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Abstract
The exponential growth of data from IoT, social media, and real-time applications has
driven the need for scalable database solutions capable of handling large-scale workloads
efficiently. Traditional databases struggle with these demands, leading to the adoption
of distributed and scalable architectures. This report provides an overview of scalable
databases, their types, and the motivation behind their adoption. It focuses on Elastic-
search, a distributed search and analytics engine, analyzing its architecture and scalability
features that enable efficient data processing.

To evaluate Elasticsearch’s scalability, an experimental study was conducted by de-
ploying a cluster and performing load testing. Results demonstrate that as the number of
concurrent threads increased from 50 to 200, throughput improved from 1.43 × 10−6 re-
q/sec to 5.74×10−6 req/sec, while average response times decreased from 6.54 ms to 5.42
ms. The findings confirm that Elasticsearch effectively scales with workload increases,
maintaining low-latency responses and stable performance. These results highlight Elas-
ticsearch’s suitability for high-performance computing (HPC) workflows, making it a ro-
bust solution for large-scale data analytics and real-time search applications.
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Declaration on the use of ChatGPT and comparable tools
in the context of examinations

In this work I have used ChatGPT or another AI as follows:

□ Not at all

✓□ During brainstorming

□ When creating the outline

✓□ To write individual passages, altogether to the extent of 10% of the entire text

□ For the development of software source texts

✓□ For optimizing or restructuring software source texts

✓□ For proofreading or optimizing

✓□ Further, namely: - summarizing research papers

I hereby declare that I have stated all uses completely.
Missing or incorrect information will be considered as an attempt to cheat.
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Scalable Databases With Elasticsearch: An Overview

1 Introduction
As data volumes continue to grow exponentially, the need for scalable database solutions
has become crucial to maintaining performance, reliability, and efficiency in modern ap-
plications. Recent estimates indicate that approximately 402.74 million terabytes of data
are generated daily [Dur25] and within the past two years, 90% of the world’s data has
been created. With the rise of platforms like IoT, social media and e-commerce, we are
generating data at an unprecedented rate. This growth in data demands system that can
scale dynamically and is the major motivator for adopting scalable databases.

1.1 Scalable Databases

Scalability is a fundamental characteristic of modern databases, allowing them to handle
growing workloads without compromising performance. It is the ability to grown or
shrink resources dynamically as needed. This ability to scale on demand allows businesses
to adapt to fluctuating workloads without worrying about downtime or degradation in
performance. There are two primary approaches to scalability: vertical scaling, which
involves upgrading the existing hardware, and horizontal scaling, which distributes
the load across multiple machines or nodes. The exponential growth of data, driven by
big data analytics, the Internet of Things (IoT), artificial intelligence (AI), and real-time
applications, has exposed the limitations of traditional databases. Conventional relational
databases often struggle to keep pace with increasing data volumes, leading to performance
bottlenecks, high operational costs, and reduced efficiency in large-scale environments. As
a result, scalable databases have emerged as a critical solution for ensuring seamless data
processing, storage, and retrieval.

1.2 Elasticsearch as a Scalable Database

Among various scalable database solutions, Elasticsearch has gained significance as a
powerful distributed search and analytics engine. It is built on Apache Lucene and
is designed for handling structured and unstructured data efficiently. It plays a crucial role
in modern data infrastructures by enabling fast, full-text search, real-time analytics, and
distributed data storage. Unlike traditional databases, Elasticsearch excels in scalability
due to its distributed architecture, high-speed indexing, and flexible schema
design. These attributes make it particularly suitable for handling large-scale workloads,
such as log analytics, e-commerce search, security monitoring, and High-Performance
Computing (HPC) environments.

1.3 Contributions

The contributions of this report are as follows:

• Exploring Scalable Databases: An in-depth exploration of scalable databases,
their types, key features, and the underlying motivations for their adoption in mod-
ern data-driven systems.

• Analysis of Elasticsearch Architecture: A comprehensive examination of Elas-
ticsearch’s architecture, highlighting its core components and key concepts that
enable its scalability and performance.

Section 1 Anila Ghazanfar 1
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• Review of Relevant Literature: A short review of relevant publications that
demonstrate how Elasticsearch is effectively utilized within High Performance Com-
puting (HPC) workflows and large-scale data analysis tasks.

• Experimental Load Testing: Conducting experimental load testing of an Elastic-
search cluster to evaluate its performance and scalability under different workloads,
providing empirical insights into its capabilities.

The report is organized as follows: Section 2 introduces scalable databases and its
types and motivation for adopting scalable databases. Section 3 explores fundamental
concepts of Elasticsearch architecture and finally, Section 4 summarizes two publications
that have utilized Elasticsearch in HPC workflows demonstrating practical applications,
showcasing how Elasticsearch enhances data retrieval, performance monitoring, and anal-
ysis in complex computational workflows. Section 5 demonstrate how load testing of a
3 node elastic search cluster is done and finally, results are summarized and discussed in
Section 6.

2 Scalable Databases
The traditional databases often struggle to maintain performance under increasing work-
loads as the volume of data continues to grow exponentially. Scalable databases are
designed to handle an increasing amount of data or workload, ensuring efficient data
storage, retrieval, and processing without compromising performance, reliability or func-
tionality. These databases achieve scalability through vertical scaling (scaling up) by
upgrading hardware or horizontal scaling (scaling out) by distributing data across mul-
tiple servers or nodes. Scalable databases are essential in modern applications such as big
data analytics, high-performance computing (HPC), and cloud-based solutions.

2.1 Types of Scalable Databases

This section explores various types of scalable databases.

2.1.1 NewSQL and Distributed SQL Databases

NewSQL databases combine the ACID compliance of SQL with NoSQL scalability, while
Distributed SQL databases distribute data across multiple nodes while maintaining SQL
capabilities.

• CockroachDB: Fault-tolerant, highly available SQL database.

• VoltDB: High-speed, in-memory relational database for real-time analytics.

• TiDB: MySQL-compatible, auto-scaling distributed SQL database.

2.1.2 NoSQL Databases

Designed for flexible schemas, high availability, and horizontal scaling.

• Document Stores: JSON-like document storage (e.g., MongoDB).

Section 2 Anila Ghazanfar 2
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• Column-Family Stores: Optimized for big data (e.g., Apache Cassandra).

• Key-Value Stores: Fast data retrieval (e.g., Redis).

2.1.3 Specialized Databases

• Time-Series Databases: Optimized for time-stamped data (e.g., InfluxDB, TimescaleDB).

• In-Memory Databases: Store data in RAM for ultra-fast access (e.g., Redis,
Memcached).

• Cloud Databases: Scalable cloud-native solutions (e.g., Amazon RDS, Google
Cloud Spanner).

2.1.4 Elasticsearch as a Scalable Database

Elasticsearch, primarily a search engine, also functions as a distributed database for struc-
tured and unstructured data, offering high-speed indexing and real-time analytics.

2.2 Key Features of Scalable Databases

Scalable databases incorporate several key features to manage large workloads with high
availability and performance:

1. Replication: Data is replicated across nodes for fault tolerance, high availability,
and improved read performance.

2. Partitioning/Sharding: Large datasets are split into smaller "shards" distributed
across nodes, improving performance and enabling horizontal scalability.

3. Distributed Architecture: Data and workload are spread across multiple servers
to prevent bottlenecks and allow seamless scalability.

4. High-Performance Storage: Columnar and in-memory storage (e.g., Apache
Cassandra, Redis) enable faster data retrieval and optimized queries.

5. Interconnect and Load Balancing: Efficient interconnects and load balancing
distribute queries evenly, preventing node overload and optimizing performance.

These features ensure scalability, reliability, and high performance for modern appli-
cations.

2.3 Motivation for Adopting Scalable Databases

Key motivations for adopting scalable databases include:

• Growing Data Demands: The rise of IoT, social media, and AI-driven appli-
cations generates vast amounts of data, requiring databases capable of handling
increasing volumes without performance loss.

• Performance and User Experience: Modern applications demand low-latency
responses and global availability to provide seamless user experiences, as seen in
platforms like Netflix and YouTube.

Section 2 Anila Ghazanfar 3
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• Business Continuity and Availability: Scalable databases ensure high avail-
ability and minimize downtime, critical for preventing financial and reputational
damage.

• Challenges of Traditional Systems: Legacy databases face scalability limits
due to vertical scaling, while modern databases use horizontal scaling to distribute
workloads and reduce complexity and costs.

Scalable databases enable organizations to future-proof their infrastructure, optimize
performance, and meet the growing demands of data-driven applications. This report will
explore how Elasticsearch fits into this landscape as a distributed search and analytics
engine.

3 Elasticsearch
Elasticsearch is a distributed, open-source search and analytics engine built on
Apache Lucene, designed to process vast amounts of data and deliver near real-time
full-text search capabilities. The data is stored as JSON documents. Common use
cases of Elasticsearch include: full-text search, log analytics, application monitoring, and
business intelligence.

3.1 Elasticsearch Architecture

Elasticsearch follows a distributed architecture that allows for scalability, fault tolerance,
and high availability. Key components of the architecture as shown in Figure 2 are
discussed. The key concepts as in [KRP22] are summarized in the subsequent sub-sections.

3.1.1 Key Components

3.1.1.1 Document: Data in Elasticsearch is stored in the form of JSON documents
which is the basic unit of data storage. Documents are equivalent to rows in a relational
database table as in figure 1 the employee table rows correspond to JSON documents in
the employee index. Each document consists of fields that correspond to columns in a
relational database table 1. An index contains one or more documents, and each docu-
ment, in turn, includes one or more fields. Once a document is added to an Elasticsearch
index, an inverted index (3.2.1) is created, making it instantly searchable.

3.1.1.2 Cluster A cluster is a collection of nodes that collectively store all the data
and offer federated indexing and search functions. Each cluster is identified by a unique
name and contains a designated "master" node that handles administrative tasks.

3.1.1.3 Node A node is a single Elasticsearch instance that stores data and processes
queries. It can play one or more roles for workload isolation and scaling:

• Master Node: Controls and Manages cluster-wide operations such as creating/delet-
ing indexes and tracking cluster health.

• Data Node: Stores indexed data and perform data related operations.

Section 3 Anila Ghazanfar 4
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Figure 1: Analogy to RDBMS table

• Ingest Node: Preprocesses documents before indexing, including transformation
and enrichment.

• Coordinating Nodes: Routes request, handles search reduce phase and distribues
bulk indexing. All nodes function as coordinating nodes.

• Alerting Node: Runs alerting jobs.

• Machine Learning Nodes: Runs machine learning jobs.

Figure 2: Elasticsearch Architecture
Source: https://www.altexsoft.com/blog/elasticsearch-pros-cons/

Section 3 Anila Ghazanfar 5
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3.1.1.4 Index An index is a logical grouping of one or more physical shards, with
each shard being a Lucene index, which is a self-contained index. It is a collections of
documents that share the same structure, similar to tables in relational databases 1, but
optimized for search and analytics.

Figure 3: Elasticsearch Index

3.1.1.5 Shard Elasticsearch automatically splits an index into smaller partitions called
shards which are then distributed across anumber of nodes. Distributing data across mul-
tiple nodes improves performance and scalability. As cluster load increases, Elasticsearch
redistributes shards to other clusters, ensuring that data load is balanced. Types of shards
in Elasticsearch are:

1. Primary: Primary shards store the original copy of the data. The index data is
distributed across multiple primary shards. Users can define the number of primary
shards and their corresponding replica shards when creating an index.

2. Replica: Replicas are copies of primary shards for redundancy and serving data
queries that provide high availability and fault tolerance. It allows load balancing of
search queries by distributing queries across replica shards. When a node is added
or removed, the shards and data are automatically re-balanced. If a node fails,
Elasticsearch automatically reassigns shards to other nodes.

Figure 4: Elasticsearch Shards

3.2 Key Concepts

3.2.1 Inverted index

Elasticsearch uses a data structure called an inverted index to store data that maps
terms to document locations. It allows for fast full-text search by maintaining term-to-
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document mappings, that is, quickly locate documents that include the searched terms.
For example, in figure 5, consider a dataset with eight documents, each containing an
attribute geo-scope Id. If we were using a forward index, searching for "Europe" would
involve scanning the dataset to determine that Europe appears in documents 1, 2, and
7. However, Elasticsearch stores this information as an inverted index, where the term
Europe is directly linked to documents 1, 2, and 7. This structure allows Elasticsearch
to instantly respond to queries like "Where is Europe?" by immediately returning the
relevant document IDs, as the data is inherently organized for fast lookup.

Figure 5: Inverted Index example

3.2.2 Index Template

In Elasticsearch, an index template serves as a blueprint for creating an index. It outlines
the structure of documents, specifying the fields, their data types, and any metadata
associated with the document type. These configurations are applied during the index
creation process and are comparable to a table schema in a relational database. The tem-
plate includes configurations such as: number of shards and replicas, mapping, priority,
etc.

3.2.2.1 Data Mapping It specifies the schema for the documents stored in the index.
It can be configured to:

1. Strict: With strict mapping, users can define the fields and their data types man-
ually.

2. Dynamic or Schema on Write: For ease, dynamic mapping was introduced
in Elasticsearch which automatically creates a field mapping when a new field is
encountered that hasn’t been explicitly defined by the user.

3. Combined: Strict and dynamic mapping can be combined, providing flexibility in
Elasticsearch’s mapping configuration.

Section 3 Anila Ghazanfar 7
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3.2.3 Index alias

An index alias is a collection of indices. Documents can be added to an index group
through the alias, but only the index designated as the write index can accept document
insertions.

Figure 6: Index Alias

An alias can be defined to encompass all indices that match a specific index pattern
(e.g., mylogs-*). Figure 7 illustrates the command that creates an alias named "logs,"
which groups all indices beginning with "logs-".

Figure 7: Indices starting with “logs-” are grouped under alias named “logs”

3.2.4 Data stream

A data stream enables the storage of append-only time series data across multiple indices
while providing a single named resource for handling requests. Data streams are ideal
for logs, events, metrics, and other continuously generated data. Indexing and search
requests are submitted directly to a data stream, which automatically routes the request
to the backing indices or hidden indices that store the data.

Index lifecycle management (ILM) can be used to automate the handling of these
backing indices. For example, ILM can automatically move older backing indices to
more cost-effective storage and remove unnecessary indices. ILM helps reduce costs and
management overhead as data grows. While data can be queried from all indices, it can
only be written to the most recent index, as indicated in blue in Figure 8.

3.3 Data Flow in Elasticsearch

Elasticsearch data flows through the following steps as discussed in [Sto25]:

Section 3 Anila Ghazanfar 8
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Figure 8: Data Stream

• Query Submission: A query is sent via the Elasticsearch API.

• Coordinator Node: The API directs the query to a coordinator node, which
determines which node or nodes should handle the query.

• Routing to Shards: The coordinator identifies the appropriate shards, either on
one node or across multiple nodes, where the relevant data is stored.

• Shard Processing: The relevant shards retrieve the documents matching the
query.

• Aggregation of Results: The shards send the results (indices) back to the coor-
dinator.

• Sorting and Organizing: The coordinator organizes and sorts the indices received
from different shards.

• Document Retrieval: Once sorted, the coordinator fetches the actual documents
from the relevant shards.

• Return Data: Finally, the documents are sent back to the application via the API.

This process allows Elasticsearch to efficiently manage and retrieve large datasets by
distributing the load across nodes and shards. The following section will focus on its
application in High-Performance Computing (HPC) workflows.

4 HPC workflow leveraging Elasticsearch
Elasticsearch’s scalability and efficiency offer significant advantages for handling large
datasets in HPC environments, facilitating faster data retrieval, analysis, and overall sys-
tem performance. This section will examine how Elasticsearch can be effectively integrated
into HPC workflows to optimize data processing tasks.

Section 4 Anila Ghazanfar 9



Scalable Databases With Elasticsearch: An Overview

HPC workloads generate massive amounts of data from simulations, logs, and metrics.
Elasticsearch provides a scalable, distributed platform for managing and analyzing this
data in near real-time. Key use cases of Elasticsearch in HPC workflows include:

• Log Aggregation: Elasticsearch allows for centralized collection and searching of
logs from multiple HPC nodes, thereby helping in efficient debugging and monitoring
of system activities.

• Performance Monitoring: Elasticsearch can visualize system metrics such as
CPU, memory, and network usage, which are useful to identify and resolve perfor-
mance bottlenecks in HPC systems.

• Data Search and Retrieval: By leveraging Elasticsearch, HPC workflows can
perform fast queries over large datasets, such as simulation outputs or experimental
results, improving data accessibility.

• Anomaly Detection and Predictive Analytics: Elasticsearch enables the inte-
gration of machine learning models with indexed data, facilitating real-time anomaly
detection and predictive analysis.

The next sub-sections will focus on two relevant publications that explore the inte-
gration of Elasticsearch within HPC environments. These studies demonstrate practical
applications, showcasing how Elasticsearch enhances data retrieval, performance moni-
toring, and analysis in complex computational workflows.

4.1 Real-Time I/O-Monitoring of HPC Applications with SIOX,
Elasticsearch, Grafana and FUSE (2017)

The framework [BK17] for real-time I/O monitoring of HPC applications is designed
to provide insights into the I/O behavior of applications running on high-performance
computing systems. It leverages several open-source technologies, including SIOX, Elas-
ticsearch, Grafana, and FUSE, to create a comprehensive monitoring solution. Here’s a
detailed explanation of each component and how they work together:

• SIOX (System I/O eXplorer):

– Purpose: SIOX acts as a wrapper around applications to instrument their
I/O calls. It captures I/O activities generated by applications and creates an
activity stream.

– Functionality: When an application is started with the SIOX wrapper (e.g.,
SIOX(<exec>)), it intercepts I/O operations from various interfaces such as
POSIX, MPI, HDF5, and NetCDF. This allows for detailed tracking of how
applications interact with the file system.

• Elasticsearch:

– Role: Elasticsearch serves as the backend data store for the I/O metrics col-
lected by SIOX.

– Features: It is a distributed, scalable search and analytics engine that allows
for real-time indexing and querying of data. This enables quick access to I/O
statistics, facilitating immediate analysis and monitoring.

Section 4 Anila Ghazanfar 10
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– Data Structure: Metrics are sent to Elasticsearch in JSON format, allowing for
structured storage and efficient retrieval.

• Grafana:

– Visualization Tool: Grafana is used to create interactive dashboards that vi-
sualize the data stored in Elasticsearch.

– User Interface: It provides various widgets (e.g., graphs, tables) to display
metrics over time, making it easy for users to monitor application performance
and identify trends.

– Dynamic Features: Grafana supports templating and auto-refreshing, allowing
users to customize their dashboards and view real-time data without manual
updates.

• FUSE (Filesystem in Userspace):

– Non-Intrusive Monitoring: FUSE is utilized to monitor I/O operations related
to virtual memory. It allows the framework to intercept I/O requests made by
applications that use the mmap() function without requiring changes to the
application code.

– Mount Points: By mounting directories containing relevant files, FUSE for-
wards I/O requests from virtual memory to the monitoring framework, ensur-
ing comprehensive data collection.

4.1.1 Data Flow and Interaction

• Application Execution: When an HPC application is executed with the SIOX wrap-
per, it generates I/O activities that are captured in real-time.

• Data Collection: These activities are aggregated and sent to Elasticsearch, where
they are indexed for fast retrieval.

• Visualization: Grafana queries Elasticsearch to visualize the collected metrics, pro-
viding users with insights into the I/O behavior of their applications.

4.1.2 Benefits

• Real-Time Monitoring: Continuously tracks I/O performance for quick issue
detection.

• Optimized Resource Use: Identifies inefficiencies to enhance workflow efficiency.

• User-Friendly Interface: Grafana enables intuitive I/O metric analysis.

This framework enhances I/O monitoring in HPC by integrating SIOX, Elasticsearch,
Grafana, and FUSE, enabling better performance insights and resource optimization.
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Figure 9: Data Flow in HPC Workflows Utilizing Elasticsearch and Grafana for Perfor-
mance Monitoring and Analysis

4.2 End-to-end online performance data capture and analysis for
scientific workflows (2021)

[Pap+21] present a framework for online performance data capture of scientific workflows.
The framework integrates various well-established and newly developed tools to collect,
process, and analyze performance data from scientific workflows. It is built around the Pe-
gasus Workflow Management System (WMS) and leverages the ELK stack (Elasticsearch,
Logstash, and Kibana) for data management and visualization. The key components are
summarized as follows:.

• Pegasus WMS: This is the core system that allows users to design and execute
scientific workflows. It transforms high-level abstract workflows into executable
workflows that can run on distributed computing resources.

• Data Collection Tools: The framework extends existing components of Pegasus,
such as:

– pegasus-monitord: Monitors workflow execution and collects performance met-
rics.

– pegasus-transfer: Manages data transfers and logs transfer statistics.

• Data Ingestion:

– Logstash: This tool is used to ingest data from various sources, including
RabbitMQ, where monitoring data is published. Logstash processes this data
and sends it to Elasticsearch for storage.

– Elasticsearch: Acts as the central repository for all performance data. It allows
for efficient storage, indexing, and querying of large volumes of data, enabling
users to retrieve specific metrics and logs easily.

– Kibana: A visualization tool that provides a user-friendly interface for explor-
ing and analyzing the data stored in Elasticsearch. The authors developed a
custom Kibana plugin tailored to the needs of monitoring workflow executions,
allowing users to create interactive dashboards.
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4.2.1 Data Flow

• Monitoring and Data Capture: As workflows execute, pegasus-monitord collects
performance metrics (e.g., CPU usage, I/O operations) and publishes this data to
RabbitMQ.

• Data Ingestion: Logstash retrieves the data from RabbitMQ and ingests it into
Elasticsearch, where it is indexed for efficient querying.

• Real-Time Analysis: Users can query Elasticsearch to retrieve performance metrics
in near real-time, allowing for immediate insights into workflow execution.

• Visualization: The custom Kibana plugin enables users to visualize the data through
interactive dashboards, making it easier to identify performance issues and trends.

Figure 10: Diagram illustrating the end-to-end framework for online performance data
capture and analysis in scientific workflows

4.2.2 Benefits

• Comprehensive Monitoring: Captures data from multiple sources (network,
filesystem, compute) for a holistic workflow view.

• Timely Insights: Near real-time monitoring helps detect and resolve issues in-
stantly.

• Advanced Analysis: Elasticsearch and Kibana enable powerful querying and vi-
sualization for deeper insights.

• Machine Learning Integration: Collected data aids in training ML models for
workflow optimization.

This framework enhances scientific workflow monitoring by integrating robust data
collection, storage, and visualization for improved HPC performance.
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5 Experiment
To evaluate the scalability of an Elasticsearch cluster, a load-testing experiment was
conducted using Apache JMeter. The cluster consists of three nodes: one master node
and two data nodes with roles as data and ingest. Docker Compose was used to set
up the entire environment, including Elasticsearch, Kibana, and Apache JMeter. The
configuration file (docker-compose.yml) is provided in the appendix section A.

5.1 Objective

The goal of this experiment is to analyze the scalability and efficiency of a multi-node Elas-
ticsearch cluster under increasing query loads. The results will help determine how well
the cluster handles concurrent search requests and whether any performance bottlenecks
arise as the load increases.

5.2 Experimental Setup

• Cluster Configuration: 3-node Elasticsearch cluster (1 master node, 2 data nodes
with roles: data, ingest)

• Testing Tool: Apache JMeter (section )

• Deployment: Docker Compose

• Request Type:HTTP POST requests

• Elasticsearch API Used: _search

– Query Used:

1 {
2 "query": {
3 "match_all": {}
4 }
5 }

• Index Used: kibana_sample_data_ecommerce

• Thread Groups: 50, 100, 150, 200 concurrent users

• Metrics Collected: Throughput, average response time, 90th percentile response
time, and error rate
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5.3 Performance Metrics Measured

The performance metrics measured are as follows:

• Throughput (Requests per Second): Measures how many queries the cluster
can handle concurrently.

• Average Response Time (ms): The average time taken to return search results.

• 90th Percentile Response Time (ms): The response time below which 90% of
requests are completed.

• Error Rate (%): Percentage of failed requests.

The load tests were designed to analyze the cluster’s response under increasing work-
loads by measuring how throughput and response times scale as the number of concurrent
users increases. The obtained results provide insights into the cluster’s scalability and per-
formance characteristics.

6 Results
JMeter scalability test results in Table 1 show how the Elasticsearch cluster performed
under increasing loads. These results are shown graphically in Figure 11. Let’s analyze
the key metrics:

• Throughput (Requests per Second) increases with the number of threads. This
suggests that as more concurrent users (threads) send requests, the system is able to
process them at a higher rate. However, the increase is not strictly linear, indicating
some performance limitations.

• The average response time decreases as load increases. Typically, response time
increases with load, but here, the variation might suggest effective load balancing
or caching effects in Elasticsearch.

• 90th Percentile Response Time (ms) measures how fast 90% of requests are
served. A slight decrease at 200 threads suggests the cluster might be handling the
load efficiently, possibly due to caching mechanisms.

• Error Rate (%) is 0% for all test cases → Excellent stability; no failed requests.

In conclusion, Elasticsearch is scaling well with increasing threads. No errors show that
the cluster is stable. Throughput scales but not linearly, indicating potential bottlenecks
or internal optimizations at play. Lower response times at higher loads could be due to
caching, efficient query execution, or other optimizations.

7 Conclusion
This report explored scalable databases, their key features, and their significance in han-
dling modern data-intensive applications. It examined Elasticsearch’s architecture, its
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Threads Throughput
(req/sec)

Avg
Response
(ms)

90th%ile
(ms)

Error Rate
(%)

50 1.43E-06 5.2216 7 0
100 2.87E-06 6.5364 8 0
150 4.30E-06 5.7492 7 0
200 5.74E-06 5.4254 6 0

Table 1: Scalability Results

Figure 11: Scalability Results Plot

role in HPC workflows, and conducted experimental scalability testing on an Elastic-
search cluster.

The scalability results demonstrate that as the number of threads increases, through-
put improves, and response times show a decreasing trend. Specifically, throughput in-
creased from 1.43 × 10−6 req/sec at 50 threads to 5.74 × 10−6 req/sec at 200 threads.
Meanwhile, the average response time improved from 6.54 ms at 100 threads to 5.42 ms
at 200 threads, and the 90th percentile latency decreased from 8 ms to 6 ms, indicating
better request handling under higher loads.

These findings validate Elasticsearch’s capability to scale efficiently while maintaining
low response times, making it a viable choice for HPC and data-intensive applications.
Future work can further analyze its performance under varying workloads and optimize
indexing strategies for enhanced scalability.
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A Experimental setup using Docker-Compose
The configuration details for setting up Elasticsearch, Kibana, and Apache JMeter are
provided in the "docker-compose.yml" file in the long Listing 1. This file should be placed
in a designated directory. To start the services, navigate to that directory and execute
the following command:

1 sudo docker-compose up -v

Listing 1: Start Services

This setup ensures that all components are deployed in a containerized environment,
maintaining consistency and ease of replication across different systems.

Use the following command to stop the Elasticsearch cluster, Kibana, and JMeter,
removing all associated volumes:

1 sudo docker-compose down -v

Listing 2: Stop Services

Listing 1: docker-compose.yml
1 version: "3.7"
2 services:
3 es01:
4 image: "docker.elastic.co/elasticsearch/

elasticsearch -oss :7.10.2"
5 mem_limit: 8g # Container -wide memory limit
6 ports:
7 - "9200:9200"
8 - "9300:9300"
9 environment:

10 node.name: es01
11 cluster.name: mycluster
12 node.roles: master # Master -only node
13 discovery.seed_hosts: es02 ,es03
14 cluster.initial_master_nodes: es01
15 network.host: 127.0.0.1
16 http.host: 0.0.0.0 # Explicit HTTP binding
17 transport.host: 0.0.0.0 # Explicit transport

binding
18 bootstrap.memory_lock: "true"
19 ES_JAVA_OPTS: -Xms4g -Xmx4g # 4GB fixed heap
20 volumes:
21 - "es-data -es01:/usr/share/elasticsearch/data"
22 ulimits:
23 memlock:
24 soft: -1
25 hard: -1
26 healthcheck:
27 test: ["CMD -SHELL", "curl -sSf http :// localhost

:9200/ _cluster/health?local=true || exit 1"]
28 interval: 10s
29 timeout: 30s
30 retries: 30
31 start_period: 60s
32 networks:
33 - esnet
34
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35 es02:
36 image: "docker.elastic.co/elasticsearch/

elasticsearch -oss :7.10.2"
37 mem_limit: 8g # Container -wide memory limit
38 ports:
39 - "9201:9200"
40 - "9301:9300"
41 environment:
42 node.name: es02
43 cluster.name: mycluster
44 node.roles: data , ingest # No master role
45 discovery.seed_hosts: es01 ,es03
46 #cluster.initial_master_nodes: es01 ,es02 ,es03
47 network.host: 127.0.0.1
48 http.host: 0.0.0.0 # Explicit HTTP binding
49 transport.host: 0.0.0.0 # Explicit transport

binding
50 bootstrap.memory_lock: "true"
51 ES_JAVA_OPTS: -Xms4g -Xmx4g # 4GB fixed heap
52 volumes:
53 - "es-data -es02:/usr/share/elasticsearch/data"
54 ulimits:
55 memlock:
56 soft: -1
57 hard: -1
58 healthcheck:
59 test: ["CMD -SHELL", "curl -sSf http :// localhost

:9200/ _cluster/health?local=true || exit 1"]
60 interval: 10s
61 timeout: 30s
62 retries: 30
63 start_period: 60s
64 networks:
65 - esnet
66
67 es03:
68 image: "docker.elastic.co/elasticsearch/

elasticsearch -oss :7.10.2"
69 mem_limit: 8g # Container -wide memory limit
70 ports:
71 - "9202:9200"
72 - "9302:9300"
73 environment:
74 node.name: es03
75 cluster.name: mycluster
76 node.roles: data , ingest # No master role
77 discovery.seed_hosts: es01 ,es02
78 #cluster.initial_master_nodes: es01 ,es02 ,es03
79 network.host: 127.0.0.1
80 http.host: 0.0.0.0 # Explicit HTTP binding
81 transport.host: 0.0.0.0 # Explicit transport

binding
82 bootstrap.memory_lock: "true"
83 ES_JAVA_OPTS: -Xms4g -Xmx4g # 4GB fixed heap
84 volumes:
85 - "es-data -es03:/usr/share/elasticsearch/data"
86 ulimits:
87 memlock:
88 soft: -1
89 hard: -1
90 healthcheck:
91 test: ["CMD -SHELL", "curl -sSf http :// localhost

:9200/ _cluster/health?local=true || exit 1"]
92 interval: 10s
93 timeout: 30s
94 retries: 30
95 start_period: 60s
96 networks:
97 - esnet
98
99 kibana:

100 image: "docker.elastic.co/kibana/kibana -oss :7.10.2"
101 depends_on:
102 es01:
103 condition: service_healthy
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104 es02:
105 condition: service_healthy
106 es03:
107 condition: service_healthy
108 ports:
109 - "5601:5601"
110 environment:
111 - 'ELASTICSEARCH_HOSTS =[" http :// es01 :9200" ," http

:// es02 :9200" ," http :// es03 :9200"] '
112 - logging.verbose=false # Reduce log verbosity
113 - server.defaultRoute =/app/home # Skip the

redirect
114 healthcheck:
115 test: ["CMD -SHELL", "curl -sSf http :// localhost

:5601/ api/status > /dev/null || exit 1"]
116 interval: 30s
117 timeout: 10s
118 start_period: 60s
119 networks:
120 - esnet
121 mem_limit: 1g # Add memory limit
122
123 jmeter:
124 image: "justb4/jmeter:latest"
125 container_name: jmeter
126 volumes:
127 - ./jmeter -tests:/tests
128 networks:
129 - esnet
130 #network_mode: "bridge"
131 environment:
132 - JVM_ARGS=-Xms4g -Xmx8g # 4GB min , 8GB max
133 - ES_HOST=es01 # Consistent host reference
134 command:
135 - -n
136 - -t /tests/es_benchmark_new.jmx
137 - -Jhostname=es01 # Pass hostname as property
138 - -l /tests/results_200.jtl
139 - -j /tests/jmeter.log
140 healthcheck:
141 test: ["CMD -SHELL", "curl -f http :// es01 :9200/

_cluster/health?wait_for_status=yellow || exit
1"]

142 interval: 30s
143 timeout: 60s
144 retries: 20
145 depends_on:
146 es01:
147 condition: service_healthy
148 es02:
149 condition: service_healthy
150 es03:
151 condition: service_healthy
152
153 volumes:
154 es-data -es01:
155 driver: local
156 es-data -es02:
157 driver: local
158 es-data -es03:
159 driver: local
160
161 networks:
162 esnet:
163 name: esnet # Explicitly name the network
164 driver: bridge

B Adding sample data to Kibana
• Access Kibana at http://localhost:5601
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• Navigate to: Home → Try sample data → Sample eCommerce orders → Add data

• Verify the index was created using the following command:

1 sudo curl -X GET "http://localhost:9200/kibana_sample_data_ecommerce/_count?pretty"

Listing 3: Verify Index

The output will be like:

1 {
2 "count" : 4675,
3 "_shards" : {
4 "total" : 1,
5 "successful" : 1,
6 "skipped" : 0,
7 "failed" : 0
8 }
9 }

Listing 4: Verify Index Output

C JMeter Test Plan
C.1 JMeter GUI

• Open JMeter GUI by running the command in the directory /apache-jmeter-5.6.3/bin.
The GUI can be downloaded from binaries section in https://jmeter.apache.org/download_jmeter.cgi.

1 ./jmeter.sh # Linux/Mac | or jmeter.bat on Windows

Listing 5: Start Jmeter GUI

C.2 Create a Test Plan:
• Right-click Test Plan → Add → Thread Group.

• Configure:

– Number of Threads (Users): 50 (adjust as needed)
– Ramp-up Period: 25 seconds
– Loop Count: 100
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C.2.1 Add HTTP Request Sampler:

• Right-click Thread Group → Add → Sampler → HTTP Request.

• Configure:

– Protocol: http
– Server Name: es01 (Docker service name)
– Port: 9200
– Path: /kibana_sample_data_ecommerce/_search (adjust index name)
– Method: POST
– Body Data:

1 {
2 "query": {
3 "match_all": {}
4 }
5 }

Listing 6: Post Request: Body Data

C.2.2 Add Listeners (for results):

• Right-click Thread Group → Add → Listener → View Results Tree.

• Add another listener: Summary Report.

C.3 Save the Test Plan:
Save as es_benchmark_new.jmx in ./jmeter-tests/ (mounted volume).

C.4 Running the Test
• Start Services: docker-compose up -d

• JMeter Automatically Executes:
The test plan (es_benchmark_new.jmx) runs and saves results to ./jmeter-tests/results_50.jtl.
results_50.jtl is the name specified in docker-compose service jmeter.

• Analyze Results: Check ./jmeter-tests/results.jtl (CSV) or use JMeter’s GUI to load
the file.
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