,
the execution time drops from around 179.8 seconds (single-threaded) to just 39.5 seconds
with eight threads—a clear demonstration of how the removal of the GIL allows for true
parallel execution.

One key takeaway from this benchmark is that dictionary operations, which are com-
mon in real-world Python applications, significantly benefit from multi-threading when
the GIL is removed. Since dictionaries are used extensively in Python for things like
object attribute storage, caching, and lookups, these results indicate that a GIL-free
Python could offer substantial speedups in applications that rely heavily on dictionaries
in concurrent execution scenarios.

5.1.4 Input and Output Operations

Figure 6: Runtime in seconds for the I/O benchmark.

The I/O benchmark results are straightforward. Regardless of whether the Python version
is 3.12.8 or 3.13.1 and whether the GIL is enabled or disabled, the times remain nearly

Section 5 Frederik Hennecke 16

Impact of GIL-less Cpython on Performance and Compatibility

identical. This suggests that the limiting factor in these tests is not the GIL but rather
the speed of the storage system.

As expected, the number of threads does improve performance. A single-threaded
run takes on average around 32–34 seconds, while using two threads nearly halves the
execution time to around 16–19 seconds. Increasing to four threads brings the execution
time down to roughly five seconds, and at eight threads, we can see that the runtime is
around three to four seconds. With 16 threads, we get the best performance at around two
seconds. This behavior aligns with what we would anticipate in an I/O-heavy workload:
more threads allow for greater parallelism, but the overall speed is ultimately limited by
the hardware’s ability to read and write data.

The runtime results occasionally showed slight deviations, which could be attributed
to caching mechanisms, disk scheduling variability, or background system activity. In
most cases, repeated runs show faster execution times, likely due to the operating system
caching frequently accessed data, reducing actual disk read/write operations.

Since file I/Ooperations are inherently limited by disk throughput, changes to Python’s
threading and GIL behavior have no real impact here. Whether the GIL is enabled or not,
the storage systems’ performance still constrains Python, and improvements in execution
efficiency at the Python level do not make a noticeable difference in I/O-bound tasks.

Section 5 Frederik Hennecke 17

Impact of GIL-less Cpython on Performance and Compatibility

5.1.5 Pure Python Matrix Multiplication

(a) Runtime in seconds for the matrix multiplication benchmark.

(b) Performance boost of matrix multiplication with Python 3.12.8 as the baseline.

Figure 7: Math Benchmark

The results of the pure Python matrix multiplication benchmark can be seen in Figure 7.
First, Python 3.12.8 and Python 3.13.1 with the GIL show nearly identical performance
across all thread counts. Increasing the number of threads has almost no effect on exe-
cution time, suggesting that the GIL prevents any meaningful parallel execution in this
particular workload.

Python 3.13.1 with GIL disabled shows significantly worse performance in single-
threaded mode, taking around 22.5 seconds, over three times slower than the baseline.
However, we see some performance improvement with more threads: 20.98 seconds with
two threads, 14.97 seconds with four, 13.92 seconds with eight, and 13.81 seconds with 16
threads. This suggests that while Python 3.13.1 (with GIL disabled) can leverage multiple

Section 5 Frederik Hennecke 18

Impact of GIL-less Cpython on Performance and Compatibility

threads for performance gains, it starts from a much worse baseline performance, which
prevents it from catching up to Python 3.12.8 or 3.13.1-gil.

Python 3.13.1 with GIL enabled but running multiple threads sees no such improve-
ments. The execution time remains nearly constant across all thread counts, lingering
around 22–23 seconds no matter how many threads are used.

5.1.6 NumPy Matrix Multiplication

(a) Runtime in seconds for the NumPy benchmark.

(b) Performance boost of NumPy operations with Python 3.12.8 as the baseline.

Figure 8: NumPy Benchmark

The NumPy benchmark, which can be seen in Figure 8, shows an interesting case where
Python 3.12.8 outperforms all versions of Python 3.13.1, regardless of whether the GIL
is enabled or not. In Python 3.12.8, the execution hovers around 70-75 seconds across
different thread counts. There is a slight performance increase with threads, but the

Section 5 Frederik Hennecke 19

Impact of GIL-less Cpython on Performance and Compatibility

improvement is minimal, suggesting that NumPy is already handling multi-threading
efficiently.

In contrast, Python 3.13.1, both with and without the GIL, shows worse performance.
The single-threaded performance of Python 3.13.1 (with GIL enabled) is much slower at
around 315 seconds, more than double the time of Python 3.12.8. Even with multiple
threads, the performance does not scale well. The benchmark with 16 threads brings
the execution time down to around 145 seconds, which still does not match the baseline
performance of Python 3.12.8.

This performance degradation suggests that NumPy, at least currently, is not fully
optimized for Python 3.13.1. Since NumPy is designed to work efficiently with Python’s
existing GIL-based threading model, it is possible that the changes in Python 3.13.1’s
memory management or threading behavior introduce inefficiencies when working with
NumPy.

Section 5 Frederik Hennecke 20

Impact of GIL-less Cpython on Performance and Compatibility

5.1.7 Pandas (Filter, Mean, Merge, Lambda)

(a) Runtime in seconds for the Pandas benchmark.

(b) Performance boost of Pandas operations with Python 3.12.8 as the baseline.

Figure 9: Pandas Benchmark

The Pandas benchmark tells a different story compared to previous tests, highlighting
how Python’s GIL removal does not always lead to performance gains. Here, Python
3.12.8 and Python 3.13.1-gil (both with the GIL enabled) perform almost identically.

For Python 3.12.8, the single-threaded execution time is around 30 seconds. This
time is halved when running with two threads (15 seconds), and it further decreases to
approximately 8 seconds with four threads and 4.24 seconds with eight threads.

However, the performance behavior changes when running Python 3.13.1 with GIL=0
or even GIL=1. In both cases, the single-threaded performance is worse than Python
3.12.8, with runtimes of around 13 seconds. The performance decrease could be due to
changes in memory management or additional synchronization overhead introduced in

Section 5 Frederik Hennecke 21

Impact of GIL-less Cpython on Performance and Compatibility

Python 3.13’s new threading model. The performance does improve as more threads are
added, with times decreasing to six seconds for two threads, 2.6 seconds for four threads,
and 1.2 seconds for eight threads. With 16 threads, we get around 0.8 seconds. Notably,
the only time the GIL-free version of Python matches the baseline performance of Python
3.12.8 is when using eight or 16 threads. This result is important: removing the GIL is
not always beneficial. Running Pandas on a GIL-free Python interpreter introduces an
overhead that slows down execution, making it clear that the GIL was not the bottleneck
for Pandas.

This benchmark shows that while Python’s GIL removal unlocks true parallelism for
many workloads, Pandas users might not see substantial benefits.

5.1.8 PyTorch

Figure 10: Runtime in seconds for the PyTorch benchmark.

The PyTorch benchmark results show that Python 3.12.8 and 3.13.1, whether the GIL is
enabled or disabled, all behave similarly. The initial runtime with one thread is around
20–23 seconds across all versions. As more threads are added, performance improves,
reaching the best execution time at four threads, hovering around 10 seconds. Performance
only slightly worsens with more threads each time, but remains within a small range of
deviation. The performance decrease is the smallest with the GIL disabled.

Originally, it was expected that the performance would remain the same regardless of
thread count since PyTorch primarily offloads computations to the GPU. However, the
observed improvement with more threads suggests that a single model did not fully utilize
the GPU and could handle multiple concurrent workloads. This contradicts the hypothesis
from the paper "Using Python for Model Inference in Deep Learning"[4], which suggested
that the GIL might be a bottleneck for AI workloads. The different results might be
due to different hardware, as DeVito et. al. were using a multi-GPU setup. The results
here indicate that PyTorch already works efficiently with multiple threads, making GIL
removal largely irrelevant in this specific benchmark.

Section 6 Frederik Hennecke 22

Impact of GIL-less Cpython on Performance and Compatibility

6 Conclusion
6.1 Summary of Findings

The benchmarks we conducted in this study show a detailed analysis of Python 3.13
without the GIL. The results confirm that removing the GIL can substantially improve
certain workloads, but it is not always beneficial.

For CPU-bound multi-threaded workloads, such as dictionary operations and compres-
sion, removing the GIL resulted in substantial speedups, with execution times improving
by up to 70% when using multiple threads. This shows that the GIL is a bottleneck for
these parallel tasks, and removing it allows the programs to utilize modern processors
fully.

However, some workloads saw no meaningful improvement or even performance degra-
dation. The Numpy and Pandas benchmarks demonstrated that these libraries, which al-
ready work around the GIL, did not benefit from GIL-less Python. In fact, Python 3.13,
with the new threading model, introduced overhead leading to performance regressions,
especially in single-threaded execution. This suggests that some optimization still needs
to be done for these libraries.

The string benchmark revealed severe performance issues with Python 3.13’s new
threading model. These benchmarks saw severe slowdown with single-threaded perfor-
mance. Even with multiple threads, execution times remained slower than in Python
3.12.8. This suggests that the new memory model may have critical inefficiencies or bugs.

Overall, while the removal of the GIL offers substantial performance benefits for spe-
cific multi-threaded workloads, it also introduces overhead and regressions in others.
Adoption will require careful consideration depending on the workload and existing li-
brary dependencies.

6.2 Future Work and Outlook

Future work on this topic could investigate why workloads such as NumPy and Pandas
suffer in Python 3.13. Further testing in the future could also test whether the overhead
of the new threading model gets reduced.

Lastly, future work should also examine real-world applications beyond micro bench-
marks. Web frameworks, data pipelines, and more testing for AI workloads could provide
practical insights into how the new threading model performs under actual production
conditions.

Additionally, Python 3.14 introduces a new interpreter design that uses tail calls be-
tween small C functions implementing individual Python opcodes, resulting in perfor-
mance improvements of up to 30% in certain scenarios, with a geometric mean speedup
of 3-5% on the pyperformance benchmark suite[9]. Future research should benchmark
these improvements against Python 3.13 to assess whether they alleviate the overheads
introduced by the GIL-less execution model and provide meaningful speedups for multi-
threaded workloads.

Section 6 Frederik Hennecke 23

Impact of GIL-less Cpython on Performance and Compatibility

References
[1] 2025. url: https://docs.python.org/3.13/library/multiprocessing.html.

[2] David Beazley. “Understanding the python gil”. In: PyCON Python Conference. At-
lanta, Georgia. 2010, pp. 1–62.

[3] Carl Friedrich Bolz et al. “Tracing the meta-level: PyPy’s tracing JIT compiler”. In:
Proceedings of the 4th Workshop on the Implementation, Compilation, Optimization
of Object-Oriented Languages and Programming Systems. ICOOOLPS ’09. Genova,
Italy: Association for Computing Machinery, 2009, pp. 18–25. isbn: 9781605585413.
doi: 10.1145/1565824.1565827. url: https://doi.org/10.1145/1565824.
1565827.

[4] Zachary DeVito et al. Using Python for Model Inference in Deep Learning. 2021.
arXiv: 2104.00254 [cs.LG]. url: https://arxiv.org/abs/2104.00254.

[5] GlobalInterpreterLock. 2020. url: https://wiki.python.org/moin/GlobalInterpreterLock
(visited on 03/01/2025).

[6] Eoin Malins. Author. 2019. url: https://www.blopig.com/blog/2019/01/making-
the-most-of-your-cpus-when-using-python/ (visited on 03/27/2025).

[7] Dorian Ouakli. “Native Implementation of OpenMP For Python”. Available at https:
//fosdem.org/2025/events/attachments/fosdem-2025-4034-multithreading-
in-python-using-openmp-/slides/238770/OUAKLI_TF_ltmi5ei.pdf. MA thesis.
Santiago de Compostela, Universidade de Santiago de Compostela, July 2024.

[8] PEP 703 – Making the Global Interpreter Lock Optional in CPython | peps.python.org.
en. url: https://peps.python.org/pep-0703/ (visited on 03/28/2025).

[9] What’s new in Python 3.14. en. url: https://docs.python.org/3/whatsnew/3.
14.html (visited on 03/27/2025).

Section Frederik Hennecke 24

https://docs.python.org/3.13/library/multiprocessing.html
https://doi.org/10.1145/1565824.1565827
https://doi.org/10.1145/1565824.1565827
https://doi.org/10.1145/1565824.1565827
https://arxiv.org/abs/2104.00254
https://arxiv.org/abs/2104.00254
https://wiki.python.org/moin/GlobalInterpreterLock
https://www.blopig.com/blog/2019/01/making-the-most-of-your-cpus-when-using-python/
https://www.blopig.com/blog/2019/01/making-the-most-of-your-cpus-when-using-python/
https://fosdem.org/2025/events/attachments/fosdem-2025-4034-multithreading-in-python-using-openmp-/slides/238770/OUAKLI_TF_ltmi5ei.pdf
https://fosdem.org/2025/events/attachments/fosdem-2025-4034-multithreading-in-python-using-openmp-/slides/238770/OUAKLI_TF_ltmi5ei.pdf
https://fosdem.org/2025/events/attachments/fosdem-2025-4034-multithreading-in-python-using-openmp-/slides/238770/OUAKLI_TF_ltmi5ei.pdf
https://peps.python.org/pep-0703/
https://docs.python.org/3/whatsnew/3.14.html
https://docs.python.org/3/whatsnew/3.14.html

	Contents
	List of Figures
	List of Listings
	List of Abbreviations
	Introduction
	Background and Motivation
	Objectives
	Structure

	Methodology
	Python
	The Global Interpreter Lock (GIL)
	PEP703: Making the Global Interpreter Lock Optional in CPython
	Enabling and Disabling GIL-less Python
	Related Work

	Compatibility
	Library Support and Challenges
	Making Libraries Compatible

	Benchmarks
	Setup
	Overview
	Benchmark Scenarios
	String Operations
	Compress, Decompress
	Dictionary (Intersection, Union)
	Input and Output Operations
	Pure Python Matrix Multiplication
	Numpy Matrix Computations
	Pandas (Filter, Mean, Merge, Lambda)
	Pytorch

	Performance Analysis
	Benchmarks
	String Operations
	Compress, Decompress
	Dictionary (Intersection, Union)
	Input and Output Operations
	Pure Python Matrix Multiplication
	NumPy Matrix Multiplication
	Pandas (Filter, Mean, Merge, Lambda)
	PyTorch

	Conclusion
	Summary of Findings
	Future Work and Outlook

	References

