GEORG-AUGUST-UNIVERSITAT ©
= )\ GOTTINGEN i1 o

Seminar Report

Implementation of a Genetic Algorithm
for Node Optimization

Pinar Haskul

MatrNr: 20231181

Supervisor: Mirac Aydin

Georg-August-Universitat Gottingen
Institute of Mathematics and Computer Science

March 13, 2025



Abstract

Node optimization is a fundamental challenge in various fields, including wireless sensor
networks, communication infrastructures, and distributed computing systems. Finding
the optimal placement or configuration of nodes is computationally difficult due to the
combinatorial nature of the problem, making traditional exhaustive search methods in-
feasible.

Existing heuristic and rule-based approaches, such as greedy algorithms and gradient-
based methods, often struggle to find globally optimal solutions, particularly in large-scale
or highly constrained environments. These methods may converge to suboptimal solutions
or require extensive fine-tuning for different problem instances.

To address these limitations, we implement a GA, an evolutionary metaheuristic that
iteratively refines a population of candidate solutions using selection, crossover, and mu-
tation operators. The GA is designed to explore a vast search space efficiently while
balancing exploitation and exploration to enhance solution quality.

The proposed GA-based approach is tested in various node optimization scenarios,
evaluating its performance in terms of solution quality, resource utilization, and compu-
tational efficiency. Results show that the GA consistently finds near-optimal configura-
tions while adapting to different constraints and objectives. We compare the GA with
alternative optimization techniques and discuss its advantages, limitations, and potential
improvements, such as hybridizing with local search methods.

The findings confirm the GA’s effectiveness in solving complex node optimization
tasks and suggest promising directions for future research in evolutionary computing and
real-world applications.
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Implementation of a Genetic Algorithm for Node Optimization

1 Introduction

Node optimization is a critical problem in various domains, including wireless sensor
networks, communication infrastructures, and HPC systems. A node can represent a
sensor, router, processing unit, or any component essential for data transmission and sys-
tem performance. The optimal placement or configuration of nodes significantly impacts
overall system efficiency, resource utilization, and computational performance [ADOS;
THWO02|.

In HPC systems, efficient workload distribution among nodes plays a crucial role in
minimizing execution time and maximizing energy efficiency. However, node optimization
in large-scale HPC systems is a combinatorial problem, meaning the search space grows
exponentially, making traditional approaches infeasible [THW02|. These problems are
typically NP-hard, meaning exhaustive search methods become impractical as problem
size increases.

1.1 Problem Definition

In HPC systems, node optimization is essential for balancing workloads across processing
units, minimizing energy consumption, and maximizing resource utilization. However,
traditional methods often struggle to find optimal solutions, leading to imbalanced work-
load distribution that significantly degrades overall system performance. This issue arises
due to the complex nature of task allocation, resource heterogeneity, and dynamic job
scheduling, making it challenging to achieve an optimal configuration.

One of the primary difficulties in node optimization is workload imbalance, where some
nodes become overutilized while others remain idle. This inefficiency not only increases
execution time but also wastes computational resources, leading to higher energy con-
sumption and longer job completion times. Additionally, many real-world HPC systems
operate under strict power and performance constraints, requiring a delicate balance be-
tween computation speed and power efficiency. Traditional heuristic-based methods, such
as greedy algorithms, rule-based load balancing, and threshold-based scheduling, often
fail to provide optimal results due to their limited exploration of the solution space and
inability to adapt to dynamic workloads [THWO02].

To address these challenges, this study leverages the PM100: A Job Power Con-
sumption Dataset of a Large-scale Production HPC System [Ant-+23|, which
provides real-world job workload and power consumption data. This dataset offers a
comprehensive view of resource usage patterns, including CPU utilization, memory al-
location, GPU workload, and energy consumption, making it an ideal benchmark for
evaluating the effectiveness of optimization algorithms in practical HPC applications.

The primary objective of this research is to optimize workload distribution among
nodes by developing an adaptive approach based on GA. By implementing a GA-based
optimization framework, this study aims to:

e Reduce computational bottlenecks by ensuring a fair workload distribution
across available nodes.

e Minimize energy consumption by optimizing node usage and deactivating un-
derutilized resources.

Section 1 Pinar Haskul 1
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e Improve overall system efficiency, leading to shorter job execution times and
higher throughput.

e Adapt to dynamic job scheduling scenarios, making the system more robust
to real-time workload changes.

By focusing on adaptive, heuristic-driven node optimization, this research contributes
to the ongoing development of intelligent workload management strategies in modern
HPC environments.

1.2 Existing Solutions and Limitations

Several traditional approaches have been applied to node optimization problems, including
greedy algorithms, heuristics, and simulated annealing techniques. However,
these methods often suffer from:

e Getting trapped in local optima, failing to find globally optimal solutions.
e High computational costs, especially as the problem size increases.

e Limited adaptability to dynamic system conditions.

To overcome these challenges, metaheuristic approaches, particularly GA, have emerged
as promising alternatives for solving complex optimization problems [BFMO0O].

1.3 Proposed Solution: GA Approach

This study proposes a GA-based node optimization model. GA is a metaheuristic
optimization algorithm inspired by biological evolution, utilizing selection, crossover,
and mutation operators to iteratively refine candidate solutions [BEMO00).

By balancing exploration and exploitation, GA efficiently searches large solution spaces
and avoids premature convergence. It has the potential to enhance workload distribution,
minimize computational delays, and optimize resource utilization in HPC environments.
This study evaluates GA’s performance on the PM100 dataset, analyzing different node
allocation strategies and comparing them with traditional optimization techniques.

1.4 Contributions of the Study

This study makes several significant contributions to the field of node optimization in HPC
environments. First, it implements a GA-based optimization model, utilizing real work-
load data from the PM100 dataset to ensure practical relevance. Second, it conducts a
comparative analysis of GA’s performance against traditional optimization methods, high-
lighting its advantages and limitations. Additionally, the study provides an evaluation of
GA’s effectiveness in terms of workload balancing and energy efficiency, demonstrating
its potential for improving resource allocation in HPC systems. Finally, a detailed assess-
ment of the optimization process is presented, along with recommendations for further
enhancements to node allocation strategies.
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1.5 Structure of the Report

The report is structured as follows: Section 2 describes the Genetic Algorithm model,
including its genetic operators and fitness function, detailing how it optimizes node con-
figurations. Section 3 presents the experimental findings, evaluating the GA’s performance
based on workload distribution, computational efficiency, and energy savings. Section 4
discusses the comparison of GA with traditional optimization techniques, analyzing its
strengths and weaknesses. Finally, Section 5 summarizes the role of GA in HPC node
optimization and suggests potential future research directions to further enhance the ef-
fectiveness of evolutionary algorithms in large-scale computing systems.

2 Methodology

The GA approach for node optimization iteratively improves a population of candidate
solutions by simulating evolution. The key components of the GA include a population
of encoded solutions (chromosomes), a fitness function to evaluate solution quality, and
genetic operators (selection, crossover, mutation) that generate new solutions [Hol75|. Un-
like traditional optimization techniques, GA is particularly effective for solving complex,
combinatorial problems where exhaustive search methods are infeasible.

This section describes the problem setup, data preprocessing, chromosome represen-
tation, population initialization, and GA parameters, providing a structured approach to
workload optimization in HPC environments.

2.1 Problem Definition and Data Preprocessing

In large-scale HPC systems, job allocation among computational nodes plays a crucial
role in overall performance and energy efficiency. Due to the heterogeneity of tasks and
resource demands, workload distribution across nodes can become imbalanced, leading to
performance bottlenecks. Some nodes may experience excessive loads, causing process-
ing delays and increased power consumption, while others remain underutilized, wasting
valuable computational resources.

To mitigate these inefficiencies, we implemented a Genetic Algorithm to dynamically
reallocate jobs across computational nodes, optimizing resource utilization and minimizing
processing delays. The GA identifies the weakest computational node (i.e., the node with
the lowest resource allocation) and redistributes its jobs to the strongest node (i.e., the
node with the highest available capacity), ensuring a more balanced workload distribution.

The dataset used for optimization contains comprehensive job allocation information,
including CPU core usage, GPU assignments, and memory allocation per job. These
features provide a detailed view of resource utilization patterns, allowing the GA to make
informed decisions when reallocating jobs.

The relevant features extracted from the dataset were:

e req_ nodes: The node(s) where a job was executed, providing insight into job
distribution.

e num_cores_alloc: The number of CPU cores allocated to a job, crucial for eval-
uating computational load.

Section 2 Pinar Haskul 3
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e num_gpus_alloc: The number of GPUs assigned to a job, as GPU-intensive
workloads require specific optimization strategies.

e mem alloc: The memory allocated to a job, ensuring that nodes do not exceed
their available memory capacity.

Each job’s resource allocation was analyzed, and nodes were ranked based on their
total resource consumption. The weakest node was identified as the one with the lowest
total allocated resources, indicating underperformance or inefficiency. Conversely, the
strongest node was determined based on the highest available resources, making it the
ideal candidate to absorb additional workload.

CPU Cores Allocation per Node

20000 4

15000 4

10000 4

Total CPU Cores Allocated

5000 A

ol
Figure 1: CPU cores allocated per node, showing the imbalance in workload distribution.

To better understand the workload distribution, we visualized the total CPU core
allocation per computational node.

Figure 1 illustrates the number of CPU cores allocated to each node. This visualization
helps identify the weakest node, which has the lowest allocated resources, and the strongest
node, which has the highest available capacity. The uneven distribution observed in
the figure highlights the inefficiency in workload allocation and justifies the need for an
optimization mechanism.

Traditional workload distribution strategies, such as static job scheduling or round-
robin allocation, fail to adapt to dynamic computational demands, leading to persistent
inefficiencies. The GA, however, leverages evolutionary principles to iteratively refine
workload allocation strategies, dynamically adjusting job placement based on real-time
resource availability.

By redistributing jobs from the weakest node to the strongest one, the GA aims to:

Reduce system bottlenecks and improve computational efficiency.

Optimize resource utilization to achieve better load balancing.

Minimize idle computational power, reducing overall energy consumption.

Adapt to changing workload demands, ensuring long-term scalability and system
stability.

Through iterative improvements, the GA ensures that HPC resources are utilized
efficiently, thereby enhancing overall system performance and reducing operational costs.

Section 2 Pinar Haskul 4
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2.2 Chromosome Representation and Population Initialization

When solving problems using Genetic Algorithms, a crucial design choice is how to repre-
sent each candidate solution as a chromosome. Depending on the nature of the problem,
chromosomes can be encoded in different ways.

For example, in a binary representation, if the goal is to select an optimal subset
of jobs from N possible assignments, each individual (solution) can be represented as
a binary string of length L = N. Alternatively, in a real-valued representation, if the
problem involves placing nodes within a physical space, each individual can be represented
as a real-valued vector containing the coordinates of each node [Mic96]. Here, each gene
in the chromosome is either:

e 1: The corresponding job is moved to the strongest node.

e (: The job remains in the weakest node.

Formally, an individual solution is represented as:

X = (21,22, ...,2r), x; €{0,1} (1)

Alternatively, in a real-valued representation, if the problem involves placing nodes
within a physical space, each individual can be represented as a real-valued vector con-
taining the coordinates of each node:

X = (21,91, 02, Y2, ., T, Y1),  Tj,y; ER (2)

These representations allow GA operators to manipulate solutions in an abstract man-
ner. For instance, a binary chromosome like ‘10110 may represent a specific combination
of jobs being moved, whereas a real-valued chromosome encodes the spatial coordinates
of nodes.

2.2.1 Population Initialization

At the beginning of the GA process, the initial population Fj is generated either randomly
or based on predefined solutions. If an n-individual population is created, the initial
population is defined as:

Py={X,Xs,...X,}, X;€{0, 1}  or X; ¢ RE (3)
Where:
e X;: The i’ individual (either binary or numerical vector).
e [: The length of an individual (size of the solution space).

The population is typically initialized randomly, ensuring diversity in the search space.
In some cases, predefined solutions can be included when prior knowledge is available to
speed up convergence.

Section 2 Pinar Haskul 5
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2.3 Fitness Function

The fitness function serves as the key evaluation metric in the GA, determining the qual-
ity of each candidate solution by assessing whether the jobs moved to the strongest node
fit within its resource constraints [BBM93]. A well-designed fitness function ensures that
the GA efficiently explores the solution space and converges toward optimal workload
distribution. In addition, it helps maintain a balance between performance and energy
efficiency by penalizing solutions that lead to excessive resource usage or prolonged exe-
cution times.

Mathematical Representation

The fitness function is formally defined as follows:

L . :
PX) = > iy (@ -num_ cores; + z; - num_ gpus; + z; - mem_ alloc;), if constraints are met
0, otherwise

(4)

where:
e [ is the total number of jobs being evaluated in the current solution.
e 1, represents a binary decision variable for each job, where:

— x; = 1 if the job is moved to the strongest node.

— x; = 0 if the job remains in its original node.

e num_cores;,, num_gpus,;, and mem alloc, denote the CPU cores, GPUs, and mem-
ory allocated to job i, respectively.

Constraints and Considerations
For a solution to be considered feasible and assigned a valid fitness score, the following
resource constraints must be satisfied:

e The total allocated CPU cores must not exceed the available CPU cores in the

strongest node:
L

E x; -num_ cores; < max_ cores (5)

i=1

e The total allocated GPUs must not exceed the available GPUs in the strongest

node:
L

Z x; -num_ gpus; < max_ gpus (6)
i=1

e The total allocated memory must not exceed the available memory in the strongest

node:
L

Z z; - mem _ alloc; < max_mem (7)
i=1

e Jobs requiring more than 256GB of memory are automatically assigned a fitness
score of zero, as they exceed the physical limitations of the system.

Section 2 Pinar Haskul 6
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Penalty Mechanism
To prevent infeasible solutions from dominating the search space, a penalty mechanism
is incorporated into the fitness function:

F(X), if all constraints are satisfied
F(X)= (¢ F(X)— P, if minor constraint violations occur (8)
0, if major constraint violations occur

where P is a penalty term proportional to the severity of constraint violations. This
ensures that solutions slightly exceeding resource limits are discouraged but not immedi-
ately discarded, promoting a smoother convergence toward optimal solutions.

Fitness Evolution

The evolution of the fitness function over multiple generations is illustrated in Figure
3. As the genetic algorithm progresses, the fitness score improves, showing convergence
toward an optimal workload distribution.

Fitness Evolution Over Generations

—&— Best Fitness ___-_ﬂ-

200

150 A

100 A

Best Fitness Score

50 4

T T T T T T
0 20 40 60 80 100
Generations

Figure 2: Fitness Evolution Over Generations

Implementation in Genetic Algorithm

During the GA selection phase, individuals with higher fitness scores are more likely to
be selected for reproduction. This incentivizes solutions that achieve a balanced workload
distribution while respecting resource constraints. The fitness function plays a critical

role in:

e Guiding the evolutionary process toward more efficient workload allocation.
e Avoiding infeasible solutions by enforcing strict resource constraints.

e Encouraging load balancing by favoring configurations that utilize system resources
efficiently.

Through iterative evaluations, the GA progressively enhances the quality of solutions,
leading to optimized workload distribution and reduced system bottlenecks.

Listing 1 provides the Python implementation of the fitness function.

The fitness function plays a crucial role in the genetic algorithm by ensuring that only
feasible solutions are considered, leading to an optimized allocation of resources across
nodes.

Section 2 Pinar Haskul 7
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def fitness(individual):
total_cores = sum(ind * weak_node_jobs.at[i, 'num_cores_alloc']
for i, ind in enumerate(individual))

total_gpus = sum(ind * weak_node_jobs.at[i, 'num_gpus_alloc']
for i, ind in enumerate(individual))

total_mem = sum(ind * weak_node_jobs.at[i, 'mem_alloc']
for i, ind in enumerate(individual))

# Memory constraint: if any job exceeds 256GB, return 0
if any(weak_node_jobs.at[i, 'mem_alloc'] > 256
for i, ind in enumerate(individual) if ind == 1):
return O

# Resource constraints check
if (total_cores <= max_cores and
total_gpus <= max_gpus and
total_mem <= max_mem) :
return total_cores + total_gpus + total_mem

return O

Listing 1: Python implementation of the fitness function.

2.4 Selection, Crossover, and Mutation

In the Genetic Algorithm (GA), crossover is a fundamental operation that drives diversity
and optimization within the population [ES15]. Figure 3 provides a visual representation
of this process, where two parent solutions exchange job allocations at a randomly selected
crossover point. The first segment of Parent 1 is combined with the second segment of
Parent 2 to form Child 1, while the reverse operation creates Child 2. This mechanism
introduces new variations, enabling the algorithm to explore a broader range of potential
solutions.

However, not all offspring are valid solutions. If the newly generated individuals
exceed the CPU, GPU, or memory constraints of the strongest node, they are eliminated.
Therefore, crossover operates in conjunction with selection, ensuring that only feasible
and optimal solutions progress to the next generation. Additionally, a repair mechanism
can be applied to slightly adjust infeasible solutions rather than discarding them outright,
enhancing search efficiency.

By preserving genetic diversity, crossover enhances the development of better job al-
location strategies. Alongside selection and mutation, it plays a crucial role in balancing
workload distribution while maintaining hardware efficiency. Mutation further ensures
diversity by preventing premature convergence, allowing the algorithm to escape local
optima.

The GA evolves over multiple generations using selection, crossover, and mutation:

e Selection: The top half of the population (based on fitness) is retained for the next

Section 2 Pinar Haskul 8
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Crossover Process in Genetic Algorithm (Job Reallocation)
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Figure 3: Fitness improvement over generations.

generation. More sophisticated selection methods, such as tournament selection or
roulette wheel selection, can be applied to balance exploration and exploitation.

e Crossover: New individuals are created by selecting two parents and performing
one-point crossover:

Clzpl[l ]C]+P2[/{Z I], CQZPQ{: k]+P1[k I] (9)

where k is a randomly selected crossover point. In some cases, multi-point crossover
or uniform crossover can be used to introduce more variation in offspring.

e Mutation: With a probability of 10%, a random bit is flipped in a chromosome:

Ti = ’ 1 ! (10)
0, ifx; =1

Mutation probability can be adaptive, increasing when population diversity decreases
to prevent stagnation. More advanced techniques, such as swap mutation or scramble
mutation, may be employed for further improvements.

In summary, selection, crossover, and mutation work in tandem to explore a diverse
set of workload distribution strategies while ensuring convergence towards an optimal job
allocation. Adaptive mechanisms, repair strategies, and alternative genetic operators can
further enhance the performance and efficiency of the GA.

2.5 Termination and Job Reallocation

The termination criterion of the GA plays a crucial role in determining when the op-
timization process should stop. The algorithm runs for a fixed number of generations,
ensuring that a sufficiently large search space is explored before convergence. However,
in practice, termination can also be triggered by additional conditions such as:

e Fitness Convergence: If the improvement in the best solution’s fitness value falls
below a predefined threshold over a certain number of generations, the algorithm
halts to avoid unnecessary computations.

Section 2 Pinar Haskul 9
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e Lack of Diversity: If population diversity decreases significantly (i.e., the majority
of solutions converge to a similar state), the algorithm stops to prevent excessive
exploitation of a local optimum.

e Computational Budget: In real-world implementations, resource limitations such
as execution time and available computational power may also determine when the
algorithm should stop.

Once termination conditions are met, the best solution found during the evolutionary
process is selected and applied to reassign jobs to the strongest node [Mit96]. The job
reallocation process follows these key steps:

1. Select the optimal configuration: Identify the chromosome with the highest
fitness score, which represents the most efficient job allocation.

2. Reassign jobs from the weakest to the strongest node: The jobs from the
weakest node are migrated to the strongest node in a way that adheres to CPU,
GPU, and memory constraints.

3. Validate feasibility: Before applying the allocation, the system ensures that the
new configuration does not exceed the resource capacities of the strongest node.

4. Deactivate weak nodes: If the weakest node becomes empty after job migration,
it is removed from the system, leading to energy savings and improved resource
utilization.

By following this structured approach, the GA optimizes workload distribution while
maintaining system stability and efficiency.

2.6 Final Allocation and Results

After executing the GA, the final job distribution was thoroughly analyzed to measure
improvements in workload balancing, resource efficiency, and overall system performance.
The assessment was conducted based on the following key performance indicators:

e Workload Balance: A comparison of how evenly distributed jobs were before and
after optimization.

e Resource Utilization: Measurements of CPU, GPU, and memory consumption
pre- and post-optimization.

e Execution Efficiency: Evaluation of job completion times and system response
times.

e Node Deactivation: The number of weak nodes successfully removed due to re-
allocation.

If the weakest node was successfully emptied, it was completely removed from the
dataset, ensuring that computational resources were efficiently consolidated. The opti-
mized allocation led to several notable improvements:

Section 2 Pinar Haskul 10
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e More balanced workload distribution: The GA effectively redistributed com-
putational tasks, reducing load imbalances across nodes.

e Reduction of resource contention and improved efficiency: The strongest
nodes handled a greater portion of the workload while still operating within their
optimal limits.

e Minimized bottlenecks: Overloaded nodes experienced significant relief, leading
to faster job execution times.

e Potential energy savings: Underutilized nodes were either reassigned or deacti-
vated, contributing to a more sustainable and cost-effective system.

To visually compare the workload distribution before and after applying the Genetic
Algorithm, Figure 4 presents the CPU, GPU, and memory allocations per node.

CPU Allocation per Node GPU Allocation per Node Memory Allocation per Node (GB)
20000 | W Before GA 700 mmm Before GA 40 1 mmm Before GA
After GA After GA After GA
17500 600 k35

15000

w
s

500

12500 -

~
&
L

400
10000

300
7500 A

Total CPU Cores Allocated
Total GPUs Allocated

.
G
L

Total Memory Allocated (GB)
N
=3

200
5000

=
o

100

2500 A

v
L

Nodes Nodes Nodes

Figure 4: Comparison of resource allocation before and after Genetic Algorithm execution.

The results in Figure 4 demonstrate the effectiveness of the Genetic Algorithm in
optimizing job allocation and resource distribution. The observed improvements include:

e A significant reduction in resource contention, as nodes previously burdened with
excessive workloads now operate at a more balanced level.

e Enhanced system scalability, ensuring that computational power is utilized opti-
mally as job demands fluctuate.

e Lower energy consumption, due to the removal of underutilized nodes and the con-
solidation of tasks onto fewer, more efficient nodes.

These findings validate the effectiveness of Genetic Algorithms in solving complex
node optimization problems. By enabling dynamic workload adaptation, GA presents a
scalable solution that enhances both computational efficiency and energy savings in HPC
environments.
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3 Results

After implementing the GA for workload optimization, we conducted a comprehen-
sive evaluation of its performance in redistributing computational tasks efficiently across
nodes. The GA successfully enhanced system efficiency by dynamically reallocating jobs
while adhering to resource constraints. Over successive generations, solutions evolved to
maximize resource utilization and minimize unnecessary node activity, resulting
in a more balanced and efficient workload distribution.

3.1 Enhanced Workload Distribution

Prior to optimization, workloads were unevenly distributed, leading to resource bot-
tlenecks and inefficiencies. Certain nodes were overburdened, while others remained
underutilized. After applying the GA, workload distribution became significantly more
balanced, reducing processing delays and ensuring optimal utilization of available
resources. This resulted in a more stable and scalable system, with improved task
allocation across computational nodes.

Job Allocation Efficiency Before GA

num_cores_alloc
num_gpus_alloc
mem_alloc

20000 1

15000 +

10000 -

Total Resource Allocation

5000 -

Figure 5: Workload Distribution Before GA Optimization.

Figure 5 illustrates the workload distribution before optimization. As seen, computa-
tional tasks were unevenly assigned across nodes, causing inefficiencies and performance
bottlenecks. Certain nodes experienced excessive workload while others remained under-
utilized.

After applying the Genetic Algorithm, the workload was redistributed more efficiently,
as depicted in Figure 6. Resource allocation across nodes became significantly more bal-
anced, reducing processing delays and maximizing system utilization. By dynamically
reallocating jobs based on available resources, GA successfully optimized workload distri-
bution, leading to improved system scalability and stability.
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Job Allocation Efficiency After GA
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Figure 6: Workload Distribution After GA Optimization. .

3.2 Performance Gains and Efficiency

Through iterative evolution, the GA identified near-optimal solutions that significantly
outperformed the initial random allocations. Key performance improvements observed in
multiple test runs include:

e Higher Job Allocation Efficiency: The GA effectively allocated CPU, GPU, and
memory resources, minimizing waste and maximizing computational throughput.

e Improved System Performance: The optimization reduced strain on individual
nodes, leading to faster task execution and better responsiveness.

e Energy Savings: Idle or underutilized nodes were deactivated or reassigned,
reducing overall power consumption while maintaining system reliability.

3.3 Convergence and Stability

The GA exhibited a rapid improvement in solution quality during the early genera-
tions, as high-fitness solutions emerged through selection, crossover, and mutation. After
a certain threshold, solution quality plateaued, indicating convergence towards an
optimal or near-optimal configuration. Typically, the algorithm found high-quality
solutions within a reasonable number of generations, balancing computational cost
with optimization effectiveness.

3.4 Comparison with Baseline Methods

Compared to traditional heuristic approaches, the GA provided a more flexible
and adaptive method for discovering optimal solutions. Unlike rule-based or greedy
algorithms, which often get stuck in local optima, the GA’s ability to explore a di-
verse solution space through genetic operations (crossover and mutation) led to supe-
rior results. This demonstrated the advantage of evolutionary approaches in solving
complex node allocation problems where multiple constraints and trade-offs exist.

Section 4 Pinar Haskul 13
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4 Discussion

The experimental results demonstrate that the GA is capable of finding high-quality solu-
tions to the node optimization problem. The GA’s ability to evolve solutions over multiple
generations allowed it to avoid local optima and converge towards near-optimal config-
urations. This highlights the strength of evolutionary algorithms in handling complex,
multimodal search spaces. Additionally, the consistency of results across multiple runs
(in terms of achieving similar best fitness values) reinforces the GA’s reliability for this
type of problem.

Despite its success, it is important to contextualize the GA’s performance relative to
other optimization techniques. While GAs are robust and flexible, they are not always the
best choice for every problem. In some structured optimization tasks with smooth land-
scapes, gradient-based methods or derivative-free approaches such as the Nelder—-Mead
simplex method [NM65| or Particle Swarm Optimization [KE95| can converge faster.
However, for highly combinatorial problems like node optimization, GAs excel due to
their ability to explore a large and discrete solution space.

4.1 Comparison with Alternative Methods

Compared to local search techniques such as SA [KGV83|, the population-based nature of
GAs allows for parallel exploration of multiple solution regions, leading to better solutions
at the cost of higher computational effort. Unlike SA, which explores solutions sequentially
and gradually reduces the probability of accepting worse solutions, GAs maintain a diverse
population that can simultaneously investigate different areas of the search space. This
ability to explore multiple promising regions helps GAs avoid getting trapped in local
optima, a common drawback of SA.

In our experiments, the GA achieved superior workload distribution by effectively
balancing computational tasks across nodes. However, this came at the cost of longer
convergence times, as GA required more function evaluations to refine the solution space.
In contrast, SA found a solution faster but with slightly reduced efficiency, as it lacked
the population-based diversity mechanism that enables GAs to maintain broader search
coverage. This trade-off aligns with the general observation that while GAs require more
function evaluations, they often outperform simpler heuristics when given sufficient com-
putational resources and time.

Another major advantage of GAs is their capability in multi-objective optimization.
Many real-world node optimization problems involve conflicting objectives, such as:

e Maximizing resource utilization, ensuring that CPU, GPU, and memory are
efficiently allocated.

e Minimizing energy consumption, reducing the power overhead of computational
tasks.

¢ Ensuring fault tolerance, maintaining system stability even under high loads.

Traditional heuristic methods often combine these objectives into a single weighted sum,
which introduces the challenge of sensitive weight selection—small variations in weights
can lead to significantly different solutions.
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In contrast, GAs leverage Pareto-based selection techniques [CLV07| to evolve a di-
verse set of solutions, each representing a different trade-off among conflicting objectives.
This enables decision-makers to choose from a range of optimized solutions rather than
being constrained to a single predefined weighting scheme. Such an approach is particu-
larly beneficial in large-scale HPC environments, where different performance trade-offs
may be required based on system constraints, workload variations, and power efficiency
requirements.

4.2 Potential Improvements and Future Research

While our GA implementation performed well, several enhancements could further im-
prove efficiency, robustness, and scalability.

4.2.1 Parameter Tuning and Adaptation

The performance of GAs is heavily influenced by critical hyperparameters, including:
e Population size: Determines the genetic diversity and convergence speed.
e Crossover rate: Affects how frequently offspring solutions are generated.
e Mutation rate: Controls the level of randomness and exploration.

Fixed parameter values may not be optimal throughout the evolution process. Adap-
tive parameter control techniques [EHM99| allow dynamic adjustment of these values
based on search progress. For instance:

e Increasing mutation rates when population diversity declines can prevent premature
convergence.

e Adjusting crossover probability based on fitness improvement rates can optimize
exploration-exploitation balance.

e Adapting selection pressure over generations can maintain diversity while promoting
convergence toward high-quality solutions.

Such adaptations have been successfully applied in self-adaptive evolutionary algorithms,
leading to faster convergence and better final solutions.

4.2.2 Elitism and Diversity Preservation

We incorporated elitism in our GA by retaining the best individual in each generation to
ensure that strong solutions persist. However, premature convergence remains a risk if
diversity is not adequately preserved. One potential improvement is integrating advanced
diversity-preservation mechanisms such as:

e Fitness sharing [Mah94|: Reduces the selection probability of highly similar solu-
tions, encouraging diverse solutions.

e Niching methods [Mah94|: Promotes exploration of multiple peaks in the solution
space rather than converging to a single optimum.
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e Crowding and restricted mating: Prevents highly similar solutions from domi-
nating the population.

By incorporating these mechanisms, GAs can maintain diversity for a longer duration,
allowing them to explore different potential optima before converging.

4.2.3 Hybrid Approaches

Although GAs offer strong global search capabilities, they often suffer from slow local
refinement. To address this, hybrid methods such as Memetic Algorithms (MAs)[Mos89)
can be used. MAs integrate local search techniques within GA iterations, leading to faster
and more precise convergence.

For instance:

e Applying a local search heuristic (e.g., hill climbing) after crossover to
refine offspring solutions.

e Using SA or PSO to fine-tune the best individuals in later generations.

¢ Employing hybrid fitness evaluation strategies, combining GA’s broad explo-
ration with gradient-based or heuristic-based refinements.

This hybrid approach combines the best of both worlds, leveraging GAs for exploration
and local search for fine-tuning, thereby accelerating convergence while improving final
solution quality.

4.2.4 Scaling and Parallelization

GAs are highly parallelizable, as fitness evaluations of individuals can be performed in-
dependently. Implementing parallel GAs [Can00| can significantly reduce computation
time, particularly in large-scale optimization problems. Several parallelization strategies
can be applied:

e Island Model GA: The population is divided into subgroups (islands) that evolve
separately and occasionally exchange individuals, enhancing diversity and speeding
up convergence.

e Master-Slave Model: A central node distributes fitness evaluations across multi-
ple processors, ideal for massively parallel architectures.

e GPU-accelerated GA: Deploying GA on GPU architectures enables thousands
of simultaneous fitness function evaluations, drastically reducing runtime.

Given the increasing use of cloud computing and HPC infrastructures, parallel GAs
are a promising direction for further research. This approach can enable real-time opti-
mization in dynamic and large-scale systems.
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5 Conclusion

In this report, we presented and evaluated a GA approach for node optimization. The GA
effectively identified near-optimal node configurations, achieving significant improvements
in objectives such as network coverage and resource utilization compared to random ini-
tial solutions. By leveraging selection, crossover, and mutation within a population-based
search, the GA efficiently explored complex solution spaces and converged on high-quality
solutions that would be challenging to obtain with conventional methods. While the GA
requires careful parameter tuning and incurs a higher computational cost than some alter-
native approaches, its flexibility and effectiveness make it a valuable tool for combinatorial
optimization problems involving node placement and selection.

Our study highlighted key factors for successfully applying GAs to node optimiza-
tion. The choice of solution representation and the design of the fitness function played
a crucial role in guiding the search towards optimal solutions. Maintaining population
diversity through mutation and selection strategies was also essential in preventing pre-
mature convergence. Compared to other optimization techniques, the GA demonstrated
robustness and adaptability, though it is not always the fastest method. The selection of
the best optimization approach ultimately depends on the specific problem constraints,
such as the trade-off between solution quality and available computational resources.

Looking ahead, there are several promising directions for future research. Applying
GA-based optimization to large-scale or real-time scenarios could test the scalability and
adaptability of the approach. Developing adaptive genetic algorithms that adjust their
parameters dynamically during execution could enhance efficiency and reduce manual
tuning. Additionally, hybrid models that integrate GAs with machine learning techniques
or local search heuristics may further improve optimization performance. Extending the
GA framework to handle multi-objective optimization problems would be valuable for
real-world applications where multiple criteria must be considered simultaneously. With
continued refinement, genetic algorithms are likely to remain a powerful tool for solving
complex optimization challenges in network design, resource allocation, and beyond.

6 Code Availability and Reproducibil-
1ty

To ensure transparency, reproducibility, and further research advancements, all

relevant codes, scripts, and datasets utilized in this study are openly available on GitHub.

The implementation of the GA for Node Optimization, including fitness function

calculations, selection mechanisms, crossover and mutation operators, and
performance evaluation scripts, can be accessed via the following repository:

GitHub Repository:
https://github.com/phaskull/genetic-algorithm-for-node-optimization
GitLab Repository: https:
//gitlab.gwdg.de/pinar.haskul/genetic-algorithm-for-node-optimization

This repository provides:
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e The full Python implementation of the GA developed for node optimization in
HPC systems.

e Preprocessed datasets used in the experimental setup, enabling reproducibility
and benchmarking.

e Detailed instructions for execution, including setup guidelines, dependen-
cies, and step-by-step usage documentation.

e Performance analysis scripts that facilitate the evaluation of workload distri-
bution efficiency post-optimization.

By making the code and dataset publicly available, we encourage further experi-
mentation, validation, and extensions to the proposed approach. This open-access
resource aims to support future research efforts in HPC optimization, resource
allocation strategies, and evolutionary computing techniques, fostering collab-
oration within the broader research community.
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