
Seminar Report

Evaluation of an Alternative System
Monitoring Architecture for HPC Clusters

Henrik Jonathan Seeliger
Matrikelnummer: 20534843

Supervisor: Aasish Kumar Sharma

Georg-August-Universität Göttingen
Institute of Computer Science

March 16, 2025

Abstract

This project proposes and qualitatively evaluates an alternative system monitoring architec�
ture for high�performance computing environments. The overall goal of this project is to offer
an improvement to the monitoring process currently implemented at the Scientific Compute
Cluster at the Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen.

The proposed alternative architecture utilizes the OpenTelemetry project with its Open�
Telemetry Collector agent, as well as the ClickHouse DBMS, to facilitate performant and
flexible monitoring of distributed systems. The evaluation shows that this alternative archi�
tecture exhibits significant scalability, flexibility, performance and feature advantages when
compared to the currently implemented architecture at the cost of increased resource require�
ments regarding the DBMS and the monitored applications.

Repository

The source code of the accompanying infrastructures, as well as the source of this document,
can be accessed using the following URL:

https://gitlab.gwdg.de/h.seeliger/monitoring�system�performance

I

https://gitlab.gwdg.de/h.seeliger/monitoring-system-performance

Declaration of Authenticity

Declaration on the Use of ChatGPT and Comparable Tools in
the Context of Examinations

In this work I have used ChatGPT or another AI as follows:
✓ Not at all

During brainstorming
When creating the outline
To write individual passages, altogether to the extent of 0% of the entire text
For the development of software source texts
For optimizing or restructuring software source texts
For proofreading or optimizing
Further, namely: �

I hereby declare that I have stated all uses completely.
Missing or incorrect information will be considered as an attempt to cheat.

II

Contents

Abstract I

Declaration of Authenticity II

Contents III

List of Figures V

List of Listings VI

Acronyms VII

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 1
1.3 Outline . 2

2 Background 3
2.1 System Monitoring . 3
2.2 Current Architecture . 4
2.3 Related Work . 5

3 Methodology 6

4 Results 7
4.1 Alternative Architecture . 7

4.1.1 Structure . 7
4.1.2 ClickHouse . 8
4.1.3 OpenTelemetry . 9

4.2 Implementation . 10
4.3 Qualitative Evaluation . 10

4.3.1 Comparison . 10
4.3.1.1 Structure Level . 10
4.3.1.2 Data Storage and Analysis Level 11

4.3.2 Benefits and Drawbacks . 12

5 Discussion 15
5.1 Challenges . 15
5.2 Alternatives . 15

III

6 Conclusion 16

Bibliography 17

Appendix 20
A Figures . 20
B Code Samples . 20

IV

List of Figures

Figure 1: Currently employed monitoring architecture in the SCC. 4
Figure 2: High�level view of the architecture with three different collection modes. . . . 8
Figure A.1: Visualization of the result of the ClickHouse SQL query depicted in Listing B.2. 20

V

List of Listings

Listing B.1: Vagrantfile for the comparison instance of the alternative architecture. . . 20
Listing B.2: ClickHouse SQL query for calculating the current CPU utilization per CPU core
in the alternative architecture. . 22
Listing B.3: Flux query for calculating the current CPU utilization per CPU core in the current
architecture. . 23
Listing B.4: Configuration of this project’s Telegraf instance. 24
Listing B.5: Configuration of this project’s OTel Collector instance. 25
Listing B.6: Configuration example for Telegraf with filtering. 26

VI

Acronyms

API – application programming interface

DBMS – database management system

GWDG – Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen

HPC – high-performance computing

KVM – Kernel-based Virtual Machine

OLAP – online analytical processing

OpAMP – Open Agent Management Protocol

OS – operating system

OTel – OpenTelemetry

OTLP – OpenTelemetry Protocol

QEMU – Quick Emulator

SCC – Scientific Compute Cluster

SDK – software development kit

SIMD – Single Instruction, Multiple Data

VM – virtual machine

VII

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

1 Introduction

1.1 Motivation

The management of large�scale computing systems introduces a variety of challenges. One
such challenge is to ensure the uninterrupted operation of the systems with its services.
With an increasing number of distributed computers and components, this may become more
difficult, as identifying the source and location of failures may need an increasing amount of
time. With a significant number of running components, especially areas like cloud computing
or high�performance computing (HPC) are presented with this challenge.

To mitigate this challenge, the process of monitoring can be employed. By gathering
and analyzing system and application data, monitoring enables insights into the systems to
identify the existence and causes of various issues. Therefore, the activity of monitoring plays
an essential role in maintaining and improving the reliability and performance of computing
systems, especially in the context of distributed and HPC systems [1].

However, choosing and implementing an monitoring architecture is not a trivial task and
depends on various factors, such as given requirements. For HPC, various requirements exist,
such as performance, storage efficiency and scalability [2]. The Scientific Compute Cluster
(SCC) of the Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG),
for example, employs a monitoring architecture based on the software Grafana, Telegraf and
the time�series database InfluxDB [3]. This architecture, often referred to as TIG stack, is
considered to be an highly popular monitoring architecture [4].

Still, various other monitoring architectures exist. These may employ different components
for, e.g., data storage and analysis, and may offer various advantages when compared to
the currently implemented architecture. Other time�series databases have already been the
subject of quantitative analysis, which has demonstrated performance and storage efficiency
advantages for monitoring use cases in comparison to InfluxDB [5]. However, a qualitative
comparison of the TIG stack and other possible monitoring architectures is still to be
conducted.

1.2 Objectives

This project aims to explore and propose an alternative system monitoring architecture as a
potential enhancement to the current monitoring architecture implemented in the SCC. This
architecture can then be evaluated by comparing it to the current architecture, highlighting
its qualitative advantages and disadvantages.

To achieve this, possible alternative architectures and technologies are researched. These
are then used to develop and implement an alternative architecture by creating a reproducible

1 Introduction Henrik Jonathan Seeliger 1

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

virtual machine (VM) containing an example instance of the new architecture. This VM
enables the exploration of the new architecture and the analysis of its characteristics. A
comparable VM for the currently employed architecture, the TIG stack, is implemented as
well. These VMs can then be explored and analysed, thereby serving as the foundation for
the comparison and evaluation. After comparing both architectures, advantages and disad�
vantages of both architectures can be stated and the new architecture can be evaluated for its
utilization in HPC systems.

Thereby, the primary contribution of this project is represented by an alternative system
monitoring architecture, accompanied by an analysis and evaluation of its characteristics. In
addition, a reproducible baseline in the form of VMs for comparing infrastructures and system
architectures is presented, allowing further comparative evaluations in the future.

The qualitative evaluation conducted in this project shows performance, scalability, flexi�
bility and feature advantages of the alternative architecture when compared to the currently
implemented architecture. These benefits, however, come at the cost of increased resource
requirements regarding the database and, depending on the utilized approach, regarding the
monitored applications.

1.3 Outline

This report is structured as follows. Section 2 presents background information regarding
system monitoring and the currently utilized monitoring architecture. Subsequently, the
methodology employed in this project is described briefly in Section 3. The results of this
project are presented in Section 4, namely the alternative architecture and its evaluation.
Section 5 then presents the discussion of challenges encountered during this project and
possible alternatives. The report is then concluded in Section 6.

1 Introduction Henrik Jonathan Seeliger 2

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

2 Background

This section introduces the concept of system monitoring, as well as the monitoring architec�
ture currently implemented in the SCC. Furthermore, the related work addressed in Section 1.2
and its significance for this project are explained.

2.1 System Monitoring

System monitoring can be defined as the technologies and processes to measure various aspects
of computer systems. The information gained by this procedure can be used to identify prob�
lems and increase the system’s performance and reliability [6], [7]. The monitored aspects of
systems may not only include system�level information such as CPU and RAM usage, but also
data about running services. This data may be of different nature and includes, e.g., metrics
and logs. Section 4.1 describes a formal definition of these concepts.

Various approaches to facilitate the process of system monitoring exist [8]. In the majority
of cases, architectures are divided into multiple stages, with each stage being assigned a
different task using different technologies. Typically, the persistence stage stores the data for
preservation and further analysis. This can be realized using various database management
systems. Due to the temporal nature of the data, a time�series database is particularly suited.
The collection stage is then able to gather data from a configurable range of sources and
store it using the persistence stage. Using a graphical user interface, e.g., the collected data
can be visualized and explored, as implemented by the visualization stage. This high�level
architecture can serve as the base for monitoring systems, while other architectures with
different approaches tailored to specific requirements exist [1], [2], [8], [9].

Each stage requires the consideration of various factors. Besides different approaches for
each stage, a range of technologies exist [8]. The choice of specific approaches and components
depends on the specific requirements to the given environment. Monitoring in the context of
HPC can be considered to be closely related to monitoring in the context of cloud computing,
as both fields share architectural characteristics and objectives. For this field, a number of
requirements exist, which can be transferred to monitoring in the context of HPC. These
requirements include scalability, timeliness and extensibility [10]. As for the field of HPC
and the given reference environment of the SCC, performance efficiency and a near real�time
timeliness of data collection and analysis are given additionally [3]. However, one difference
between the requirements for cloud computing and HPC is an increased significance of the
monitoring system’s performance and resource efficiency for the field of HPC, as their impact
on the HPC systems should be minified.

2 Background Henrik Jonathan Seeliger 3

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

2.2 Current Architecture

The reference architecture implemented in the SCC, which represents the basis for the evalu�
ation, employs the three stages described in the previous section. To implement the persistence
stage, the time�series database InfluxDB [11] is utilized. On each server, the Telegraf [12]
agent is employed to collect the local monitoring data and send it to the database, thereby
forming the collection stage. For visualization and exploration purposes, the SCC utilizes the
Grafana [13] application, which queries the monitoring data from the InfluxDB database. In
this project, version 2 of InfluxDB is assumed to be utilized. Figure 1 illustrates the current
architecture.

Server Server

InfluxDB Grafana

Telegraf Telegraf

OS, Processes, … OS, Processes, …

Monitoring
Data

Monitoring
Data

Query

Collect
Data

Collect
Data

Figure 1: Currently employed monitoring architecture in the SCC.
Icons taken from [12], [13], [14], [15].

This architecture can be characterized as agent-based and active. Agent�based architectures
employ software agents that collect monitoring data and send it to the persistence stage. As
the data is actively collected by Telegraf instances, the architecture is considered to be active.
Conversely, in a passive architecture, the monitored resources can send their data to the agent
themselves. The omission of the agents would result in an agent-less architecture. Further
technical characteristics of the architecture are described and discussed in Section 4.

2 Background Henrik Jonathan Seeliger 4

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

2.3 Related Work

The publication TSM-Bench: Benchmarking Time Series Database Systems for Monitoring
Applications by Khelifati et al. offers a comprehensive method for benchmarking time
series databases in the context of monitoring [5]. The measured characteristics include
performance as well as storage efficiency. In this publication, the method has been applied to
various existing time�series databases, including InfluxDB 1.7.10�1 with InfluxQL as utilized
query language. In numerous experiments, InfluxDB demonstrated poor performance and
storage efficiency when compared to other time�series databases. Specifically, InfluxDB only
performed adequately in data fetching queries involving low�volume data. However, with an
increased data volume, InfluxDB exhibited a significant decline in query performance and
storage efficiency. In addition to quantitative aspects, InfluxDB showed another disadvantage,
namely the inability to test certain scenarios due to missing support for advanced combina�
tions of aggregate functions.

These aspects provide initial insights for the comparison and serve as the foundation for
the motivation of this work. However, it is important to note that the benchmarked version of
InfluxDB is obsolete. The most recent available open�source version of InfluxDB is InfluxDB 2,
which has introduced a new query language, Flux, and deprecated InfluxQL [16]. This project
does not cover a quantitative comparison, e.g., using benchmarking. Still, a more detailed
comparison would benefit from an updated benchmark and should be pursued in the future.

2 Background Henrik Jonathan Seeliger 5

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

3 Methodology

The objective of this project is to explore and propose a potential improvement to the system
monitoring architecture currently implemented in the SCC. The methodology to accomplish
this objective is as follows.

The suitability of technologies and solutions for a given problem depends on the specific
requirements and the degree to which these requirements are met. Therefore, research must
be conducted regarding the requirements for system monitoring in the context of HPC and
the SCC. Subsequent to the collection of requirements, potential technologies and aspects of
the improved architecture can be researched, with the aim of fulfilling these requirements.
The knowledge acquired regarding requirements and technologies can then be employed
to develop and implement an alternative system monitoring architecture. The result of the
implementation should be a reproducible and functional instance of this architecture to
facilitate practical exploration and evaluation. Additionally, the reference architecture should
be implemented in the same way for the comparison. Both instances should be realized
using declaratively configured VMs, using Vagrant. Vagrant is an open�source software tool
to configure, provision and run local VMs using Vagrantfiles [17]. This approach ensures
reproducibility and simplifies the setup of the environment. These VMs can then be utilized
to explore both architectures practically in order to discover their various characteristics as
a foundation for comparison and evaluation. After comparing both architectures, advantages
and disadvantages of both the alternative and reference architecture can be highlighted,
emphasizing the suitability of the alternative architecture.

The primary desired outcome of this project is the description and implementation of an
alternative system monitoring architecture that offers numerous advantages when compared
to the original architecture. This outcome should include a comprehensive overview of both
architectures, with their characteristics, advantages, and disadvantages.

3 Methodology Henrik Jonathan Seeliger 6

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

4 Results

This section describes the system monitoring architecture implemented in this project. Fur�
thermore, characteristics of both the currently implemented and the alternative architecture
are explained and opposed. This enables the analysis of benefits and drawbacks of both
architectures, as presented by the subsequent evaluation.

4.1 Alternative Architecture

As described in Section 2.1, various requirements for system monitoring in the context of HPC
have been identified from relevant literature, including scalability, performance efficiency and
extensibility. Based on these requirements, technologies and methods for system monitoring
architectures have been researched. These can be employed to design and implement the
alternative system monitoring architecture.

First, a high�level structure of the architecture must be considered. This aspect of the alter�
native architecture describes the topology and process of the overall system monitoring and
data flow, i.e., the structure and flow of the data from ingestion to analysis. After that, techno�
logical components for the various tasks in the architecture can be chosen. The following
sections explain the different aspects and chosen components of the alternative architecture.

The visualization stage of the alternative architecture is implemented analogously to the
one of the architecture currently implemented. It utilizes the Grafana application to offer
visualizations and the possibility to explore and analyze the data stored in the persistence
stage. Therefore, it is not presented separately.

4.1.1 Structure
Various publications describe different high�level structures for system monitoring architec�
tures [8], [10]. As described in Section 2, a multi�stage approach represents one popular
choice. This multi�stage approach is also employed by the current implementation of the SCC,
thus it is selected as the foundation for the alternative architecture. This also simplifies the
comparison process.

As with the current architecture, the alternative architecture is divided into three stages:
collection, persistence, and visualization. The collection stage involves the resources to be
monitored, such as system components and the applications running on these components,
as well as collection agents. Analogous to the Telegraf services in the current architecture,
the collection agents serve as decoupled components which forward the monitoring data to a
specified destination. In the alternative architecture, the persistence stage, and therefore the
monitoring database, represents this destination. Therefore, this alternative architecture can

4 Results Henrik Jonathan Seeliger 7

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

be described as agent-based. The persistence stage can then be queried and analyzed by the
visualization stage using a visualization application.

In contrast to the current architecture, however, the collection agents offer multiple meth�
ods for obtaining monitoring data. In cloud computing environments, the active approach
of collecting monitoring has gained wide application. Many applications implement HTTP
endpoints that collection agents can request to obtain the current monitoring data for the
application. This approach is also known as pull-based approach, as the agent actively pulls
the data from the resources [18]. The alternative architecture aims to additionally support
the push�based approach, i.e., the resources such as applications push their monitoring data
to the collection agents themselves. In these two approaches, the collection agents do not
need to be deployed on the same physical components as the resources. However, in a third
supported method of data collection, the collection agent is deployed directly on the system’s
components, e.g., physical servers, and collects the data directly from them. This is the method
currently implemented in the SCC. As discussed later in Section 4.3, each approach has
respective advantages and disadvantages, while supporting multiple approaches increases the
architecture’s flexibility. Figure 2 illustrates the alternative architecture’s structure with its
three data collection methods.

Push

Push

Push

Pull

Push

Query

Server

Collection Agent

Server

Application

Server

Application

Collection Agent Collection Agent

Database

Visualization GUI

Collection Stage

Persistence Stage

Visualization Stage

Figure 2: High�level view of the architecture with three different collection modes.

4.1.2 ClickHouse
In order to persist and analyze the monitoring data, the persistence stage utilizes a database
management system (DBMS). The selection of the employed DBMS must be based on the
requirements. A wide range of possible components exist that may meet these requirements.
In this project, ClickHouse is chosen as DBMS.

ClickHouse is an open�source, column�oriented DBMS, focused on real�time and perfor�
mant analytical queries [19]. Since its open�source release in 2016 by Yandex, it gained

4 Results Henrik Jonathan Seeliger 8

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

popularity for online analytical processing (OLAP) use cases and has been adopted by compa�
nies such as Cloudflare and Uber [20]. For data manipulation and analytics, it employs the
relational data model and offers a query language based on SQL with a wide range of advanced
functionality when compared to the ANSI SQL standard. This functionality includes support
for time�series data with various analytical functions.

According to several sources, ClickHouse exhibits a significant performance advantage for
analytical queries in comparison to other DBMSs, particularly in the context of monitoring
use cases, as described in Section 2.3 [5], [20], [21]. Together with its capacity of advanced
analytical queries on temporal data, this characteristic represents the primary reason for
selecting it as the alternative architecture’s persistence stage.

4.1.3 OpenTelemetry
Many open�source projects in the field of monitoring work with custom nomenclatures and
semantics for monitoring data. For example, the open�source project Prometheus, which acts as
a collection agent and monitoring database simultaneously, defines specific protocols and se�
mantics that monitored applications have to implement [18]. To be monitored by Prometheus,
applications have to expose an HTTP endpoint which can be scraped by Prometheus according
to its protocol and semantics.

While many applications adopted the monitoring model of Prometheus, the approach of
implementing vendor�specific monitoring methods exhibits various limitations. One limita�
tion is that the resulting monitoring system is coupled to the format and methods of the
vendor, limiting its usability and extensibility. Additionally, integration and migration to other
vendors may prove to be complicated and prone to errors as no common formats or semantics
exist.

These aspects, among others, serve as the motivation for the OpenTelemetry (OTel) project.
OTel is a vendor�neutral framework for observability, which standardizes semantics, proto�
cols, formats and application programming interfaces (APIs) for monitoring [22]. In contrast
to the limited scope of monitoring projects that typically emphasize a single monitoring data
type, such as metrics as observed in Prometheus, OTel offers an unified approach by encom�
passing multiple data types. Besides metrics, logs and traces are supported. The protocol for
monitoring data transmission defined by OTel, the OpenTelemetry Protocol (OTLP), utilizes
either HTTP or gRPC and facilitates a push�based approach where monitored applications
push their monitoring data using this protocol to consumers such as collection agents. While
OTel defines APIs for applications to integrate monitoring into them, several implementations
for these APIs for various programming languages exist [23]. These implementations enable
a simplified setup of monitoring for applications. Additionally, semantics and tools exist
to convert existing monitoring formats such as the Prometheus format to the OTel model.
Because of these aspects, OTel serves as the conceptual and practical base for the alternative
architecture. Primarily, this is facilitated by employing the OTel Collector as the architecture’s
collection agents.

The OTel Collector is an observability data collection agent, comparable to Telegraf in the
currently implemented architecture [24]. The Collector, which is based on the OTel specifica�
tions, provides various methods for acquiring monitoring data. These include the OTLP and
support for additional protocols such as the Prometheus protocol. Furthermore, it is capable
of writing the different monitoring data to a ClickHouse instance. The combination of these

4 Results Henrik Jonathan Seeliger 9

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

features, in conjunction with its integration within the OTel framework, serves as the primary
factor in its selection as the architecture’s collection agent.

4.2 Implementation

To facilitate the evaluation, instances of both architectures to compare are implemented using
reproducible VMs. Using the open�source tool Vagrant, both architectures can be instantiated
in an automated and reproducible manner [17]. Subsequently, these instances can be explored
and analyzed practically.

Both VMs are described using Vagrantfiles. A Vagrantfile determines the configuration of
a VM, such as resources and initialization scripts. Using this file, Vagrant can automatically
initialize the VM, using a configurable virtualization backend. In this project, the libvirt
backend is chosen, utilizing Kernel�based Virtual Machine (KVM)/Quick Emulator (QEMU) as
hypervisor, as these enable near�native performance [25]. Listing B.1 shows the Vagrantfile
for the alternative monitoring architecture.

The SCC primarily utilizes the OS Rocky Linux 8 on its computing nodes [26]. Therefore,
the VMs are also based on this OS. To facilitate a comparison and evaluation, both instances
implement the same monitoring use case. Both instances provide the persistence and visual�
ization stage of their respective architecture, while their collection stage collects two types
of metric data. First, they collect host�level metrics themselves, such as CPU and RAM
utilization. Second, they scrape a given application using the Prometheus protocol to enable
insights regarding both architecture’s interoperability. As both architectures already deploy
the Grafana application, which exposes a Prometheus�compatible endpoint for obtaining its
metrics, this application is scraped in both instances. Additionally, the alternative architecture
gathers logs from journald, which represents the logging system of the most widely adopted
Linux init system systemd [27]. At the present time, Telegraf lacks the capacity to gather
journald logs, due to its semantic model not being designed for logs, as opposed to OTel and
its Collector [28].

4.3 Qualitative Evaluation

After specifying the alternative architecture and implementing instances for each, an explo�
ration and comparison of the two architectures is possible. The results of the comparison can
then be explained and subsequently evaluated to highlight the benefits and drawbacks of each
architecture.

4.3.1 Comparison

4.3.1.1 Structure Level
Both architectures exhibit a number of similarities in their overall structure. They both utilize
a staged approach, employing three stages for monitoring and an equal visualization stage.
Additionally, both architectures implement an agent�based approach, in which agents transfer
the obtained monitoring data to the persistence stage.

4 Results Henrik Jonathan Seeliger 10

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

The agent�based approach and the integration of Telegraf and the OTel Collector enable
configurable architecture instances. Both Telegraf and the OTel Collector offer a wide range of
components for obtaining, processing and transmitting monitoring data. These components
include the support for a variety of storage backends such as different DBMSs. Additionally,
both agents offer transformation operations, enabling pre�processing operations of monitor�
ing data, such as filtering and data cleaning. When combined, the configurable components
enable flexible and complex data pipelines in the case of each agent technology.

By supporting a wide range of components for obtaining monitoring data, both collection
agents allow for multiple data collection methods. Although not configured and implemented
in the current architecture, both agent technologies support pull� as well as push�based
approaches for collecting data. This includes the support for the OTLP in both cases.

However, both architectures show a number of differences at the structural level. The
alternative architecture is based on the OTel framework, which provides a formal standard
for formats, transmission, and semantics of monitoring data. The alternative architecture
follows this standard. As the OTel standard uniformly supports metrics, traces, and logs, the
alternative architecture implements these monitoring data types as well, while the currently
implemented architecture is focused solely on metrics.

As the alternative architecture is based on this standard, it also follows the passive, push�
based approach preferred by OTel and the OTLP. Primarily, applications push their monitoring
data to the OTel Collector instances themselves, while active approaches, e.g., the approach of
sending requests to Prometheus�compatible endpoints of the applications, are also supported.
The current architecture only focuses on the active, push�based approach.

Another difference are the methods of configuring the collection agents. Both architectures
support the declarative, file�based configuration of the agents. However, Telegraf, which is
employed by the current architecture, is configured using INI files, while the OTel Collector is
configured using YAML files. Both configuration approaches enable the definition of complex
monitoring data pipelines. Additionally, the OTel Collector supports remote configuration
using a standardized remote management protocol, named Open Agent Management Protocol
(OpAMP). Listing B.4 and Listing B.5 show the configuration files for both collection agents
in this project.

4.3.1.2 Data Storage and Analysis Level
For storing and analyzing the monitoring data, both architectures employ a persistence stage.
In this stage, the monitoring data is persisted using a DBMS, which additionally offers data
analysis capabilities using query languages. While the current architecture utilizes InfluxDB,
the alternative architecture implements its persistence stage using ClickHouse.

When comparing both persistence stages and their different DBMSs, only a limited number
of similarities show. One similarity is that both databases support time�series data, which is
essential for supporting the use case of monitoring data and its temporal nature. Being a time�
series database, InfluxDB focuses on temporal data, while ClickHouse is based on the relational
data model with a wide range of supported data types. Still, these data types include time and
time�dependant data. Another similarity is represented by the capability of both databases to
offer extensive languages and tools for querying and analyzing the stored data.

The employed languages for querying and analyzing data, however, present the first differ�
ence between both architectures and their utilized DBMSs. The current open�source version

4 Results Henrik Jonathan Seeliger 11

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

of InfluxDB, InfluxDB 2, provides the functional data scripting language Flux as primary
query language. This language has been specifically developed for InfluxDB and offers a
wide range of functionalities for manipulating and processing time�series data. Additionally,
InfluxDB 2 provides limited support for InfluxQL, a SQL�like language that was developed
for InfluxDB and for managing time�series data. This language, however, is less expressive
than, e.g., the ANSI SQL standard, as it does not support various standardized features such as
joins. Furthermore, a number of restrictions apply to the utilization of InfluxQL in InfluxDB
2 due to its deprecation, such as missing support for ALTER and CREATE statements. One
important aspect, however, is that with the announcement of InfluxDB 3 in September 2023,
both InfluxQL and Flux have been deprecated [29]. InfluxDB 3 introduces a new SQL�based
language, but at the present time, no stable open�source release of InfluxDB 3 exists [30].

ClickHouse also supports a SQL�like language, ClickHouse SQL, which extends the ANSI
SQL standard with many advanced analytical functions. Both Flux and ClickHouse SQL offer a
variety of functions, e.g., for processing time�series and semi�structured data, including array
and dictionary data types. However, ClickHouse SQL additionally supports more advanced
analysis functions such as machine learning aggregation functions and time�series�related
algorithms. Listing B.2 and Listing B.3 show the same query for calculating the current
CPU utilization implemented using Flux and ClickHouse SQL. This provides a simplified
overview of the languages and their functions. However, a more in�depth investigation of both
languages is beyond the scope of this project.

The data storage implementations of both database systems represent another difference.
For persisting data, InfluxDB offers one storage engine. ClickHouse, on the other hand, offers
over 22 table engines with different underlying technologies and methods. These include table
engines optimized for specific aggregation use cases such as Summing Merge Trees, as well
as special engines for, e.g., distributed and memory�only tables. Besides the possibility of
changing the underlying storage engine, ClickHouse offers additional configuration options
for optimizing performance and storage efficiency, such as configurable compression and
partitioning. Furthermore, ClickHouse supports horizontal scaling for data replication, while
InfluxDB offers clustering capabilities only in its commercial version.

A notable distinction between the two DBMSs lies in their performance characteristics.
ClickHouse was designed for OLAP use cases and is thereby developed for the fast processing
and analysis of datasets. To facilitate this, various techniques have been implemented, such
as computation parallelization using Single Instruction, Multiple Data (SIMD) and multi�node
processing [19]. A number of benchmarks exist which demonstrate a significant performance
advantage of ClickHouse when compared to other DBMSs, including InfluxDB [21], [31].
These benchmarks also investigate time�series use cases. For monitoring use cases, Khelifati
et al. show a significant performance advantage of ClickHouse when compared to InfluxDB
regarding query performance and storage efficiency [5].

4.3.2 Benefits and Drawbacks
In the preceding section, a variety of characteristics for each architectural design is explained
and compared. These characteristics can now be utilized to derive the benefits and drawbacks
of the alternative architecture for the context of HPC.

The first aspect to consider is the passive, push�based approach of the alternative architec�
ture in the context of application monitoring. In this approach, the applications send their

4 Results Henrik Jonathan Seeliger 12

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

monitoring data to the collection agents themselves. However, this may have a negative
impact on the performance of the monitored applications, as they are required to implement
and execute logic for the collection and transmission of the data. Tracing, e.g., requires the
application to record the timing of internal functions calls, creating an overhead for the
application. In contrast, the passive approach enabled by OTel simplifies the configuration of
application monitoring and enhances the alternative architecture’s scalability. By providing
software development kits (SDKs) as well as auto instrumentation capabilities for a variety
of programming languages and environments, applications may be integrated into the moni�
toring system in a simplified manner. These applications can subsequently be configured
only using environment variables, as required by the OTel API. This simplified configuration
enhances the overall architecture’s scalability, as new applications can be integrated with
reduced effort. Furthermore, the passive, push�based approach of OTel offers an increased
scalability when opposed to the active approach of the current architecture by relying on a
stateless, unidirectional communication and flow of monitoring data. As the OTel Collector
and the OTLP can be considered push�based and stateless, the flow of the data and thereby the
architecture can be simplified while increasing its flexibility. Applications and OTel Collector
instances only have to be configured once to send or, in the case of the Collectors, send and
receive OTel data. The active approach, however, requires a reconfiguration of the agents to
add new applications to monitor. Additionally, the scraping logic has to be synchronized and
distributed among the agents to prevent duplicated data and performance degradations.

Due to the performance implications associated with the passive approach of the alternative
architecture, this approach is only applicable for applications and environments with less
restrictive performance requirements. In cloud computing environments, the performance
impact of applications sending their monitoring data may be seen as negligible, because the
significance of reliability and therefore of monitoring might outweigh the significance of
performance. However, the context of HPC is defined by strict performance requirements,
rendering the passive approach as not applicable in the majority of HPC environments. Still,
given the scalability and flexibility advantages described previously, this approach may be
utilized for applications with less strict performance requirements, such as job schedulers.
Additionally, depending on the application’s requirements, OTel enables applications to be
compiled with monitoring capabilities using the OTel SDKs in a debug configuration. In a test
run, metrics, traces and log data may then be collected and analyzed using the monitoring
system to optimize the performance of the application. For a production run and its intended
purpose, the application can be built without the monitoring capabilities to ensure optimal
performance.

The previously described aspects represent scalability, flexibility and observability benefits
of the alternative architecture in the context of monitoring applications. The benefits of scala�
bility can be transferred to the monitoring of the systems as well. In the context of monitoring
the systems directly, both architectures utilize an equal approach of agents being deployed
on the systems and actively collecting host metrics. Here, the OTel Collector and the alter�
native architecture support metrics, traces and logs natively. This can be utilized to monitor
additionally, e.g., the logs of the systems. Another benefit of the alternative architecture is the
configurability of the OTel Collector and, thereby, the monitoring system. Both Telegraf and
the OTel Collector support the configuration of complex data pipelines, including filtering
and processing of the data before sending it to the persistence stage. The nature of INI files,

4 Results Henrik Jonathan Seeliger 13

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

however, complicate this in the case of Telegraf. The configuration of the OTel Collector is
strictly divided into receivers, processors, exporters, and the combination of these as pipelines.
In contrast, Telegraf pipelines are configured at the component level, resulting in complex
configuration files. Listing B.6 shows a Telegraf configuration with metric filtering enabled
and illustrates, when compared to the OTel Collector configuration depicted in Listing B.5,
this complexity.

The final aspects to consider for the evaluation of the alternative architecture concern their
persistence stages, i.e., ClickHouse and InfluxDB. The query language of ClickHouse, a SQL�
like language based on ANSI SQL, offers a number of benefits when compared to InfluxDB and
its employed language Flux. Utilizing a query language that is based on one of the most widely
known languages increases the architecture’s adaptability for operators and developers [32].
In addition, ClickHouse SQL offers a variety of advanced functionalities for the analysis of
time�series data and, consequently, monitoring data. Flux also provides analytical functions
for time�series data. However, as ClickHouse is based on the relational data model, it supports
more analytical use cases involving data that is different from time�series data. Logging and
tracing represent two such use cases that may benefit from this aspect, as analyzing this data
may require the relating of it to other data of different nature. The query language and data
model of ClickHouse facilitate this process, as well as the storage of all monitoring data types
in one place.

Another benefit of utilizing ClickHouse when opposed to InfluxDB is a significant perfor�
mance advantage of analytical queries for analyzing the monitoring data. This enhancement
enables the ingestion of more data while enabling the exploration and analysis of existing
data in less time. Additionally, it facilitates the execution of more complex queries, leading
to further insights into the system and its services. Besides these performance advantages,
ClickHouse offers several storage efficiency benefits. As described in the preceding section,
various sources demonstrate that ClickHouse outperforms InfluxDB in terms of storage effi�
ciency. Furthermore, the storage engine of ClickHouse tables can be configured and tuned
to achieve an optimal storage size for persisted data, including configurable compression of
the data. In contrast, InfluxDB does not offer the configuration of its storage engine or the
compression of storage units. This advantage of ClickHouse can also be utilized to achieve a
data architecture compromising multiple storage tiers, e.g., a hot and cold storage architecture.

However, ClickHouse exhibits an important drawback when compared to InfluxDB. As
ClickHouse is designed for performant, analytical queries, it requires a considerable amount
of resources to operate when compared to InfluxDB and other DBMSs, primarily considering
CPU and RAM. For ClickHouse, the recommended amount of RAM to operate is 32 GB or
more. The operation of ClickHouse in envionments with a lower amount of RAM is possible,
but specific tuning is necessary [33]. In this project, the VM running ClickHouse was assigned
4 GB of RAM with no observable functional impact. However, in the event of ClickHouse
reaching its RAM limit, the system may cease to function correctly. This may result in service
outages or data loss during data collection. In contrast, InfluxDB requires a comparatively
lower amount of resources, with 32 GB of RAM only being necessary for a substantial
volume of writes per second (more than 250,000 writes per second) and stored data (more
than 1,000,000 unique series) [34]. Therefore, the required resources represent a significant
drawback of the alternative architecture and have to be considered.

4 Results Henrik Jonathan Seeliger 14

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

5 Discussion

After presenting the challenges faced in this project, possible alternatives to the architecture
described in this project are shortly discussed.

5.1 Challenges

The most significant challenge encountered in this project is the lack of resources on require�
ments for monitoring, specifically in the context of HPC. A limited amount of literature was
identified that enables this work. However, to facilitate a more comprehensive comparative
analysis, more requirements and use cases have to be investigated in the future. This could be
achieved, for example, by surveys in fields related to HPC.

The quantity of resources available for monitoring architectures based on ClickHouse and
the OTel Collector with its configuration was also restricted. A significant portion of alterna�
tive architecture had to be developed and configured by the author. Primarily, this includes the
configuration of the various included technologies, such as ClickHouse and the OTel Collector.
However, this facilitated the exploration of diverse architectures and enabled the learning of
systems monitoring methodologies.

5.2 Alternatives

A wide range of alternative components and approaches for implementing monitoring
architectures exist, which have not been covered in this project. These include alternative
technologies for the collection agents and DBMSs. In the future, an examination of these
approaches and technologies might prove as beneficial by providing additional improvements.

The developers of Grafana present Grafana Alloy as one alternative collection agent tech�
nology. This agent is based on the OTel Collector and adds various additional features such
as clustering and a simplified distributed scraping of application metrics [35]. Furthermore,
it employs a specific configuration language commonly utilized in the Grafana environment.
As a part of the Grafana environment, it can be combined in a simplified manner with other
Grafana products such as Grafana (the visualization application) or Grafana Mimir.

Released in 2022, GreptimeDB presents a relatively new DBMS with a focus on monitoring
data [36]. This DBMS natively supports the ingestion of OTel data using the OTLP, while
supporting multiple languages for querying and analyzing the data, such as SQL and PromQL,
the language utilized by Prometheus. Because of its monitoring�focused feature set, this
database may be investigated in the future to evaluate its employment in the persistence stage.

5 Discussion Henrik Jonathan Seeliger 15

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

6 Conclusion

Ensuring the uninterrupted operation of large�scale computing systems poses a major chal�
lenge to HPC environments. The process of system monitoring mitigates this challenge by
collecting data from running components, enabling the real�time analysis of the system and
providing insights regarding its condition. Due to the number of available technologies and
required components, a wide range of system monitoring architectures exists. The SCC, for
example, utilizes the TIG stack. However, many alternative architectures exist which poten�
tially exhibit advantages over the TIG stack and improve the monitoring process of systems
such as the SCC.

The aim of this project was to explore and evaluate such an alternative system monitoring
architecture to identify its benefits and drawbacks. With the findings of this comparison,
system administrators may improve their monitoring process by employing aspects or com�
ponents of the alternative architecture, depending on their requirements.

The analyzed alternative monitoring architecture is based on the OTel framework and
utilizes the OTel Collector as well as the ClickHouse DBMS. The evaluation conducted in this
project shows that the new architecture exhibits a number of advantages when compared to
the currently employed TIG stack in terms of performance, scalability, flexibility and features.
However, these benefits come at the cost of highly increased resource requirements for the
persistence stage in terms of, e.g., required RAM, that may impact the monitored systems
significantly. The alternative architecture offers multiple approaches for collecting monitoring
data from applications and depending on the implemented approach, monitored applications
may be affected additionally. For monitoring the systems directly, no impact of the new
approach has been found. In addition to these findings, a framework for comparing system
monitoring architectures is proposed that facilitates the practical and reproducible exploration
of infrastructures.

Therefore, this project may be seen as successful. Besides the main findings described
above, the author was able to research and learn a large number of infrastructure and
monitoring aspects which can be utilized in future projects. One future project is presented
by investigating the described shortcomings, such as benchmarks for the current versions
of the architecture components. This may yield valuable insights and may improve system
monitoring architectures in the future.

6 Conclusion Henrik Jonathan Seeliger 16

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

Bibliography

[1] E. Al�Shaer, H. Abdel�Wahab, and K. Maly, “HiFi: a new monitoring architecture for
distributed systems management,” in Proceedings. 19th IEEE International Conference on
Distributed Computing Systems (Cat. No.99CB37003), 1999, pp. 171–178. doi: 10.1109/
ICDCS.1999.776518.

[2] S. Sanchez et al., “Design and Implementation of a Scalable HPC Monitoring System,”
in 2016 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2016, pp. 1721–1725. doi: 10.1109/IPDPSW.2016.167.

[3] M. Merz, “Monitoring in High Performance Computing,” 2024. Accessed: Dec. 12, 2024.
[Online]. Available: https://hps.vi4io.org/_media/teaching/autumn_term_2024/hpcsa/
monitoring.pdf

[4] InfluxData Inc., “Grafana Guide – A Guide to the TIG Stack – Telegraf, InfluxDB, and
Grafana,” 2025, Accessed: Jan. 30, 2025. [Online]. Available: https://www.influxdata.
com/grafana/

[5] A. Khelifati, M. Khayati, A. Dignös, D. Difallah, and P. Cudré�Mauroux, “TSM�Bench:
Benchmarking Time Series Database Systems for Monitoring Applications,” Proc. VLDB
Endow., vol. 16, no. 11, pp. 3363–3376, Jul. 2023, doi: 10.14778/3611479.3611532.

[6] J. Turnbull, The Art of Monitoring. 2016.
[7] G. Wiesen, “What Is a System Monitor?,” May 2024, Accessed: Jan. 31, 2025. [Online].

Available: https://www.easytechjunkie.com/what�is�a�system�monitor.htm
[8] J. M. Alcaraz Calero and J. Gutiérrez Aguado, “Comparative analysis of architectures for

monitoring cloud computing infrastructures,” Future Generation Computer Systems, vol.
47, pp. 16–30, 2015, doi: https://doi.org/10.1016/j.future.2014.12.008.

[9] R. Izadpanah, N. Naksinehaboon, J. Brandt, A. Gentile, and D. Dechev, “Integrating Low�
latency Analysis into HPC System Monitoring,” in Proceedings of the 47th International
Conference on Parallel Processing, in ICPP '18. Eugene, OR, USA: Association for Com�
puting Machinery, 2018. doi: 10.1145/3225058.3225086.

[10] G. Aceto, A. Botta, W. de Donato, and A. Pescapè, “Cloud monitoring: A survey,” Com-
puter Networks, vol. 57, no. 9, pp. 2093–2115, 2013, doi: https://doi.org/10.1016/j.comnet.
2013.04.001.

[11] InfluxData and Contributors, “InfluxDB.” Accessed: Feb. 01, 2025. [Online]. Available:
https://github.com/influxdata/influxdb

[12] InfluxData and Contributors, “Telegraf.” Accessed: Feb. 01, 2025. [Online]. Available:
https://github.com/influxdata/telegraf

[13] Grafana Labs and Contributors, “Grafana.” Accessed: Feb. 01, 2025. [Online]. Available:
https://github.com/grafana/grafana

[14] The Linux Foundation, “Cloud Native Landscape.” Accessed: Feb. 01, 2025. [Online].
Available: https://landscape.cncf.io/

Bibliography Henrik Jonathan Seeliger 17

https://doi.org/10.1109/ICDCS.1999.776518
https://doi.org/10.1109/ICDCS.1999.776518
https://doi.org/10.1109/IPDPSW.2016.167
https://hps.vi4io.org/_media/teaching/autumn_term_2024/hpcsa/monitoring.pdf
https://hps.vi4io.org/_media/teaching/autumn_term_2024/hpcsa/monitoring.pdf
https://www.influxdata.com/grafana/
https://www.influxdata.com/grafana/
https://doi.org/10.14778/3611479.3611532
https://www.easytechjunkie.com/what-is-a-system-monitor.htm
https://doi.org/https://doi.org/10.1016/j.future.2014.12.008
https://doi.org/10.1145/3225058.3225086
https://doi.org/https://doi.org/10.1016/j.comnet.2013.04.001
https://doi.org/https://doi.org/10.1016/j.comnet.2013.04.001
https://github.com/influxdata/influxdb
https://github.com/influxdata/telegraf
https://github.com/grafana/grafana
https://landscape.cncf.io/

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

[15] Fonticons, Inc., “Server Icon.” Accessed: Feb. 01, 2025. [Online]. Available: https://
fontawesome.com/icons/server?s=solid

[16] R. Savage, “InfluxDB 2.0 Open Source is Generally Available,” Nov. 2020, Accessed:
Feb. 01, 2025. [Online]. Available: https://www.influxdata.com/blog/influxdb�2�0�open�
source�is�generally�available/

[17] HashiCorp, Inc. and contributors, “Vagrant.” Accessed: Feb. 03, 2025. [Online]. Available:
https://github.com/hashicorp/vagrant

[18] J. Turnbull, “Monitoring with Prometheus.” Turnbull Press, Jun. 12, 2018.
[19] R. Schulze, T. Schreiber, I. Yatsishin, R. Dahimene, and A. Milovidov, “ClickHouse –

Lightning Fast Analytics for Everyone,” Proceedings of the VLDB Endowment, vol. 17, pp.
3731–3744, Nov. 2024, doi: 10.14778/3685800.3685802.

[20] F. Lardinois, “ClickHouse launches ClickHouse Cloud, extends its Series B,” TechCrunch,
Dec. 2022, Accessed: Feb. 07, 2025. [Online]. Available: https://techcrunch.com/2022/12/
06/clickhouse�launches�clickhouse�cloud�extends�its�series�b/

[21] A. Milovidov and contributors, “ClickBench: a Benchmark For Analytical Databases.”
Accessed: Feb. 07, 2025. [Online]. Available: https://github.com/ClickHouse/ClickBench/

[22] OpenTelemetry Authors, “OpenTelemetry Specification 1.41.0.” 2024. Accessed: Feb. 08,
2025. [Online]. Available: https://opentelemetry.io/docs/specs/otel/

[23] OpenTelemetry Authors, “Language APIs & SDKs,” 2024, Accessed: Feb. 08, 2025.
[Online]. Available: https://opentelemetry.io/docs/languages/

[24] OpenTelemetry Authors, “Collector,” 2024, Accessed: Feb. 08, 2025. [Online]. Available:
https://opentelemetry.io/docs/collector/

[25] Red Hat, Inc., “Hypervisor im Vergleich: KVM oder VMware?,” Mar. 2023, Accessed: Feb.
10, 2025. [Online]. Available: https://www.redhat.com/de/topics/virtualization/kvm�vs�
vmware�comparison

[26] GWDG, “CPU Partitions,” GWDG HPC Documentation, Feb. 2025, Accessed: Feb. 10,
2025. [Online]. Available: https://docs.hpc.gwdg.de/how_to_use/compute_partitions/
cpu_partitions/index.html

[27] B. Byfield, “A Survey of Init Systems,” May 2021, Accessed: Mar. 06, 2025. [Online].
Available: https://www.linux�magazine.com/Online/Features/A�Survey�of�Init�Systems

[28] M. Palmersheim, “Feature Request Systemd_Journald plugin.” Accessed: Feb. 10, 2025.
[Online]. Available: https://github.com/influxdata/telegraf/issues/8154

[29] InfluxData Inc., “InfluxData Unveils Future of Time Series Analytics with InfluxDB 3.0
Product Suite,” Apr. 2023, Accessed: Feb. 11, 2025. [Online]. Available: https://www.
influxdata.com/blog/influxdata�announces�influxdb�3�0/

[30] P. Dix, “The Plan for InfluxDB 3.0 Open Source,” InfluxDB Blog, Sep. 2024, [Online].
Available: https://www.influxdata.com/blog/the�plan�for�influxdb�3�0�open�source/

[31] Altinity Team, “ClickHouse® Crushing Time Series,” Nov. 2018, Accessed: Feb. 12, 2025.
[Online]. Available: https://altinity.com/blog/clickhouse�for�time�series

[32] Stack Overflow, “Stack Overflow Developer Survey 2024 – Technology.” Accessed: Feb.
14, 2025. [Online]. Available: https://survey.stackoverflow.co/2024/technology

[33] ClickHouse, Inc. and Contributors, “Usage Recommendations,” ClickHouse Documenta-
tion, 2025, Accessed: Feb. 15, 2025. [Online]. Available: https://clickhouse.com/docs/en/
operations/tips#ram

Bibliography Henrik Jonathan Seeliger 18

https://fontawesome.com/icons/server?s=solid
https://fontawesome.com/icons/server?s=solid
https://www.influxdata.com/blog/influxdb-2-0-open-source-is-generally-available/
https://www.influxdata.com/blog/influxdb-2-0-open-source-is-generally-available/
https://github.com/hashicorp/vagrant
https://doi.org/10.14778/3685800.3685802
https://techcrunch.com/2022/12/06/clickhouse-launches-clickhouse-cloud-extends-its-series-b/
https://techcrunch.com/2022/12/06/clickhouse-launches-clickhouse-cloud-extends-its-series-b/
https://github.com/ClickHouse/ClickBench/
https://opentelemetry.io/docs/specs/otel/
https://opentelemetry.io/docs/languages/
https://opentelemetry.io/docs/collector/
https://www.redhat.com/de/topics/virtualization/kvm-vs-vmware-comparison
https://www.redhat.com/de/topics/virtualization/kvm-vs-vmware-comparison
https://docs.hpc.gwdg.de/how_to_use/compute_partitions/cpu_partitions/index.html
https://docs.hpc.gwdg.de/how_to_use/compute_partitions/cpu_partitions/index.html
https://www.linux-magazine.com/Online/Features/A-Survey-of-Init-Systems
https://github.com/influxdata/telegraf/issues/8154
https://www.influxdata.com/blog/influxdata-announces-influxdb-3-0/
https://www.influxdata.com/blog/influxdata-announces-influxdb-3-0/
https://www.influxdata.com/blog/the-plan-for-influxdb-3-0-open-source/
https://altinity.com/blog/clickhouse-for-time-series
https://survey.stackoverflow.co/2024/technology
https://clickhouse.com/docs/en/operations/tips#ram
https://clickhouse.com/docs/en/operations/tips#ram

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

[34] InfluxData Inc. and Contributors, “Hardware sizing guidelines,” InfluxData Documen-
tation, 2023, Accessed: Feb. 15, 2025. [Online]. Available: https://docs.influxdata.com/
influxdb/v1/guides/hardware_sizing/

[35] Grafana Labs and Contributors, “Grafana Alloy Documentation,” 2025, Accessed: Feb.
15, 2025. [Online]. Available: https://grafana.com/docs/alloy/latest/

[36] Greptime and Contributors, “GreptimeDB OSS,” 2025, Accessed: Feb. 15, 2025. [Online].
Available: https://greptime.com/product/db

[37] InfluxData and Contributors, “Configuration: Metric Filtering,” Telegraf Docs, 2025, Ac�
cessed: Feb. 13, 2025. [Online]. Available: https://github.com/influxdata/telegraf/blob/
master/docs/CONFIGURATION.md#metric�filtering

Bibliography Henrik Jonathan Seeliger 19

https://docs.influxdata.com/influxdb/v1/guides/hardware_sizing/
https://docs.influxdata.com/influxdb/v1/guides/hardware_sizing/
https://grafana.com/docs/alloy/latest/
https://greptime.com/product/db
https://github.com/influxdata/telegraf/blob/master/docs/CONFIGURATION.md#metric-filtering
https://github.com/influxdata/telegraf/blob/master/docs/CONFIGURATION.md#metric-filtering

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

Appendix

A Figures

Figure A.1: Visualization of the result of the ClickHouse SQL query depicted in Listing B.2.

B Code Samples

 1 # -*- mode: ruby -*-
 2 # vi: set ft=ruby :
 3
 4 Vagrant.configure("2") do |config|
 5 config.vm.box = "generic/rocky8"
 6 config.vm.box_check_update = false
 7 config.vm.hostname = "otc"
 8
 9 config.vm.network "forwarded_port", guest: 8123, host: 3010
10 config.vm.network "forwarded_port", guest: 3000, host: 3011
11
12 config.vm.provider :libvirt do |libvirt|
13 libvirt.cpus = 4
14 libvirt.memory = 4096
15 libvirt.machine_virtual_size = 20
16
17 # See https://wiki.openstack.org/wiki/LibvirtXMLCPUModel
18 libvirt.cpu_mode = "host-passthrough"
19 end
20
21 config.vm.provision "file", source: "./clickhouse/config.xml", destination: "/tmp/
clickhouse.xml"
22 config.vm.provision "file", source: "./clickhouse/monitoring_user.xml", destination: "/
tmp/clickhouse_user.xml"
23 config.vm.provision "file", source: "./otelcol/config.yaml", destination: "/tmp/

Appendix Henrik Jonathan Seeliger 20

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

otelcol.yaml"
24 config.vm.provision "file", source: "./otelcol/dependencies.conf", destination: "/tmp/
otelcol-dependencies.conf"
25 config.vm.provision "file", source: "./grafana/grafana.ini", destination: "/tmp/
grafana.ini"
26 config.vm.provision "file", source: "./grafana/datasource.yaml", destination: "/tmp/
clickhouse.yaml"
27
28 config.vm.provision "shell", inline: <<-'SHELL'
29 # Move configuration files to appropriate locations
30
31 mkdir -p \
32 /etc/clickhouse-server/config.d \
33 /etc/clickhouse-server/users.d \
34 /etc/otelcol-contrib \
35 /etc/grafana/provisioning/datasources \
36 /var/lib/grafana/plugins \
37 /etc/systemd/system/otelcol-contrib.service.d
38
39 mv /tmp/clickhouse.xml /etc/clickhouse-server/config.d/config.xml
40 mv /tmp/clickhouse_user.xml /etc/clickhouse-server/users.d/monitoring_user.xml
41 mv /tmp/otelcol.yaml /etc/otelcol-contrib/config.yaml
42 mv /tmp/otelcol-dependencies.conf /etc/systemd/system/otelcol-contrib.service.d/
dependencies.conf
43 mv /tmp/grafana.ini /etc/grafana/
44 mv /tmp/clickhouse.yaml /etc/grafana/provisioning/datasources/
45
46 # Install Grafana ClickHouse plugin
47
48 dnf install -y unzip
49
50 curl \
51 --fail --show-error \
52 -o /tmp/clickhouse.zip \
53 -L "https://grafana.com/api/plugins/grafana-clickhouse-datasource/versions/4.5.1/
download?os=linux&arch=amd64"
54 ls -al /tmp
55 unzip /tmp/clickhouse.zip -d /var/lib/grafana/plugins/
56 rm /tmp/clickhouse.zip
57
58 # Configure ClickHouse, OTEL Collector and Grafana repositories
59
60 dnf config-manager --add-repo https://packages.clickhouse.com/rpm/clickhouse.repo
61
62 cat <<EOF | tee /etc/yum.repos.d/grafana.repo
63 [grafana]
64 name=grafana
65 baseurl=https://rpm.grafana.com
66 repo_gpgcheck=1
67 enabled=1
68 gpgcheck=1
69 gpgkey=https://rpm.grafana.com/gpg.key
70 EOF
71
72 # Install packages
73
74 dnf install -y \
75 https://github.com/open-telemetry/opentelemetry-collector-releases/releases/download/
v0.115.1/otelcol-contrib_0.115.1_linux_amd64.rpm \
76 clickhouse-server \
77 clickhouse-client \
78 grafana
79

Appendix Henrik Jonathan Seeliger 21

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

80 # Allow OpenTelemetry Collector to read journald logs
81
82 usermod -a -G systemd-journal otelcol-contrib
83
84 # Start services
85
86 systemctl daemon-reload
87 systemctl enable --now clickhouse-server otelcol-contrib grafana-server
88
89 # `otelcol-contrib` service is started automatically when installed,
90 # but as its user's groups were updated, it has to be restarted
91
92 systemctl restart otelcol-contrib
93 SHELL
94 end
95

Listing B.1: Vagrantfile for the comparison instance of the alternative architecture.

 1 WITH cpu_times_per_state AS (
 2 SELECT
 3 time,
 4 cpu,
 5 CAST(
 6 groupArray(
 7 (state, value)
 8),
 9 'Map(String, Float64)'
10) AS states
11 FROM
12 (
13 SELECT
14 TimeUnix AS time,
15 Attributes['cpu'] AS cpu,
16 Attributes['state'] AS state,
17 Value AS value
18 FROM
19 otel_metrics_sum
20 WHERE
21 time >= $__fromTime
22 AND time <= $__toTime
23 AND MetricName = 'system.cpu.time'
24 ORDER BY
25 time ASC,
26 cpu ASC,
27 state ASC
28)
29 GROUP BY
30 time,
31 cpu
32 ORDER BY
33 time ASC,
34 cpu ASC
35),
36 differences AS (
37 SELECT
38 time,
39 cpu,
40 lagInFrame(states) OVER (
41 PARTITION BY cpu

Appendix Henrik Jonathan Seeliger 22

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

42 ORDER BY
43 time ASC ROWS BETWEEN UNBOUNDED PRECEDING
44 AND UNBOUNDED FOLLOWING
45) AS previous,
46 states AS current,
47 mapSubtract(current, previous) AS state_differences
48 FROM
49 cpu_times_per_state
50 ORDER BY
51 time ASC,
52 cpu ASC
53),
54 utilizations AS (
55 SELECT
56 time,
57 cpu,
58 state_differences['interrupt']
59 + state_differences['nice']
60 + state_differences['softirq']
61 + state_differences['steal']
62 + state_differences['system']
63 + state_differences['user']
64 + state_differences['idle']
65 + state_differences['wait'] AS total,
66 state_differences['interrupt']
67 + state_differences['nice']
68 + state_differences['softirq']
69 + state_differences['steal']
70 + state_differences['system']
71 + state_differences['user'] AS active,
72 active / total AS utilization
73 FROM
74 differences
75 WHERE
76 length(previous) > 0
77)
78 SELECT
79 time,
80 cpu,
81 utilization
82 FROM
83 utilizations
84

Listing B.2: ClickHouse SQL query for calculating the current CPU utilization per CPU core
in the alternative architecture.
Figure A.1 illustrates the result.

 1 calculateUtilization = (usages) => {
 2 total = usages["time_nice"]
 3 + usages["time_softirq"]
 4 + usages["time_steal"]
 5 + usages["time_system"]
 6 + usages["time_user"]
 7 + usages["time_idle"]
 8 + usages["time_iowait"]
 9
10 active = usages["time_nice"]
11 + usages["time_softirq"]

Appendix Henrik Jonathan Seeliger 23

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

12 + usages["time_steal"]
13 + usages["time_system"]
14 + usages["time_user"]
15
16 return active / total * 100.0
17 }
18
19 from(bucket: "test-bucket")
20 |> range(start: v.timeRangeStart, stop: v.timeRangeStop)
21 |> filter(fn: (r) => r["_measurement"] == "cpu")
22 |> filter(fn: (r) => contains(
23 value: r["_field"],
24 set: [
25 "time_nice",
26 "time_softirq",
27 "time_steal",
28 "time_system",
29 "time_user",
30 "time_idle",
31 "time_iowait"
32]))
33 |> filter(fn: (r) => contains(value: r["cpu"], set: ["cpu0", "cpu1", "cpu2", "cpu3"]))
34 |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
35 |> derivative(
36 unit: 1s,
37 columns: [
38 "time_nice",
39 "time_softirq",
40 "time_steal",
41 "time_system",
42 "time_user",
43 "time_idle",
44 "time_iowait"
45])
46 |> map(
47 fn: (r) => ({
48 _time: r._time,
49 _measurement: r._measurement,
50 _field: "cpu_utilization",
51 _value: calculateUtilization(usages: r),
52 cpu: r["cpu"]
53 }),
54)
55

Listing B.3: Flux query for calculating the current CPU utilization per CPU core in the current
architecture.

 1 [agent]
 2 interval = "10s"
 3 metric_batch_size = 100
 4
 5 flush_interval = "10s"
 6
 7 [[outputs.influxdb_v2]]
 8 urls = ["http://localhost:8086"]
 9
10 token = "test-token"
11 organization = "test-org"

Appendix Henrik Jonathan Seeliger 24

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

12 bucket = "test-bucket"
13
14 [[inputs.cpu]]
15 percpu = true
16 totalcpu = true
17 collect_cpu_time = true
18 report_active = false
19 core_tags = false
20
21 [[inputs.disk]]
22 ignore_fs = ["tmpfs", "devtmpfs", "devfs", "iso9660", "overlay", "aufs", "squashfs"]
23
24 [[inputs.mem]]
25
26 [[inputs.opentelemetry]]
27
28 [[inputs.prometheus]]
29 urls = ["http://localhost:3000/metrics"]
30

Listing B.4: Configuration of this project’s Telegraf instance.

 1 extensions:
 2 health_check:
 3
 4 receivers:
 5 hostmetrics:
 6 scrapers:
 7 cpu:
 8 disk:
 9 memory:
10 otlp:
11 protocols:
12 grpc:
13 endpoint: 0.0.0.0:4317
14 prometheus:
15 config:
16 scrape_configs:
17 - job_name: grafana
18 scrape_interval: 10s
19 static_configs:
20 - targets: ["0.0.0.0:3000"]
21 journald:
22 directory: /run/log/journal
23 units:
24 - grafana-server
25 priority: info
26
27 processors:
28 batch:
29 send_batch_size: 100
30 timeout: 10s
31 transform/set-hostmetrics-service:
32 log_statements:
33 - context: resource
34 statements:
35 - set(attributes["service.name"], "hostmetrics")
36 transform/log-extract:
37 log_statements:
38 - context: log

Appendix Henrik Jonathan Seeliger 25

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

39 statements:
40 - set(severity_number, body["PRIORITY"])
41 - set(attributes["unit"], body["_SYSTEMD_UNIT"])
42 - set(attributes["syslog_identifier"], body["SYSLOG_IDENTIFIER"])
43 - set(body, body["MESSAGE"])
44
45 exporters:
46 clickhouse:
47 endpoint: tcp://localhost:9000
48 database: monitoring
49 username: monitoring_user
50 password: example_password
51 create_schema: true
52
53 service:
54 extensions: [health_check]
55 pipelines:
56 metrics:
57 receivers: [otlp, prometheus]
58 processors: [batch]
59 exporters: [clickhouse]
60 metrics/host:
61 receivers: [hostmetrics]
62 processors: [batch, transform/set-hostmetrics-service]
63 exporters: [clickhouse]
64 logs:
65 receivers: [journald, otlp]
66 processors: [batch, transform/log-extract]
67 exporters: [clickhouse]
68

Listing B.5: Configuration of this project’s OTel Collector instance.

 1 [[inputs.cpu]]
 2 percpu = true
 3 totalcpu = false
 4 fieldexclude = ["cpu_time"]
 5 [inputs.cpu.tagdrop]
 6 cpu = ["cpu6", "cpu7"]
 7
 8 [[inputs.disk]]
 9 [inputs.disk.tagpass]
10 fstype = ["ext4", "xfs"]
11 path = ["/opt", "/home*"]
12
13 [[outputs.influxdb]]
14 urls = ["http://localhost:8086"]
15 database = "telegraf"
16 namedrop = ["aerospike*"]
17
18 [[outputs.influxdb]]
19 urls = ["http://localhost:8086"]
20 database = "telegraf-aerospike-data"
21 namepass = ["aerospike*"]
22
23 [[outputs.influxdb]]
24 urls = ["http://localhost:8086"]
25 database = "telegraf-cpu0-data"
26 [outputs.influxdb.tagpass]

Appendix Henrik Jonathan Seeliger 26

Evaluation of an Alternative System Monitoring Architecture for HPC Clusters

27 cpu = ["cpu0"]
28

Listing B.6: Configuration example for Telegraf with filtering.
Taken from [37].

Appendix Henrik Jonathan Seeliger 27

	Abstract
	Declaration of Authenticity
	Contents
	List of Figures
	List of Listings
	Acronyms
	Introduction
	Motivation
	Objectives
	Outline

	Background
	System Monitoring
	Current Architecture
	Related Work

	Methodology
	Results
	Alternative Architecture
	Structure
	ClickHouse
	OpenTelemetry

	Implementation
	Qualitative Evaluation
	Comparison
	Structure Level
	Data Storage and Analysis Level

	Benefits and Drawbacks

	Discussion
	Challenges
	Alternatives

	Conclusion
	Bibliography
	Appendix
	Figures
	Code Samples

