
SH

∞

Seminar Report

Python Performance Optimization
leveraging Native Implementations

Valerius A. Mattfeld

MatrNr: 11580056

Supervisor: Lars Quentin

Georg-August-Universität Göttingen
Institute of Computer Science

April 6, 2025

Abstract
High-Performance Computing (HPC) is important for modern research across disciplines.
Python being a native programming language, due to its accessibility, popularity, and large
ecosystem, poses a cornerstone in that field. However, Python is an interpreted language,
which makes it slow by nature. This can create a bottleneck for the programming language
before even running Python programs on such a cluster, which leads to inefficient resource
utilization and execution times. Stand-art approaches to enhance performance in Python
programs include algorithmic optimization as well as built-in libraries, and even complete
rewrites of critical parts in a faster language. These solutions require a great deal of
development effort and often expertise in that area, which researchers may lack.

This report evaluates various implementation approaches of the A* pathfinding al-
gorithm. Starting with pure, naive Python, over standard library optimization, Nuitka
compilation to binary files, Numba JIT compilation, Rust extensions with PyO3, and
C++ extensions via pybind11. This tries to identify practical performance improvement
strategies with several degrees of implementation complexity.

Benchmarking and analysis reveal that different problem sizes have different solutions
in terms of measurement variations. Bigger workloads are better processed by C++
(6.51x speedup), and smaller workloads are better processed by Rust (14.2x speedup),
solutions like Numba show inconsistent scaling behavior, and surprisingly, standard library
optimizations offered no improvement over naive implementations.

i

Declaration on the use of ChatGPT and comparable tools
in the context of examinations

In this work I have used ChatGPT or another AI as follows:

□ Not at all

□ During brainstorming

□ When creating the outline

□ To write individual passages, altogether to the extent of 0% of the entire text

✓□ For the development of software source texts (basic autocomplete assistance and
docstrings with https://supermaven.com/)

□ For optimizing or restructuring software source texts

□ For proofreading or optimizing

□ Further, namely: -

I hereby declare that I have stated all uses completely.
Missing or incorrect information will be considered as an attempt to cheat.

ii

https://supermaven.com/

Contents

List of Tables v

List of Figures v

List of Listings v

List of Abbreviations vi

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Structure of this report . 2

2 Background 3
2.1 The A* Pathfinding Algorithm . 3

2.1.1 Other Pathfinding Algorithms . 3
2.1.2 Heuristics of A* . 3

2.2 Maze Generation . 4
2.3 Nuitka . 5
2.4 numba . 5
2.5 PyO3 . 6

3 Methodology 6
3.1 A naive implmetation . 6
3.2 Taking it further with the standard library 7
3.3 Nuitka . 7
3.4 Leveraging numba . 8
3.5 Using Rust with Python: PyO3 . 8
3.6 Classical bindings: A C++ interface . 9

4 Performance Evaluation 10
4.1 Benchmark Environment . 10
4.2 Benchmark Metrics . 10
4.3 Test Dataset Design . 11
4.4 Results by Implementation . 11
4.5 Performance Comparison . 11

5 Discussion 13
5.1 Implementation Trade-offs . 13

5.1.1 Standard Library . 13
5.1.2 nuitka . 13
5.1.3 numba . 14
5.1.4 PyO3 . 15
5.1.5 C++ with pybind11 . 15

5.2 Researcher Experience Analysis . 16
5.3 HPC Relevance . 16

iii

6 Conclusion 16
6.1 Summary . 16
6.2 Future Work . 17

References 18

A Appendix A1
A.1 Means by Implemenation . A1
A.2 Code Snippets . A1
A.3 Contribution List . A1

iv

List of Tables
1 Rounded execution times (ns) for Maze Size 10x10 (first five rows), seed,

and size columns are omitted. 11
2 Rounded execution times (ns) for Maze Size 100x100 (first five rows),

seed, and size columns are omitted. 12
3 Rounded execution times (ns) for Maze Size 1000x1000 (first five rows),

seed, and size columns are omitted. 12

List of Figures
1 Heatmap Implementation Comparisson . 12
2 Speedup Heatmap for implementation comparisson 13
3 Comparison between mean execution times excluding numba 14
4 Bar Plot of Mean Performance . 15
5 Mean execution Time of the Naive Implementation Across Maze Sizes . . . A1
6 Mean execution Time of the Standard Library Implementation Across Maze

Sizes . A2
7 Mean execution Time of the PyO3 Implementation Across Maze Sizes . . . A2
8 Mean execution Time of the numba Implementation Across Maze Sizes . . . A3
9 Mean execution Time of the nuitka implemntation Across Maze Sizes . . . A3
10 Mean execution Time of the C++ Implementation Across Maze Sizes . . . A4

List of Listings
1 Command Line usage of the maze generator 4
2 Compiling Python source code into a binary executable with nuitka. 8
3 Declaring a module class in PyO3 (Rust) 9
4 Declaring a class with a struct in PyO3 (Rust) 9
A4listing.5

v

List of Abbreviations
HPC High-Performance Computing

API Application Programming Interface

BFS Breadth-First-Search

DFS Depth-First-Search

JIT Just-In-Time

FFI Foreign-Function Interface

vi

Python Performance Optimization leveraging Native Implementations

1 Introduction
1.1 Motivation

The four pillars of modern science consist of theory, simulation, big data analytics as well
as experimentation. Computers are used for the latter three of those pillars.1

With reconstructing complete simulations of car accidents from a few photos, analyzing
multiple magnitudes of parameters for weather predictions, the factor of computational
performance is crucial.[8]

One of the most used languages in the area of machine learning is Python.[16]
Python has the benefits of being a mature language, is easy to learn and capable[16]

These attributes of Python make it a fitting programming language which helps to im-
plement and test thoughts and theories in high-velocity research areas, such as machine
learning[16]

To quickly test and visualize ideas, researchers tend to use a library suite called
Jupyter.[10] Jupyter Notebooks2 is a feature of the Jupyter Lab suite, which allows
the researcher to quickly scratch down some blocks of python code and markdown notes,
and execute it in blocks.

Blocks of scratch code accumulate and can make up a whole research codebase.[20]
This is far from a performance-optimized solution.
To extend on this thought, the previously mentioned high-velocity of machine learning

research community tends to publish python-only packages.
The same logic implemented in different ways in Python can have a significant impact

on performance.[15].
It can not be assumed that researchers also have the ability to write performance-

optimized code in addition to their professional skill set.
In a scenario where this software is to be run on HPC, those performance bottlenecks

become a crucial factor in the efficacy of collecting information.
The lack of proper scripting, fast iterations, and the inability of the software produced

to leverage the benefits of HPC could leave room for optimization.
In this report, we evaluate different approaches to enhance the performance of Python

code, with several degrees of refactorization and reimplemantion to gain performance
improvements.

Those factors influence the usage in both a computational factor and in a manpower
factor, which influence the overall cost of using an HPC cluster to perform computations.

We will explore which solutions offer the best computational performance benefit,
without involving a significant amount of manpower.

The chosen test set on which we measure the said improvements and factors consists
of a maze generator and an implementation of the A*-Pathfinding algorithm. We test the
efficacy of serveral implementations and frameworks, which are logically identical.

1https://hps.vi4io.org/_media/teaching/autumn_term_2022/hpda22-01.pdf, visited April 6,
2025.

2https://jupyter.org/, accessed April 6, 2025.

Section 1 Valerius A. Mattfeld 1

https://hps.vi4io.org/_media/teaching/autumn_term_2022/hpda22-01.pdf
https://jupyter.org/

Python Performance Optimization leveraging Native Implementations

Those frameworks and implementations consist of:

1. a naive pure-pythonic version, Section 3.1

2. a nuitka3 compiled version of the former, Section 3.3

3. a standard library extended version of 1., Section 3.2

4. a version leveraging the benefits of numba4

5. an implementation, which leverages the Rust5 programming language in conjunction
with PyO36, Section 3.5

6. and bindings written in C++, Section 3.6

The order of the listed implementations increases with the participation of software
engineers and developers.

The A * algorithm has been chosen because it is well-studied[22] and non-trival, while
being minimal enough to be used as a test.

1.2 Contributions

One goal is to examine the development experience of a researcher using the tools listed
in Section 3. The implementations of the said variations can be found on GitHub, and
PyPi.com for the published packages. Which are listed in Appendix A.3

The published packages double as a performance-enhanced A* Python library in gen-
eral.

Furthermore, during a search for a maze generator, which products are used as a test
data set are also published on GitHub7. It utilizes a modified version of Prim’s maze
generation algorithm[2], as well as some verification and maze generation parameters, e.g.
number of valid paths.

1.3 Structure of this report

This report starts with Section 2, where we will introduce the A* Pathfinding algorithm,
along with similar algorithms used in the project. In this chapter, Section 2.1.2 describes
what sets the A* Pathfinding algorithm apart from the others. Also, for generating
the test data, as mentioned in Section 1.2 - are mazes. A brief introduction to a pub-
lished maze generator, which was created along with this project, is written in chapter
Section 2.2. Furthermore, the technologies and frameworks used to enhance python per-
formance outside its standard library are briefly elaborated in Section 2.3, Section 2.4,
and Section 2.5.

Afterwards, Section 3 starts with a naive implementation in Section 3.1, which will
serve as the baseline for benchmarking and performance comparison. Then, Section 3.2,
describes how the standard library tries to optimize the program without using external
Python libraries. Section 3.3 elaborates on how this alternative compiler bundles the

3https://nuitka.net/, visited April 6, 2025.
4https://numba.pydata.org/, visited April 6, 2025.
5https://www.rust-lang.org/, visited April 6, 2025
6https://pyo3.rs/v0.15.1/
7https://github.com/valerius21/Stara-Maze-Generator

Section 1 Valerius A. Mattfeld 2

https://nuitka.net/
https://numba.pydata.org/
https://www.rust-lang.org/
https://pyo3.rs/v0.15.1/
https://github.com/valerius21/Stara-Maze-Generator

Python Performance Optimization leveraging Native Implementations

naive program into an executable, and Section 3.4 explores the possibilities of Just-In-
Time (JIT) features. Additionally, we also use Python extensions, which are written in
Rust (Section 3.5) and C++ (Section 3.6).

We benchmark each implementation and look at its performance in Section 4. In Sec-
tion 4.1, we describe the benchmark environment and the benchmark metrics, Section 4.2.
The way in which the test data are generated and the results are stored is elaborate Sec-
tion 4.3. The previous chapters including the benchmarking will yield the results for each
framework, which are shown in Section 4.4. Those results are compared with each other
in Section 4.5.

In Section 5, we discuss the probable causes of the observed performance gains and
losses and close the report with a conclusion in Section 6.

2 Background
2.1 The A* Pathfinding Algorithm

With the issue of finding connected paths or grids, pathfinding algorithms are of the
essence. Its use cases range from the navigation of streets with GPS[26] to programming
movement algorithms in video game development [5].

Among those pathfinding algorithms, Breadth-First-Search (BFS), Depth-First-Search
(DFS), and the A* Pathfinding algorithm are well studied.[9]

2.1.1 Other Pathfinding Algorithms

BFS searches all its neighbors in a graph before moving deeper, thereby exploring in
a horizontal direction at first and yielding the shortest possible path.[9] This has the
downside that this algorithm is not suitable for large spaces.

The maze generation in chapter 2.2 utilizes BFS to find at least one valid path in a
given maze.

DFS In contrast, the DFS algorithm follows the connected nodes as deep as possible
into the graph, before backtracking.[9] It does not guarantee the most efficient solution if
multiple fitting paths are available, and can be stuck if it encounters an infinite solution.
[9]

2.1.2 Heuristics of A*

What sets A* apart from classical pathfinding algorithms like the ones mentioned above
is that it utilizes heuristics to prioritize paths that lead to the goal, thus balancing the
following fundamental factors:

• g(n) - The cost from the current node to the start node (known cost)

• h(n) - The heuristic for estimating the cost from the current node to the end node
(future cost)

• f(n) = g(n) + h(n) - The total estimated cost of the path

Section 2 Valerius A. Mattfeld 3

Python Performance Optimization leveraging Native Implementations

To extend on the properties of A* and its heuristic function, A* itself becomes admis-
sible if its heuristic is.[6]8

In this experiment, we chose the Manhatten distance as our heuristic function:

h(n) = |x1 − x2|+ |y1 − y1|

where, respectively, (x1, x2) and (y1, y2) are the current node and goal node.
This heuristic is fitting for our usecase, since we are dealing with a grid-like pattern,

where the movements are limited to four, nondiagonal directions, namely up, down, left,
and right.

2.2 Maze Generation

For this benchmark to work, we need a grid in which a path must be found. A grid, where
some paths lead to a goal, is a maze. Therefore, the idea came to build a maze generator,
which creates test data, fitting to our benchmarking requirements, but also can serve as
a general maze generator for various sizes. The features include:

1. Batch generation of random mazes using a modified version of Prim’s algorithm[2]

2. A configurable maze size with a specified minimum number of valid paths

3. Reproducable maze generation leveraging seeds

4. Exportable mazes as HTML visualization including solution paths and JSON seri-
alization

5. A data structure, in which the maze can be represented, e.g. NumPy arrays

The maze generator’s source code is on GitHub9.
Although usable with a command line interface, as shown in Listing 1, it also provides

a Python Application Programming Interface (API) (Listing 5), which we will import into
the implementations mentioned in Section 3.

1 # Generate a default 40x40 maze
2 generate-maze
3

4 # Generate a 20x20 maze with custom start/goal positions
5 generate-maze --size 20 --start 0 0 --goal 19 19
6

7 # Generate a maze with a specific seed and show solution
8 generate-maze --seed 123 --draw-solution
9

10 # Generate a maze with more paths
11 generate-maze --min-valid-paths 5

Listing 1: Command Line usage of the maze generator
8https://courses.cs.duke.edu/fall11/cps149s/notes/a_star.pdf
9https://github.com/valerius21/Stara-Maze-Generator/, visited April 6, 2025.

Section 2 Valerius A. Mattfeld 4

https://courses.cs.duke.edu/fall11/cps149s/notes/a_star.pdf
https://github.com/valerius21/Stara-Maze-Generator/

Python Performance Optimization leveraging Native Implementations

The maze data structure is a 2D NumPy array, where its cells represent either a wall
with the value 0 or a passage with 1.

The tool has the additional feature of exporting Mazes in a visual representation
having HTML, including color-coded cells for walls, passages, start, and goal; containing
also a highlighted solution path.

The generator uses the BFS algorithm (Section 2.1.1) to find the path of the solution
and validate that there is a fixed number of solutions. (Appendix A.3)

2.3 Nuitka

In essence, Nuitka compiles Python code to C extensions or standalone executables, re-
quiring no additional syntax or decorators. This is optimal, when rewriting large source
code bases is impractical due to its size or economical aspect.

Nuitka aims to maintain complete compatibility with the CPython interpreter, which
is the standard interpreter for Python;[17] therefore, ensuring that the code behavior is
identical to the execution of the typical Python program.

Optimization steps nuitka performs during the compiliation of the source program
include:

• Constant Folding - Nuitka predicts certain pythonic expressions and substitutes
them with the direct results, e.g. 5 + 6 will be replaced with 11, and range(3)
with the evaluated expression.

• Constant Propagation - Similar to constant folding, Nuitka can determine the values
of variables where possible, thereby removing redundant computations.

• Builtin Call Prediction - Nuitka can predict results of built-in python functions like
type(), len(), and, as mentioned, range().

• Exception Propagation - Exception occurances, which can be detected at compile
time, are optimized in terms of the available code paths, allowing the paths, which
raise exceptions to be optimized during runtime.

The documentation shows those features activly being listed until version 2.0.6
(March 2024), where the current release version is 2.6. This report uses the version
2.5.9 with the assumption that the optimizations above are still in place.[12]

For our purpose, Nuitka appears to be a simple fix to improve native Python code
to enhance performance by compiling it down to a functionally identical C executable.
With promising performance improvements, we can assume that rather simple approach
researchers could improve the run-time performance of a python codebase with little time
and extra technical knowledge outside the typical terminal workflow.

2.4 numba

Another python compiler that claims to be on a high-performant level is numba. Its main
feature is that it uses JIT compilation in conjunction with parts of the LLVM10 , while
running the Python program.

10https://numba.readthedocs.io/

Section 2 Valerius A. Mattfeld 5

https://numba.readthedocs.io/

Python Performance Optimization leveraging Native Implementations

numba claims that it can run Python programs at runtime speeds that pair with
FORTRAN and C.11 Furthermore, its feature set extends to simple parallelization, com-
patibility with the CUDA library for GPU programming, and native integrations with
scientific libraries such as numpy12.

The documentation shows that there are several methods to make the Python program
leverage the numba library.

The approach we will be following in this report is the recommended method of adding
decorators to the Python functions, which we expect to have a significant runtime.

The relevant decorator would be @njit, which is an alias of the @jit(nopython=True)
annotation. The option nopython=True which does the following:

[nopython=True is a] Numba compilation mode that generates code that does
not access the Python C API. This compilation mode produces the highest
performance code, but requires that the native types of all values in the function
can be inferred.[1]

Taking the previous points into account, a bare Python project would need refactors
on its critical functions, which requires knowledge of the runtimes of the given functions.

Moreover, numba is rather picky and states in its "A 5 minute guide to Numba"13

that it works best with math-heavy code and omits information on other operations.
Also, numba must be able to identify the types of python objects,14 which can lead to

heavy refactors.

2.5 PyO3

With PyO3 we are facing an extension module instead of a whole interpreter replace-
ment for python. PyO3 provides Rust bindings and toolings for creating native python
extentions.[7] It also supports Rust to python embedding.[7]

PyO3 provides an essential toolkit to complete most of the work. For example, for
math-related use cases, it provides build-in packages to interface with numpy[7], asyn-
cio[7], and converting utilites of structured data between those languages[7].

While being well documented, PyO3 requires basic knowledge of rust and a complete
implementation of the functions that comsume significant time in it; thereby refactoring
between languages to create those native extensions, requirering an in-depth knowledge
on how software needs to be developed.

3 Methodology
3.1 A naive implmetation

As the baseline, we implement a pure pythonic version of the A* algorithm. The naive
version and all subsequent versions will contain only the methods necessary to solve the
problem of the shortest path with A*, and will import all other ones from the maze
generator helper package from Section 2.2.

11https://numba.readthedocs.io/
12https://numba.readthedocs.io/
13https://numba.readthedocs.io/en/stable/user/5minguide.html
14https://numba.readthedocs.io/en/stable/

Section 3 Valerius A. Mattfeld 6

https://numba.readthedocs.io/
https://numba.readthedocs.io/
https://numba.readthedocs.io/en/stable/user/5minguide.html
https://numba.readthedocs.io/en/stable/

Python Performance Optimization leveraging Native Implementations

This variation is used to simulate python source code written by a novice to python,
e.g. a researcher who occasionally uses python for computation.

The methods of the implemented search class are at least restricted to:

• __init__(self, maze) - the constructor, taking a maze to solve as a parameter

• manhatten_distance(pos1, pos2) - the heuristic function, implemented statically
if possible following the definition in chapter 2.1

• get_lowest_f_score_node(f_scores, open_set) - Get the node with the lowest
f_score from the open set. The open set are the nodes which are considered,
and it yields the position with the lowest f_score, or shortest path up until then
find_path(start, goal) - wraps all the components and the business logic of the
A* algorithm, executes it and returns a list with nodes that represent the shortest
path, if there is one.

Note that in all cases, the start and end goals are in the same positions, namely
start := (1, 1) and goal := (mazewidth − 1,mazeheight − 1). Those are chosen that, for
every test, we try to reach the furthest point inside the maze.

The implementation of the naive approach is found in
stara_astar_naive/stara_astar/astar.py.15

3.2 Taking it further with the standard library

The Python standard library offers a number of packages to enhance datastructures and
caching.

This version is intended to simulate the same algorithm but written by a more seasoned
Python developer, which avoids any extra dependencies outside of Python itself.

The focus in this implementation is to leverage Python’s focus on the last-recently
used (LRU) cache to perform faster operations during the execution of the find_path()
method.

In addition to helper functions and dataclasses, the logic of the source code is identical
to the one provided in the chapter 3.1.

The code can be found in
stara_astar_stdlib/stara_astar_stdlib/a_star_stdlib.py.16

3.3 Nuitka

This variant is identical to the naive version from chapter 3.1, but with the exception that
we have added nuitka as a dependency to build an executable.

This is done by running the command in Listing 2.
After successfully compiling the source, we are left with a single executable binary.

15https://github.com/valerius21/stara_astar_naive/blob/75e8a403dbe9351f08c6bc01de3d01887ae09862/
stara_astar/astar.py

16https://github.com/valerius21/stara_astar_stdlib/blob/1a2e425ceb405940e222fbc530b472962adf0b77/
stara_astar_stdlib/a_star_stdlib.py

Section 3 Valerius A. Mattfeld 7

https://github.com/valerius21/stara_astar_naive/blob/75e8a403dbe9351f08c6bc01de3d01887ae09862/stara_astar/astar.py
https://github.com/valerius21/stara_astar_naive/blob/75e8a403dbe9351f08c6bc01de3d01887ae09862/stara_astar/astar.py
https://github.com/valerius21/stara_astar_stdlib/blob/1a2e425ceb405940e222fbc530b472962adf0b77/stara_astar_stdlib/a_star_stdlib.py
https://github.com/valerius21/stara_astar_stdlib/blob/1a2e425ceb405940e222fbc530b472962adf0b77/stara_astar_stdlib/a_star_stdlib.py

Python Performance Optimization leveraging Native Implementations

1 python -m nuitka --follow-imports --standalone \
2 --onefile ./stara_astar_nuitka/astar_nuitka.py

Listing 2: Compiling Python source code into a binary executable with nuitka.

3.4 Leveraging numba

The numba variation was rather tricky to implement, since its support to classes is still
experimental.17 Therefore, refactoring has taken place to leverage the advantages of
numba in conjunction with numpy, since the documentation claims first-class support for
this library.18 Otherwise, as discussed in chapter 2.4, the @njit decorator has been added
to almost every critial function to enforce the use of the LLVM, and the avoidance of the
Python interpreter.

Numba was also picky in terms of dependencies, since its compatibility with numpy
versions is limited. In the experiment a release candidate (0.61.0-rc2) is used since it
supports most of the new features needed of numpy (2.1.3).

This variant varies strongly to the previous variants, due to it requiring a rethinking
position for datastructures in the ones provided by numpy, namely numpy NDArrays,
which, in some way, simplifies the program code. The numba version still retains its API
to have similar calls to the pathfinding algorithm as in the previous variants.

The code is available in stara_astar_numba/stara_astar_numba/astar_numba.py19.

3.5 Using Rust with Python: PyO3

Entering the territory of Python extensions, we described the in and outs of PyO3 in
chapter 2.5.

Python extensions are usually written in a lower-level language than C and C++.
Without question, this variant requires the knowledge of another programming lan-

guage, namely Rust. Thereby, it is a more time intensive and difficult implementation
compared to the previous variants for a researcher or user who does not have any knowl-
edge in that regard. Additionally, knowledge of Python packge structuring and Foreign-
Function Interface (FFI) is helpful when writing these extensions.

The goal with that variant is to write the runtime-expensive functionally in Rust, hop-
ing to improve on runtimes, since the execution instruction do not need to be interpreted.

Starting a project with PyO3 is rather simple. Following the documentation20, we
create a new Python project with an attached virtual environment. Subsequently, a
dependency maturin is installed. maturin helps to set up the python packge structure,
as well as the rust project, which aims to compile to the extension.

First, we write the extension part. PyO3 helps to define the functions and objects
that are relevant for bindings using Rust macros Listing 3.

17https://numba.readthedocs.io/en/stable/user/jitclass.html#jitclass, visited April 6,
2025

18https://numba.readthedocs.io/en/stable/user/vectorize.html, visited April 6, 2025
19https://github.com/valerius21/stara_astar_nuitka/blob/d803a5b5804f8e30e827da0fd2d2cd36c3b181dd/

stara_astar_nuitka/astar_nuitka.py
20https://pyo3.rs/v0.15.1/

Section 3 Valerius A. Mattfeld 8

https://numba.readthedocs.io/en/stable/user/jitclass.html##jitclass
https://numba.readthedocs.io/en/stable/user/vectorize.html
https://github.com/valerius21/stara_astar_nuitka/blob/d803a5b5804f8e30e827da0fd2d2cd36c3b181dd/stara_astar_nuitka/astar_nuitka.py
https://github.com/valerius21/stara_astar_nuitka/blob/d803a5b5804f8e30e827da0fd2d2cd36c3b181dd/stara_astar_nuitka/astar_nuitka.py
https://pyo3.rs/v0.15.1/

Python Performance Optimization leveraging Native Implementations

1 #[pymodule]
2 fn stara_rs(m: &Bound<'_, PyModule>) -> PyResult<()> {
3 m.add_class::<MazeSolver>()?;
4 Ok(())
5 }

Listing 3: Declaring a module class in PyO3 (Rust)

For example, Listing 3 defines which classes and methods are visible to Python under
which alias. Listing 4 defines a rust struct that will be visible to Python after compilation.
Furthermore, #[pymethods] will define which methods from the extension are visible to
python.

1 #[pyclass]
2 struct MazeSolver {
3 width: usize,
4 height: usize,
5 data: Vec<u8>, // Flat array: 0 = wall, 1 = path
6 visited: Vec<u8>, // Visit tracking: 0 = unvisited,
7 // 1 = open, 2 = closed
8 parent: Vec<u32>, // Changed to u32 to support larger mazes
9 open: [(i32, u32); 1024], // Changed to u32 indices

10 open_len: usize,
11 }

Listing 4: Declaring a class with a struct in PyO3 (Rust)

Implementing the extension was straightforward with basic rust knowledge. The doc-
umentation is clear and understandable. A package containing the binaries has been
published in PyPi in order to simplify the installation process in other projects, such as
the benchmarking project relevant in chapter 4.

The only drawback encountered was that to have a structured interface with Python
classes, the extension needed to be wrapped in a simple class in order to be accessed
similarly to the other variations.[7]

The extension module source is available on Github21

3.6 Classical bindings: A C++ interface

Another library, which helps to write Python extensions on a native level is pybind1122.
The extensions are written in C++, and it helps to expose C++ types to Python and
vise versa. This not only has the benefit of writing high-performant modules, but also
allows us to integrate existing C++ codebases into Python.

21https://github.com/valerius21/stara_astar_rs
22https://github.com/pybind/pybind11, accessed April 6, 2025.

Section 3 Valerius A. Mattfeld 9

https://github.com/valerius21/stara_astar_rs
https://github.com/pybind/pybind11

Python Performance Optimization leveraging Native Implementations

The key features of pybind11 start out with the integration of STL containers[21],
smart pointers like std::shard_ptr[21], and numpy arrays. The support of pybind11
contains the C++ versions C++11 to C++18.[14] Various optimizations are included at
compile time, which are function signature precomputation, automatic function vector-
ization, and buffer protocols for better memory handling.[4]

The drawbacks are similar to those mentioned in Section 3.5, which includes that the
binaries need to be compiled multiple times for various architectures and that software
developers in contact with this framework need to know the basics of C++.

Implementing a C++ extension for Python with the help of pybind11 requires ad-
ditionally the knowledge of C++ build tools and, for an optimized implementation of a
critical part of source code, a deeper knowledge of this language and memory management,
making it by far the most difficult variation to implement.

The source code for this extension can also be found on GitHub23.

4 Performance Evaluation
In this chapter, we describe the benchmark environment (Section 4.1) in which the hard-
ware specifications and programs are listed. Section 4.2 elaborates which benchmarking
tools and functions that are used to measure the results of the tests. Then Section 4.3
explains how the test data set is generated and set up. The next part, Section 4.4, will
show the results found for each implementation, which is followed by Section 4.5 where
the results from the latter chapter are compared with each other.

4.1 Benchmark Environment

The benchmarking is performed on a single MacBook Pro 16" (2021) with an M1 Pro pro-
cessor that includes 32 gigabytes of RAM. Every non-critical process is terminated during
the benchmarking, and the device is fully charged running on power-supply consumption.
Implicitly, the device is running macOS Sequoia 15.3.1. with the Python version being
3.13.2 and clang-1700.0.13.3.

4.2 Benchmark Metrics

The benchmarking will measure the median of 1000 executions in nanoseconds for each
implementation listed in the Section 3 per run. The benchmark is designed to mea-
sure only the execution time of the find_path function, which effectively executes the
pathfinding algorithm. To measure each function call, the perf_counter_ns24 in-built
python function is used.

Since the perf_counter_ns function utilizes the highest-resultion clock available for
the current system.

The configuration can vary for different hardware setups.25

In order to measure the performance of the various implementations from Section 3,
different maze sizes have been generated. The mazes are reproducable by seed, as men-
tioned in Section 2.2. The generated sizes are 10x10, 100x100, and 1000x1000. For each

23https://github.com/valerius21/stara_cpp, visited April 6, 2025.
24https://docs.python.org/3/library/time.html#time.perf_counter, visited April 6, 2025.
25https://docs.python.org/3/library/time.html#time.get_clock_info, visited April 6, 2025.

Section 4 Valerius A. Mattfeld 10

https://github.com/valerius21/stara_cpp
https://docs.python.org/3/library/time.html##time.perf_counter
https://docs.python.org/3/library/time.html##time.get_clock_info

Python Performance Optimization leveraging Native Implementations

size, 1000 mazes have been generated, and across all implementations, each pathfind-
ing implementation has been run 1000 times. The average values of each run for each
implementation are saved. The goal here is to analyze and compare their performance
characteristics. This also implies that with increasing maze size, the complexity of the
paths within the mazes also increases significantly, which should affect overall execution
time and efficiency. The possibility of having at least three valid paths forces the path-
finding algorithms to evaluate the shortest one with retrospect to its specification.

The complete implementation of the benchmarking programme can be found in the
linekd repository in Appendix A.3.

4.3 Test Dataset Design

In addition to the different maze sizes of 10x10 (small), 100x100 (medium), and 1000x1000
(large), we also fix the start and goal coordinates of each maze, with the start coordinate
at (1, 1) and the goal at (mazesize − 1,mazesize − 1).

It is sufficient to retain the seed of the generated maze in order to reconstruct it,
allowing one to reduce the benchmarking data size while also retaining the option to
repoduce mazes on-demand.

We will utilize a benchmarking generator tool from Appendix A.3, written entirely for
this purpose. The capabilities of the benchmarking generator tool allow one to generate
a given number of test mazes from seeds, the seeds themselves, and save it to a python
pickle binary file[13]. An example call to the benchmark generator tool can be found in
Listing 1.

4.4 Results by Implementation

After running the benchmarks, the results for the average times as described in Chapter
4.2, we get python pickle files containing the execution times. Table 1, Table 2, and
Table 3 show the first five results for each run with respect to its size.

Table 1: Rounded execution times (ns) for Maze Size 10x10 (first five rows), seed, and
size columns are omitted.

naive stdlib pyo3 numba cpp nuitka
1832 3118 134 886551 406 10769
2800 4725 198 1580 653 11517
2819 4714 195 1587 651 11553
2833 4605 194 1607 653 10015
2794 4834 194 1577 650 11986

In Figure 5, the performance for the naive implementation is shown (naive). Figure 6
shows the standard library implementation (stdlib); Figure 9, Figure 8 and Figure 7
show the performance of the implementation of nuitka (nuitka), numba (numba), and
PyO3 (pyo3) implementation respectively. Finally, we have Figure 10, displaying the
performance of the C++ implementation (cpp).

4.5 Performance Comparison

When we look at Figure 1, we set up the implementations for comparison. There is a
strong indication that the performance of the numba implementation strongly deviates

Section 4 Valerius A. Mattfeld 11

Python Performance Optimization leveraging Native Implementations

Table 2: Rounded execution times (ns) for Maze Size 100x100 (first five rows), seed,
and size columns are omitted.

naive stdlib pyo3 numba cpp nuitka
1558 2860 259 83772 405 11322
2828 4384 434 26094 445 10817
2778 4732 425 26242 482 12534
2802 4425 435 26176 443 10590
2772 4468 433 26089 446 10903

Table 3: Rounded execution times (ns) for Maze Size 1000x1000 (first five rows), seed,
and size columns are omitted.

naive stdlib pyo3 numba cpp nuitka
1608 2923 8990 3238974 426 11098
2798 4620 10624 2982014 427 10476
2841 4803 11061 2934932 427 9463
2872 4531 10798 3150010 428 10481
2849 4722 10768 3207305 427 11071

from the others. Therefore, we exclude it in some visualizations in this chapter.

Figure 1: Performance of all implementations across all maze sizes.

Relative to the naive implementation, we get a better comparison in Figure 2, visual-
izing the performance gains.

In Figure 3 and Figure 4, we can observe how the implementations scale on problem
size ran on the same dataset in terms of mean execution times.

Especially when comparing the performance gains on small problem sizes, the native
solutions shine with a relative speedup of 14.2x with PyO3 for 10x10 and 6x on 100x100
computations. By far the best overall performance is seen with the C++ extensions, even
showing a performance increase with growing problem size from 4.38x at 10x10 to 6.51x
for 1000x1000 grids compared to the naive implementation.

Section 5 Valerius A. Mattfeld 12

Python Performance Optimization leveraging Native Implementations

Figure 2: The relative improvement in performance in comparison to the naive implemen-
tation. Values ≤ 0 are have a worse performance than the naive implementation.

5 Discussion
In this section, we interpret the results of Section 4. Starting with the implementation
trade-offs in Section 5.1, where we look at the different implementations and their possible
causes for execution time speed-ups and slow-downs, we will look at the researcher or user
experience for adjusting existing code bases in Section 5.2 and the relevance of those results
for HPC in Section 5.3

5.1 Implementation Trade-offs

As we can observe, for example in Figure 4, Figure 1, and Figure 3, the naive implemen-
tation is not the worst performancewise.

5.1.1 Standard Library

Suprisingly, the standard library refactor has consistently shown no improvement at all
for all size problems. As we establish later in Section 5.1.5, calls to C or C++ create an
additional overhead for the execution time. The Python Standart library makes use of
underlying C-optimized source code,26, possibly slowing the whole process down with a
nonbeneficial call-overhead to computational-benefit ratio.

5.1.2 nuitka

The compilation of an executable binary file with nuitka, similar to the implementation
of the naive and standard library, was stable in its execution times in all problem sizes.

This problem can be caused by a number of reasons. Starting with the nuitka startup
overhead can significantly slow the program down, [25] However, the Python source code
for nuitka accounted for that by saving the results in memory while benchmarking without

26https://github.com/python/cpython/blob/main/Modules/mathmodule.c, visited April 6, 2025

Section 5 Valerius A. Mattfeld 13

https://github.com/python/cpython/blob/main/Modules/mathmodule.c

Python Performance Optimization leveraging Native Implementations

10x10 100x100 1000x1000
Maze Size

0

2,000

4,000

6,000

8,000

10,000

M
ea

n
E

xe
cu

ti
on

T
im

e
(n

s)
Comparison of Mean Execution Times (Without Numba)

Implementation
naive
stdlib
pyo3
cpp
nuitka

Figure 3: Comparison between mean execution times excluding numba

taking the startup into account. (Appendix A.3) Another reason, the nuitka documenta-
tion for performance issues lists, is the issue of dependency creep, [19] Here, the improper
inclusion of Python dependencies can cause a fallback to a slower Python API call. Also,
there is also the possibility of static linking issues in relation to libpython, a shared object
from Python,[11]However, currently there is no obvious way to confirm this. Therefore,
the question arises of whether nuitkas performance issues are caused by improper compi-
lation, dependencies, or that this benchmark stands as a particular difficult job for this
compiler.

5.1.3 numba

numba provides a 1.11x increse in speedup when run on small problem sizes (10x10), but
falls off for medium sized problems, and is significantly slower than any other solution
when it comes to large problem sizes.

Combined with dependency compatibility issues, mentioned in Section 2.4, Section 3.4,
a heavy refactor, which numba requires for any nonmathemetics-related use case, makes
it an unsuitable choice for consideration.

One performance issue could pose the compilation overhead at the beginning of the
first function call, which, however, seems unlikely, since the source code remains identical
across all problem sizes and even creates a speedup for small mazes.

Another cause could be parallelization overhead, which could create thread-management
and syncronization issues. Since we are executing the path-finding algorithm sequentially,
there is no reason to assume that this occurs.

Section 5 Valerius A. Mattfeld 14

Python Performance Optimization leveraging Native Implementations

Figure 4: Mean performance across all implementations compared.

Heavily reliant on simple code patterns, but offering first-class support for the NumPy
library; on the one hand, it seems unlikely that using vectorized operations including tem-
prary memory allocation could cause a performance issue. On the other hand, the docu-
mentation states that exactly this usage could cause such a slowdown [23] [24] Therefore,
making numba a difficult decision, and moreover not a recommendation for performance
increasing measures, when considering the refactoring drawbacks and unpredictable scal-
ing behavior for recommended practices.

5.1.4 PyO3

PyO3 shines, when used in conjunction with small and medium workloads. It outper-
forms every other implementation in that sector, increasing the speed by 14.2x for
10x10 mazes and 6.62x for 100x100 mazes, making it an excellent addition if the pre-
requisitions are met. Those include a basic knowledge of Rust and the availability of
resources for refactoring an existing codebase.

An indication why PyO3, or Rust in general can fall off with large array sizes can be
found on this GitHub Issue27. In summary, large-array transformation and copying can
add a significant amount of execution time.

Optimization in that regard (e.g. through partial array splitting) could reduce the
execution time of the PyO3 implementation.

The beforementioned benefits could greatly reduce cost for fitting scenarious, possibly
justifying resource expanses in that regard.

5.1.5 C++ with pybind11

The best overall performance for all size problems has the C++ extension with pybind11.
Ranging from 4.38x (10x10) for 6.51x (1000x100), even showing a slight speed-up
for larger problem sizes.

The benefits of C++ are that it can be highly optimized. Compilers can also optimize
the code. The Python-to-C++ interface overhead is significant for smaller function calls,

27https://github.com/PyO3/pyo3/issues/3787, visited April 6, 2025.

Section 5 Valerius A. Mattfeld 15

https://github.com/PyO3/pyo3/issues/3787

Python Performance Optimization leveraging Native Implementations

[3] However, when heaver workloads are processed, the benefits outweigh this issue [18]
This reports implementation does not require any external system dependencies, and
therefore can operate completely on its own; making it with the beforementioned reasons
the best recommendation for performance improvements, if the resources are available.

5.2 Researcher Experience Analysis

In retrospect with the researching user that wants to optimize the execution time of
Section 1, the best course of action would be to remain with the naively implemented
program code. If such a user has any knowledge, even on a novice level, he could attempt
to optimize the performance-ciritcal section with PyO3 or C++, which could result in
significant performance benefits. For long running programs, the saved execution time
must outweigh the time spent refactoring in order to reap the benefits of optimizing
those code passages. Furthermore, debugging a multi-language project adds additional
complexity for maintenance and should be carefully considered.

5.3 HPC Relevance

When dealing with slow Python codebases for long running experiments, a few optimiza-
tions in performance critical areas could speed up the execution time of those programs
significantly, saving computational power, and therefore provide a HPC cluster with more
capacities for other computations. In conjunction with heavy workloads per node, the
C++ extension could pose as a possible option for improvement. However, if smaller
workloads are of the essence, Rust extensions could create significant performance bene-
fits over Python.

6 Conclusion
6.1 Summary

In this report, we evaluated a number of approaches to obtain a speedup of execution time
for Python code. For that, we focused on different implementations of the A* pathfinding
algorithm. In the benchmark, detailed in Section 4.5, we saw that there are significant
performance differences between implementations.

The performance across all impellers, which are:

• naive, for the baseline implementation

• stdlib, for the standard library implementation

• nuitka, the binary executable variant

• numba, for JIT variation

• Pyo3, as a Rust extension

• C++, as a C++ extension with pybind11

Section 6 Valerius A. Mattfeld 16

Python Performance Optimization leveraging Native Implementations

showed, that not all approaches yield better results than our baseline measurement. The
data shown in Figure 4, and Figure 2, indicate that, suprisingly, event the standard
library variation has no improvement over the naive. This is possibly due to the overhead
of calling C-optimized code from the standard library, which outweighs the computational
advantages Section 5.1.

Furthermore, the PyO3 implementation showed remarkable performance for small and
medium workloads, creating a 14.2x speed increase for 10x10 mazes and 6.62x for medi-
ums, compared to the baseline approach. This makes extension with PyO3 a suitable
choice when working within these problem sizes (Section 5.1).

The best overall performance gain was achieved with the C++ extensions across all
problem sizes. The speed ups range from 4.38x to 6.51x for 10x10 and 1000x1000 mazes,
respectively, even gaining relative performance for increasing problem sizes, which is elab-
orated in Section 5.1.5.

Against initial expectations, the numba variant was only notibly faster on smaller
problemsets, with a 1.11x increase in speed for 10x10 mazes, but degraded significantly
on others. That makes it the worst performer for larger problem sets. The issues, as
discussed in Section 5.1, indicate that numba is limited in regard to complex non-math-
heavy applications.

We also examine the experience of researchers or users in Section 5.2. A critical trade-
off between development effort and performance gain is discussed. For non-critical Python
code, optimizations should not take place, but on the flipside circular passages, which get
called frequently, could pose as a potential refactoring point into either C++ or Rust.
This could create substantial time savings in the long run, which is especially beneficial
for HPC environments, as noted in Section 5.3.

6.2 Future Work

Expanding the benchmark not only to pathfinding algorithms, but other computations
could reveal the benefits of the other considered frameworks, which did perform worse
than our baseline implementation.

Evaluation on different hardware in comparison to the one described in Section 4.1,
e.g., CPU architectures and operational systems, could reveal more insight in bigger
performance deltas.

A paralell implementation of the A* Pathfinding algorithm could pose as a more
accurate benchmarking model for cluster environments like HPC-Clusters, furthermore
evaluating the benefits of Python code optimization with the used frameworks in this
report.

Finally, exploring hybrid solutions, consisting of PyO3 optimized extensions for small
workload parts of a program in conjunction with C++ extensions for high workload
parts, could result in the best possible performance across all workload sizes, leveraging
the strength of both technologies as identified in Section 4.5.

Section 6 Valerius A. Mattfeld 17

Python Performance Optimization leveraging Native Implementations

References
[1] 5. Glossary — Numba 0.17.0-Py2.7-Linux-X86_64.Egg Documentation. url: https:

//numba.pydata.org/numba-doc/0.17.0/glossary.html (visited on 04/06/2025).

[2] Buckblog: Maze Generation: Prim’s Algorithm. url: https://weblog.jamisbuck.
org/2011/1/10/maze-generation-prim-s-algorithm (visited on 04/06/2025).

[3] Calling a C++ Function Is Roughly 2 Times Slower Then Calling a Native Python
Function · Issue #2005 · Pybind/Pybind11. GitHub. url: https://github.com/
pybind/pybind11/issues/2005 (visited on 04/06/2025).

[4] Frequently Asked Questions - Pybind11 Documentation. url: https://pybind11.
readthedocs.io/en/stable/faq.html (visited on 04/06/2025).

[5] Francesco Garavaglia et al. “Moody5: Personality-biased Agents to Enhance Inter-
active Storytelling in Video Games”. In: 2022 IEEE Conference on Games (CoG)
(Aug. 21, 2022). [TLDR] Moody5 is proposed, a preliminary solution designed to
help game designers create “personality-biased” agents able to interact in sensible
ways in the framework of interactive storytelling and could improve the gameplay
experience and replay value while providing a helpful Unity plugin for game de-
velopers., pp. 175–182. doi: 10.1109/CoG51982.2022.9893689. url: https:
//ieeexplore.ieee.org/document/9893689/ (visited on 04/06/2025).

[6] Heuristics. url: https://theory.stanford.edu/~amitp/GameProgramming/
Heuristics.html (visited on 04/06/2025).

[7] Introduction - PyO3 User Guide. url: https://pyo3.rs/v0.15.1/ (visited on
04/06/2025).

[8] Mandara G S and Prashant Ankalkoti. “Car Damage Assessment for Insurance Com-
panies”. In: International Journal of Advanced Research in Science, Communication
and Technology (June 23, 2022). [TLDR] In this proposed project the insurance
company can machine-driven the car damage analysis process without the need for
humans to analyse the damage done to the car., pp. 431–436. issn: 2581-9429. doi:
10.48175/IJARSCT-5048. url: http://ijarsct.co.in/june6i.html (visited on
04/06/2025).

[9] Mochammad Darip et al. “Comparison of BFS and DFS Algorithm for Routes to
Historical-Cultural Tourism Locations in Banten Province”. In: Journal of Advances
in Information and Industrial Technology 6.2 (Oct. 11, 2024). [TLDR] This research
aims to maximize tourists’ experience in visiting historical-cultural tourist attraction
locations in Banten Province by choosing optimal travel routes, thereby increasing
visit efficiency, minimizing travel time and distance, and enabling them to visit
more locations in a limited time., pp. 113–122. issn: 2716-1927, 2716-1935. doi:
10.52435/jaiit.v6i2.560. url: https://journal.ittelkom- sby.ac.id/
jaiit/article/view/560 (visited on 04/06/2025).

[10] Quantum News. Jupyter Notebooks. Sept. 23, 2024. url: https://quantumzeitgeist.
com/jupyter-notebooks-2/ (visited on 04/06/2025).

[11] Nuitka: An Extremely Compatible Python Compiler | Hacker News. url: https:
//news.ycombinator.com/item?id=28377541 (visited on 04/06/2025).

Section 6 Valerius A. Mattfeld 18

https://numba.pydata.org/numba-doc/0.17.0/glossary.html
https://numba.pydata.org/numba-doc/0.17.0/glossary.html
https://weblog.jamisbuck.org/2011/1/10/maze-generation-prim-s-algorithm
https://weblog.jamisbuck.org/2011/1/10/maze-generation-prim-s-algorithm
https://github.com/pybind/pybind11/issues/2005
https://github.com/pybind/pybind11/issues/2005
https://pybind11.readthedocs.io/en/stable/faq.html
https://pybind11.readthedocs.io/en/stable/faq.html
https://doi.org/10.1109/CoG51982.2022.9893689
https://ieeexplore.ieee.org/document/9893689/
https://ieeexplore.ieee.org/document/9893689/
https://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
https://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
https://pyo3.rs/v0.15.1/
https://doi.org/10.48175/IJARSCT-5048
http://ijarsct.co.in/june6i.html
https://doi.org/10.52435/jaiit.v6i2.560
https://journal.ittelkom-sby.ac.id/jaiit/article/view/560
https://journal.ittelkom-sby.ac.id/jaiit/article/view/560
https://quantumzeitgeist.com/jupyter-notebooks-2/
https://quantumzeitgeist.com/jupyter-notebooks-2/
https://news.ycombinator.com/item?id=28377541
https://news.ycombinator.com/item?id=28377541

Python Performance Optimization leveraging Native Implementations

[12] Nuitka: Python Compiler with Full Language Support and CPython Compatibility.
Version 0.5.14. url: http://nuitka.net (visited on 04/06/2025).

[13] Pickle — Python Object Serialization. Python documentation. url: https://docs.
python.org/3.13/library/pickle.html (visited on 04/06/2025).

[14] Pybind/Pybind11. pybind, Apr. 6, 2025. url: https: / / github . com/ pybind/
pybind11 (visited on 04/06/2025).

[15] Python Has a Reputation for Being Slow, Is That Reputation Warranted Even
You’re Using Numpy Effectively? - Python Help. Discussions on Python.org. Nov. 22,
2024. url: https://discuss.python.org/t/python-has-a-reputation-for-
being- slow- is- that- reputation- warranted- even- youre- using- numpy-
effectively/72044 (visited on 04/06/2025).

[16] Python Stretches Lead in Language Popularity Index. InfoWorld. url: https://
www.infoworld.com/article/2336419/python-stretches-lead-in-language-
popularity-index.html (visited on 04/06/2025).

[17] Python/Cpython: The Python Programming Language. url: https://github.com/
python/cpython/tree/main (visited on 04/06/2025).

[18] Arjun Sahlot. Speeding up Python 100x Using C/C++ Integration. Arjun’s Blog.
Apr. 14, 2023. url: https://arjunsahlot.hashnode.dev/speeding-up-python-
100x-using-c-integration (visited on 04/06/2025).

[19] Solutions to the Common Issues — Nuitka the Python Compiler. url: https :
//nuitka.net/user-documentation/common-issue-solutions.html (visited on
04/06/2025).

[20] Laszlo Sragner. How Can a Data Scientist Refactor Jupyter Notebooks towards
Production-Quality Code? Deliberate Machine Learning. Oct. 24, 2021. url: https:
//laszlo.substack.com/p/how-can-a-data-scientist-refactor (visited on
04/06/2025).

[21] STL Containers - Pybind11 Documentation. url: https://pybind11.readthedocs.
io/en/stable/advanced/cast/stl.html (visited on 04/06/2025).

[22] The A* Algorithm: A Complete Guide. url: https : / / www . datacamp . com /
tutorial/a-star-algorithm (visited on 04/06/2025).

[23] Troubleshooting and Tips — Numba 0.52.0.Dev0+274.G626b40e-Py3.7-Linux-X86_64.Egg
Documentation. url: https : / / numba . pydata . org / numba - doc / dev / user /
troubleshoot.html (visited on 04/06/2025).

[24] Itamar Turner-Trauring. The Wrong Way to Speed up Your Code with Numba.
PythonSpeed. Mar. 21, 2024. url: https://pythonspeed.com/articles/slow-
numba/ (visited on 04/06/2025).

[25] user258532. PyPy vs. Nuitka. Stack Overflow. Dec. 27, 2017. url: https://stackoverflow.
com/q/47992232 (visited on 04/06/2025).

[26] Wirarama Wedashwara et al. “Data Storage and Modeling System for GPS, Gyro
and Camera Data Using Apache Flume and Hadoop Map Reduce”. In: (2024),
p. 050027. doi: 10.1063/5.0200515. url: https://pubs.aip.org/aip/acp/
article-lookup/doi/10.1063/5.0200515 (visited on 04/06/2025).

Section Valerius A. Mattfeld 19

http://nuitka.net
https://docs.python.org/3.13/library/pickle.html
https://docs.python.org/3.13/library/pickle.html
https://github.com/pybind/pybind11
https://github.com/pybind/pybind11
https://discuss.python.org/t/python-has-a-reputation-for-being-slow-is-that-reputation-warranted-even-youre-using-numpy-effectively/72044
https://discuss.python.org/t/python-has-a-reputation-for-being-slow-is-that-reputation-warranted-even-youre-using-numpy-effectively/72044
https://discuss.python.org/t/python-has-a-reputation-for-being-slow-is-that-reputation-warranted-even-youre-using-numpy-effectively/72044
https://www.infoworld.com/article/2336419/python-stretches-lead-in-language-popularity-index.html
https://www.infoworld.com/article/2336419/python-stretches-lead-in-language-popularity-index.html
https://www.infoworld.com/article/2336419/python-stretches-lead-in-language-popularity-index.html
https://github.com/python/cpython/tree/main
https://github.com/python/cpython/tree/main
https://arjunsahlot.hashnode.dev/speeding-up-python-100x-using-c-integration
https://arjunsahlot.hashnode.dev/speeding-up-python-100x-using-c-integration
https://nuitka.net/user-documentation/common-issue-solutions.html
https://nuitka.net/user-documentation/common-issue-solutions.html
https://laszlo.substack.com/p/how-can-a-data-scientist-refactor
https://laszlo.substack.com/p/how-can-a-data-scientist-refactor
https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html
https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html
https://www.datacamp.com/tutorial/a-star-algorithm
https://www.datacamp.com/tutorial/a-star-algorithm
https://numba.pydata.org/numba-doc/dev/user/troubleshoot.html
https://numba.pydata.org/numba-doc/dev/user/troubleshoot.html
https://pythonspeed.com/articles/slow-numba/
https://pythonspeed.com/articles/slow-numba/
https://stackoverflow.com/q/47992232
https://stackoverflow.com/q/47992232
https://doi.org/10.1063/5.0200515
https://pubs.aip.org/aip/acp/article-lookup/doi/10.1063/5.0200515
https://pubs.aip.org/aip/acp/article-lookup/doi/10.1063/5.0200515

Python Performance Optimization leveraging Native Implementations

A Appendix
A.1 Means by Implemenation

10x10 100x100 1000x1000
Maze Size

2,770

2,775

2,780

2,785

2,790

2,795

2,800

2,805

2,810

M
ea

n
E

xe
cu

ti
on

T
im

e
(n

s)

2790

2771

2809
naive Implementation: Mean Execution Time by Maze Size

Figure 5: Mean execution Time of the Naive Implementation Across Maze Sizes

A.2 Code Snippets

A.3 Contribution List

• https://github.com/valerius21/stara_cpp

• https://github.com/valerius21/stara_astar_nuitka

• https://github.com/valerius21/stara_astar_rs

• https://github.com/valerius21/stara_astar_naive

• https://github.com/valerius21/stara_astar_numba

• https://github.com/valerius21/stara_astar_stdlib

• https://github.com/valerius21/Stara-Maze-Generator

• https://github.com/valerius21/stara-batch-benchmark

Section A Valerius A. Mattfeld A1

https://github.com/valerius21/stara_cpp
https://github.com/valerius21/stara_astar_nuitka
https://github.com/valerius21/stara_astar_rs
https://github.com/valerius21/stara_astar_naive
https://github.com/valerius21/stara_astar_numba
https://github.com/valerius21/stara_astar_stdlib
https://github.com/valerius21/Stara-Maze-Generator
https://github.com/valerius21/stara-batch-benchmark

Python Performance Optimization leveraging Native Implementations

10x10 100x100 1000x1000
Maze Size

4,640

4,660

4,680

4,700

M
ea

n
E

xe
cu

ti
on

T
im

e
(n

s)

4713

4628

4713
stdlib Implementation: Mean Execution Time by Maze Size

Figure 6: Mean execution Time of the Standard Library Implementation Across Maze
Sizes

10x10 100x100 1000x1000
Maze Size

0

2,000

4,000

6,000

8,000

10,000

M
ea

n
E

xe
cu

ti
on

T
im

e
(n

s)

197
418

10566
pyo3 Implementation: Mean Execution Time by Maze Size

Figure 7: Mean execution Time of the PyO3 Implementation Across Maze Sizes

Section A Valerius A. Mattfeld A2

Python Performance Optimization leveraging Native Implementations

10x10 100x100 1000x1000
Maze Size

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

M
ea

n
E

xe
cu

ti
on

T
im

e
(n

s)

2519 26138

2821924
numba Implementation: Mean Execution Time by Maze Size

Figure 8: Mean execution Time of the numba Implementation Across Maze Sizes

10x10 100x100 1000x1000
Maze Size

10,500

10,600

10,700

10,800

10,900

11,000

11,100

11,200

M
ea

n
E

xe
cu

ti
on

T
im

e
(n

s)

11206

10475

10540

nuitka Implementation: Mean Execution Time by Maze Size

Figure 9: Mean execution Time of the nuitka implemntation Across Maze Sizes

Section A Valerius A. Mattfeld A3

Python Performance Optimization leveraging Native Implementations

10x10 100x100 1000x1000
Maze Size

450

500

550

600

M
ea

n
E

xe
cu

ti
on

T
im

e
(n

s)
636

474

432

cpp Implementation: Mean Execution Time by Maze Size

Figure 10: Mean execution Time of the C++ Implementation Across Maze Sizes

1 from pathlib import Path
2 import numpy as np
3 from stara_maze_generator.vmaze import VMaze
4 from stara_maze_generator.pathfinder import Pathfinder
5

6 # Create a 20x20 maze
7 maze = VMaze(
8 seed=42, # Random seed for reproducibility
9 size=20, # Creates a 20x20 grid

10 start=(1, 1), # Starting position
11 goal=(18, 18), # Goal position
12 min_valid_paths=3 # Minimum number of valid paths
13)
14

15 # Generate the maze structure
16 maze.generate_maze(pathfinding_algorithm=Pathfinder.BFS)
17

18 # Find a path from start to goal
19 path = maze.find_path()
20

21 # Export as HTML visualization
22 maze.export_html(Path("maze.html"), draw_solution=True)

Listing 5: Maze Objects and generator in Python.28

Section A Valerius A. Mattfeld A4

	Contents
	List of Tables
	List of Figures
	List of Listings
	List of Abbreviations
	Introduction
	Motivation
	Contributions
	Structure of this report

	Background
	The A* Pathfinding Algorithm
	Other Pathfinding Algorithms
	Heuristics of A*

	Maze Generation
	Nuitka
	numba
	PyO3

	Methodology
	A naive implmetation
	Taking it further with the standard library
	Nuitka
	Leveraging numba
	Using Rust with Python: PyO3
	Classical bindings: A C++ interface

	Performance Evaluation
	Benchmark Environment
	Benchmark Metrics
	Test Dataset Design
	Results by Implementation
	Performance Comparison

	Discussion
	Implementation Trade-offs
	Standard Library
	nuitka
	numba
	PyO3
	C++ with pybind11

	Researcher Experience Analysis
	HPC Relevance

	Conclusion
	Summary
	Future Work

	References
	Appendix
	Means by Implemenation
	Code Snippets
	Contribution List

