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Abstract
This paper presents a performance evaluation of containerized and native high-performance
computing (High-Performance Computing (HPC)) environments, focusing on configura-
tions like Virtual Native HPC, Podman and Apptainer; and Real Native HPC, and App-
tainer. Metrics such as core time, wall time, throughput, load balancing, Input Output
Operation (I/O) performance, and memory usage were analyzed across 1 Thread/Core
and 4 Threads/Core configurations.

Results showed that Podman leads in core and wall time efficiency and excels in
I/O operations, making it suitable for data-intensive workloads. Apptainer, with slightly
less performance, offers robust security benefits through its rootless architecture. Na-
tive execution, particularly with A (AVX-512) optimization, provides high computational
throughput but at the cost of longer execution times. These findings highlight the trade-
offs between performance, resource efficiency, and security in HPC environments. Future
work will broaden the scope to include more container engines and varied benchmarking
scenarios.
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In this work I have used ChatGPT or another AI as follows:
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1 Introduction
High-Performance Computing (HPC) has become an indispensable tool for solving com-
plex scientific and engineering problems. The increasing demand for computational power
and efficiency has led to the adoption of container technologies in HPC environments.
Containers offer a lightweight, portable, and scalable solution for deploying and manag-
ing applications across heterogeneous systems, facilitating reproducibility and ease of use
[Mül+22; App23].

The evolution of container technologies has been driven by the need to address spe-
cific challenges in HPC, such as resource allocation, security, and compatibility with
existing cluster infrastructures. Traditional virtualization methods, while effective, often
introduce significant overhead, making them less suitable for performance-critical appli-
cations. Containers, with their minimal runtime overhead and ability to encapsulate
application dependencies, have emerged as a compelling alternative [Fel+15]. Moreover,
their compatibility with modern orchestration tools has further enhanced their adoption
in large-scale HPC systems [Mül+22].

Among the various container solutions, Podman and Apptainer (formerly Singular-
ity) have gained prominence in HPC environments. Podman is lauded for its daemonless
architecture, enabling rootless container execution and enhanced security. It provides a
seamless transition for users accustomed to Docker, offering similar command-line inter-
faces but with added features tailored for secure multi-user environments [App23; Pet23].
On the other hand, Apptainer is specifically designed for scientific computing, prioritiz-
ing user isolation and seamless integration with HPC job schedulers, making it a favored
choice for researchers [Pet23].

Despite their advantages, the impact of containerization on HPC workloads remains
a topic of debate. Factors such as computational throughput, memory usage, and I/O
performance can vary significantly depending on the container engine, configuration, and
workload type. While early studies have demonstrated the feasibility of containerization
in HPC [Fel+15], the nuanced performance trade-offs between different container solutions
and native environments continue to warrant in-depth exploration [Mül+22].

The interplay between container design and HPC workload characteristics highlights
the need for a comprehensive understanding of performance implications. By examining
the nuances of containerized execution, researchers and practitioners can make informed
decisions about adopting and optimizing container technologies for HPC applications.
The growing body of research underscores the potential of containers to transform HPC
workflows, paving the way for enhanced scalability, portability, and resource efficiency.

1.1 Main Objectives

The main objectives of this study are as follows:

• To compare the performance of Podman, Apptainer, and native execution in an
HPC environment using various benchmarks and metrics, including core time, wall
time, and I/O performance.

• To evaluate the resource utilization of Podman and Apptainer in rootless container
configurations, assessing their effectiveness in shared HPC environments.



• To analyze the impact of different workload configurations, such as single-threaded
and multi-threaded executions, on the performance of the container systems.

• To run GROMACS on an HPC cluster with a different microarchitecture, comparing
the performance of native HPC and Apptainer HPC environments in molecular
dynamics simulations.

• To provide a comprehensive analysis of the trade-offs between containerized and
native execution, highlighting the strengths and weaknesses of each approach in
various HPC scenarios.

The findings of this study aim to contribute to the body of knowledge on container-
ization in HPC and assist practitioners in making informed decisions when deploying
containerized applications in HPC environments.

2 Tools and Softwares Overview
To evaluate the performance of container solutions and native execution, several software
tools were employed. These tools were selected to cover a wide range of metrics, including
computational performance, I/O operations, memory utilization, and system latency. The
following sections provide an overview of these tools and their roles in the evaluation
process.

2.1 Gromacs

Gromacs is a widely used molecular dynamics simulation software, optimized for high-
performance computing environments. It is primarily employed in the fields of biochem-
istry and computational biology for simulating the interactions of molecules over time. In
this project, Gromacs served as the primary tool for benchmarking computational perfor-
mance. Several predefined benchmarks, including water-cut1.0_GMX50_bare, adh_dodec,
adh_cubic, rnase_cubic, and rnase_dodec, were collected from here [GRO24] and exe-
cuted to collect data on various performance metrics. These benchmarks involved simu-
lating systems with varying levels of complexity, providing insights into the computational
efficiency and scalability of containerized and native execution.

2.2 Sysbench

Sysbench is a multi-threaded benchmarking tool designed to evaluate system performance
under various workloads. It is versatile and can measure CPU performance, I/O opera-
tions, memory utilization, and database performance, making it an ideal choice for this
project.

2.3 Container Tools: Podman and Apptainer

The project involved evaluating two container solutions: Podman and Apptainer. Podman
is a root-dependent container engine designed for developing, managing, and running OCI-
compliant containers. It offers flexibility and is particularly suited for environments where
root access is available. In this project, Podman was tested exclusively in the virtualized



HPC environment due to its root access requirements, which were not available in the
real HPC system.

Apptainer, on the other hand, is a rootless container engine designed for scientific com-
puting. It allows users to create and run containers without requiring elevated privileges,
making it well-suited for multi-tenant HPC environments. Apptainer was tested in both
the virtualized and real HPC environments, enabling a direct comparison of containerized
and native execution across different scenarios.

The choice of these tools allowed for an exploration of the trade-offs between root-
dependent and rootless containerization in HPC systems. By using Podman and App-
tainer alongside native execution, the project aimed to identify the strengths and limita-
tions of each approach.

2.4 Native Execution

Native execution served as the baseline for all benchmarks. By running Gromacs and
Sysbench directly on the host system without containerization, the project established a
reference point for evaluating the performance impact of container solutions. Metrics col-
lected during native execution were compared against those obtained from containerized
runs, highlighting any overhead or efficiency gains introduced by the containers.

2.5 Virtualized HPC Environment Configuration and Setup

This setup was specifically chosen to simulate a typical HPC environment, albeit with
limited computational resources, to focus on the comparative performance of containerized
and native execution. The virtualized cluster consisted of three nodes: a head node and
two worker nodes, each configured to perform specific roles in the cluster.

2.5.1 Head Node Configuration

The head node was configured with 1 CPU core and 4 GB of RAM, functioning as
the central management unit of the cluster. Its primary responsibilities included task
scheduling, resource allocation, and overall cluster orchestration. To facilitate these tasks,
SLURM (Simple Linux Utility for Resource Management) was deployed on the head node
as the job scheduling system. SLURM ensured efficient workload distribution across the
worker nodes, providing a foundation for running computational benchmarks.

In addition to SLURM, the head node was equipped with Spack, a package manage-
ment tool optimized for HPC environments. Spack enabled the installation and manage-
ment of software dependencies required for the benchmarks, ensuring consistency across
all nodes. For shared storage, the head node utilized Network File System (NFS), which
provided a unified file system accessible by all nodes in the cluster. This setup ensured
seamless data sharing and consistent execution environments.

2.5.2 Worker Node Configuration

Two worker nodes, each configured with 1 CPU core and 4 GB of RAM, were deployed to
execute the computational workloads. These nodes were designed to simulate the typical
resource constraints of HPC environments, providing a realistic testing ground for the
benchmark workloads. All computational tasks submitted via SLURM were distributed



to these worker nodes, which executed them in isolation or concurrently, depending on
the resource availability and workload requirements.

Despite their limited hardware resources, the worker nodes were capable of running the
benchmarks effectively, allowing for meaningful comparisons of containerized and native
execution across various scenarios.

2.5.3 Software and Operating System

Rocky Linux 8 was chosen as the operating system for all nodes in the cluster. This
enterprise-grade Linux distribution is optimized for reliability, scalability, and security,
making it an ideal choice for HPC applications. The uniform installation of Rocky Linux
ensured compatibility across all nodes and minimized configuration discrepancies.

Two container solutions, Podman and Apptainer, were installed on the virtualized
cluster. Podman was configured with root privileges, as its container operations often
require elevated access. This setup allowed for the evaluation of containerized workloads
in an environment where administrative privileges are available. Conversely, Apptainer
was configured in rootless mode, aligning with its design philosophy of operating with
minimal privileges. This distinction enabled a direct comparison between root-dependent
and rootless container solutions, providing insights into their relative ease of use, security
implications, and performance characteristics.

3 Methodology
This section outlines the approach used to evaluate container solutions against native
execution for running benchmarks in a virtualized HPC environment and a real HPC
environment. The methodology encompasses the setup of the environments, configuration
of the container solutions, execution of benchmarks, and the metrics used for comparison.

3.1 Virtualized HPC Environment Setup

The virtualized HPC environment was provisioned using virtual machines (VMs) running
on AVX2-256 CPU micro architecture and configured to simulate a typical HPC cluster.
The setup included:

• Head Node: One node with 1 CPU core and 4 GB RAM, which also served as the
controller for the cluster using SLURM.

• Worker Nodes: Two nodes, each with 1 CPU core and 4 GB RAM, configured for
computational tasks.

• Software Stack: The environment ran Rocky Linux 8 as the operating system,
with SLURM for workload scheduling, Spack for software management, and NFS
for shared storage.

Podman and Apptainer were installed on the virtualized HPC environment. Podman
was configured with root access, while Apptainer utilized its rootless capabilities.



3.2 Real HPC Environment Setup

The real HPC environment consisted of a shared cluster with access to higher computa-
tional resources. Here, benchmarks were executed to compare the performance of native
execution and Apptainer, as Podman required root access, which was not available in this
setup. The focus was on assessing the performance of general-purpose x86 architecture
against specific CPU micro architecture(AVX-512) using Gromacs compiled with Spack.
In this case a batch script is optimized and submitted to one of the HPC nodes and with
1 CPU core and 4 Gigabytes of RAM.

3.3 Benchmark Execution

Benchmarks were conducted using Gromacs for scientific workloads and Sysbench for
system-level performance analysis.

3.3.1 Gromacs Benchmarks

Gromacs benchmarks were executed under multiple scenarios to evaluate computational
efficiency:

• Thread Configurations: Two configurations were tested—4 threads on a single
CPU core and 1 thread per core.

• Execution Scenarios: Benchmarks were run natively, in Podman, and in App-
tainer in the virtualized environment. In the real HPC environment, only native and
Apptainer executions were possible. The performance results for the GROMACS
benchmarks were derived from the average of 11 benchmark tests collected from
the GROMACS benchmark repository. This approach provides a representative
evaluation of typical workloads encountered in molecular dynamics simulations.

A range of metrics was used to evaluate the performance of the container systems,
focusing on different aspects of system efficiency and resource utilization.

• Core Time (s):

Core time refers to the total time the CPU spends actively processing tasks. This
metric provides insight into how efficiently the CPU is utilized in each environment.
Lower core times indicate more efficient processing and resource use.

• Wall Time (s):

Wall time measures the total elapsed time from the start to the completion of a task,
including all processing and any delays caused by system overhead. This metric is
crucial for understanding the overall speed of task execution in each system, with
lower wall times signifying faster task completion.

• Performance:

Performance was evaluated using two specific metrics: nanoseconds per day (ns/day)
and hours per nanosecond (hour/ns). The ns/day metric indicates the simulation
progress rate, where higher values denote better performance. Conversely, hour/ns
measures the time required to simulate a single nanosecond, with lower values indi-
cating superior performance. These metrics are particularly relevant for molecular
dynamics simulations such as those performed by GROMACS.



• Load Balancing and Waiting Time (%):

In the 4 Threads/Core configuration, the study also measured load imbalance and
waiting time percentages. Load imbalance reflects how evenly the computational
load is distributed across the available threads, while waiting time indicates the
duration threads spend idle, waiting for resources. Lower values in both metrics are
desirable, indicating efficient parallel execution.

3.3.2 Sysbench Benchmarks

Sysbench was used to evaluate I/O and memory performance under varying workloads:

• I/O and Memory Performance: Benchmarks were conducted with varying num-
bers of files (1, 10, 100, 1000) and total file sizes (5 GB, 10 GB, 20 GB, 40 GB).
Metrics collected included:

– Writes/s and Fsyncs/s: Measure the frequency of write and synchronization
operations.

– Written Data (MiB/s): Indicates the throughput in megabytes per second.

– RAM Usage (%): Tracks memory consumption during the benchmark.

3.4 Comparison Metrics

The evaluation was based on the performance and resource utilization metrics collected
from Gromacs and Sysbench benchmarks. The comparison focused on:

• Performance Efficiency: Comparing execution times, throughput, and simulation
speeds for different execution scenarios.

• Resource Utilization: Assessing CPU, memory, and I/O efficiency across native,
Podman, and Apptainer environments.

• Scalability: Analyzing performance trends with varying workload sizes, thread
configurations, and file operations.

This methodology provided a structured approach to evaluate the capabilities and
limitations of Podman, Apptainer, and native execution in both virtualized and real HPC
environments.

4 Results
This section presents the performance evaluation of various configurations: Native (AVX2-256),
Podman, Apptainer, Native HPC (AVX-512), and Apptainer HPC (AVX-512). The met-
rics evaluated include Core Time, Wall Time, and Performance, with data for both 1
Thread/Core and 4 Threads/Core configurations. Corresponding figures aid in the visu-
alization of these results.



4.1 Core Time (s)

Core time measures the CPU’s active processing time. Figure 1 shows the core time for
each configuration.

1. 1 Thread/Core:

(a) Native (AVX2-256) and Podman have similar core times, with Podman being
slightly faster.

(b) Apptainer takes longer.

(c) Native HPC (AVX-512) and Apptainer HPC (AVX-512) show significantly
higher core times.

2. 4 Threads/Core:

(a) Podman and Apptainer have comparable core times.

(b) Native (AVX2-256) is slightly better than both.

(c) Native HPC (AVX-512) and Apptainer HPC (AVX-512) have the longest core
times.

Lower core time indicates better CPU efficiency.

Figure 1: Core time comparison for 1 Thread/Core and 4 Threads/Core configurations.

4.2 Wall Time (s)

Wall time, representing the total time from task initiation to completion, is presented in
Figure 2.

1. 1 Thread/Core:

(a) Podman slightly outperforms Native (AVX2-256).

(b) Apptainer takes longer than both Podman and Native (AVX2-256).

(c) Native HPC (AVX-512) and Apptainer HPC (AVX-512) show much higher
wall times.



2. 4 Threads/Core:

(a) Podman leads among standard configurations.
(b) Native HPC (AVX-512) and Apptainer HPC (AVX-512) have the highest wall

times.

Lower wall time implies faster task completion.

Figure 2: Wall time comparison for 1 Thread/Core and 4 Threads/Core configurations.

4.3 Performance (ns/day and hour/ns)

Performance is assessed using ns/day and hour/ns metrics, shown in Figures 3 and 4.

1. 1 Thread/Core:

(a) Podman slightly surpasses Native (AVX2-256) in ns/day.
(b) Apptainer lags behind Podman and Native (AVX2-256).
(c) Native HPC (AVX-512) and Apptainer HPC (AVX-512) perform significantly

worse.

2. 4 Threads/Core:

(a) Native (AVX2-256) leads in ns/day among standard systems.
(b) Podman and Apptainer trail behind Native (AVX2-256).
(c) The HPC-optimized configurations perform similarly.

Higher ns/day and lower hour/ns are desirable for better performance.

4.4 4 Thread Load Balancing and Waiting Time (%)

Load imbalance and waiting time are vital metrics for efficient resource utilization. The
load imbalance and waiting times across three systems, Native, Apptainer, and Podman,
are compared in Table 4.4

In terms of load imbalance, Native exhibits the highest, followed by Apptainer, and
then Podman. Similarly, considering waiting time, Native has the longest duration fol-
lowed by Apptainer and then Podman showing lower values. Lower values for both metrics
are more desirable for optimal performance.



Figure 3: Performance comparison in ns/day for 1 Thread/Core and 4 Threads/Core
configurations.

Figure 4: Performance comparison in hour/ns for 1 Thread/Core and 4 Threads/Core
configurations.

4.5 I/O Performance

The I/O performance, critical for data-intensive workloads, is evaluated in terms of
Writes/s, Fsyncs/s, Written (MiB/s), and memory usage percentage. Figures 5, 6, 7,
and 8 display the results for different file sizes and numbers of files.

4.5.1 Writes/s

Podman dominates in writes per second across all file sizes and numbers of files. Native
and Apptainer show similar performance with negligible differences.

4.5.2 Fsyncs/s

Podman demonstrates exponential growth in Fsyncs/s with an increasing number of files,
outperforming Native and Apptainer.



Native Podman Apptainer
Load Imbalance (%) 11.7 10.29 11.18
Waiting Time (%) 2.92 2.55 2.64

Table 1: Load imbalance and waiting times for different systems

Figure 5: Writes per second comparison across different file sizes and numbers of files.

4.5.3 Written (MiB/s)

Podman consistently achieves the highest write speeds in MiB/s across all file sizes and
numbers of files, with Native and Apptainer showing close performance.

4.5.4 Memory Usage (%)

Podman utilizes the most memory, followed by Apptainer, with Native maintaining the
lowest memory usage across all file sizes.

5 Discussion
The performance evaluation across different configurations—Native (AVX2-256), Pod-
man, Apptainer, Native HPC (AVX-512), and Apptainer HPC (AVX-512)—provides a
comprehensive view of how containerization impacts high-performance computing (HPC)
workloads. This section delves deeper into the implications of the observed performance
metrics, exploring core time, wall time, throughput, load balancing, I/O performance,
and memory usage.

5.1 Core Time and Wall Time

The core time, which measures the CPU’s active processing period, indicated that Pod-
man slightly outperforms Native (AVX2-256) for 1 Thread/Core, possibly due to opti-
mized resource management within its containerized environment. However, Apptainer’s
longer core times suggest a trade-off in its rootless design, which adds layers of man-
agement for security and user isolation. The significantly higher core times for Native



Figure 6: Fsyncs per second comparison across different file sizes and numbers of files.

Figure 7: Write speeds in MiB/s comparison across different file sizes and numbers of
files.

HPC (AVX-512) and Apptainer HPC (AVX-512) underscore the intensive computational
demands of AVX-512 instructions, which, while offering higher throughput for suitable
workloads, also require more processing time.

Wall time results showed a similar pattern, with Podman achieving slightly lower times
compared to Native (AVX2-256), highlighting its efficiency in handling task execution
within a container. Apptainer’s increased wall times suggest an overhead likely attributed
to its rootless operation and runtime management. The elevated wall times for the HPC
configurations reflect the complexity and time-consuming nature of using advanced vector
instructions like AVX-512, indicating these configurations are better suited for workloads
specifically optimized for such instruction sets.

5.2 Performance Metrics

The performance metrics of ns/day and hour/ns provide insights into the computational
throughput of each configuration. Podman’s slight edge over Native (AVX2-256) in ns/day



Figure 8: Memory usage percentage comparison across different file sizes.

for 1 Thread/Core can be attributed to its ability to efficiently handle the task distribution
and execution within its container framework. For 4 Threads/Core, Native (AVX2-256)
reclaimed the lead, demonstrating its raw computational power unencumbered by con-
tainer overhead. Apptainer’s performance lag, particularly in higher thread counts, em-
phasizes the need for optimization in its container runtime for multi-threaded scenarios.

The HPC-optimized configurations showed a marked decline in ns/day, indicating that
while AVX-512 provides a theoretical advantage for certain types of operations, the prac-
tical execution within these environments introduces complexities that diminish overall
throughput. This suggests that while these configurations can excel in highly specialized
tasks, general HPC workloads may not benefit as much without further optimization.

5.3 Load Balancing and Waiting Time

The load balancing and waiting time metrics, critical for resource utilization and job
scheduling efficiency, revealed that Podman had the lowest load imbalance and waiting
times. This efficiency may stem from its container orchestration capabilities, which man-
age tasks and resources more dynamically. Apptainer, with slightly higher values than
Podman, still performed well, indicating effective handling of resource allocation despite
the rootless design’s slight overhead. Native’s higher load imbalance and waiting time per-
centages suggest less dynamic resource management, potentially leading to less efficient
use of HPC cluster resources in queued job scenarios.

5.4 I/O Performance and Memory Usage

Podman’s dominance in I/O performance metrics: Writes/s, Fsyncs/s, and Written MiB/s
suggests that its containerized environment is highly optimized for handling file opera-
tions, which is crucial for data-intensive HPC applications. The exponential growth in
Fsyncs/s with an increasing number of files indicates Podman’s superior scaling capabili-
ties in file synchronization tasks.

In contrast, Native and Apptainer showed similar, though slightly lower, performance,
likely due to less aggressive I/O optimizations. However, Native’s lower memory usage
across various file sizes points to its efficient memory management, a vital consideration



in environments with constrained resources. Apptainer’s slightly higher memory usage
compared to Native, yet lower than Podman, underscores its balanced approach between
performance and resource utilization.

5.5 Impact of Containerization on Performance

The comparative analysis of Podman and Apptainer highlights the impact of container-
ization strategies on performance. Podman’s slight edge in core time and wall time for 1
Thread/Core configurations, coupled with its I/O performance supremacy, suggests that
its architecture effectively leverages the advantages of containerization without signifi-
cantly compromising on speed. However, its higher memory usage indicates a trade-off in
resource efficiency.

Apptainer’s rootless design, while slightly less performant in core and wall times, offers
enhanced security benefits, making it a strong candidate for multi-user HPC environments
where isolation and security are critical. The slight performance penalties observed can
be mitigated with further optimization in its container runtime management.

5.6 Limitations and Future Work

The study’s limitations, including the virtualized environment and limited scope of con-
figurations and benchmarking tools, highlight the need for broader research. Future work
should encompass more diverse container engines, such as Docker and Singularity, and a
wider array of benchmarking tools to capture a more comprehensive performance land-
scape. Additionally, real-world testing on larger, heterogeneous HPC clusters would pro-
vide deeper insights into the scalability and practical applicability of these container
solutions in diverse HPC scenarios.

Moreover, exploring additional metrics such as energy efficiency and fault tolerance
would offer a more rounded evaluation of containerized environments in HPC. This would
not only aid in selecting the most suitable container technology but also in optimizing
HPC resource management for enhanced performance and sustainability.

6 Conclusion
This study evaluated the performance of containerized and native HPC environments,
focusing on configurations such as Native (AVX2-256), Podman, Apptainer, Native HPC
(AVX-512), and Apptainer HPC (AVX-512). The analysis covered core time, wall time,
throughput, load balancing, I/O performance, and memory usage across different thread
configurations.

The findings indicate that Podman generally achieves lower core and wall times, with
superior I/O performance, particularly in data-intensive tasks, making it a robust choice
for environments requiring high throughput and frequent file operations. Apptainer, while
slightly slower, offers enhanced security through its rootless design and demonstrates
strong performance in scenarios demanding user isolation.

Native configurations, especially those optimized for AVX-512, excel in computational
tasks that can leverage advanced vector instructions, although they exhibit higher core
and wall times. The trade-offs between performance and security are evident, with con-



tainerized solutions providing a balanced approach between speed, resource utilization,
and security.

Future research should extend these findings by exploring additional container tech-
nologies and more diverse benchmarking scenarios to further understand the trade-offs in
HPC environments.
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A Code samples
To create benchmark.tpr file from the downloaded directory:

1 gmx_mpi grompp -f pme_verlet.mdp -c conf.gro -p topol.top -o benchmark.tpr

To create .sif for Apptainer:
1 apptainer build gromacs.sif docker://gromacs/gromacs

Gromacs Benchmark BATCH script:
1

2 #!/bin/bash
3

4 #SBATCH --job-name=gromacs_benchmark
5 #SBATCH --output=gromacs_benchmark_%j.log
6 #SBATCH --error=gromacs_benchmark_%j.err
7 #SBATCH --time=02:00:00 # Max wall time
8 #SBATCH --mem=4GB # Memory per node
9 #SBATCH --cpus-per-task=1 # Number of CPUs per task

10 #SBATCH --ntasks=1 # Number of tasks
11 #SBATCH --nodes=1 # Number of nodes
12

13 # Load required modules
14 spack load gromacs # Load module or spack
15 spack load apptainer
16 spack load podman
17

18 # Path to the Apptainer image
19 APPTAINER_IMAGE="/NFS/benchmark/gromacs.sif"
20

21 # Array of benchmark directories
22 BENCHMARK_DIRS=(
23 "/NFS/benchmark/water-cut1.0_GMX50_bare/3072"
24 "/NFS/benchmark/water-cut1.0_GMX50_bare/1536"
25 "/NFS/benchmark/water-cut1.0_GMX50_bare/0768"
26 "/NFS/benchmark/water-cut1.0_GMX50_bare/0003"
27 "/NFS/benchmark/water-cut1.0_GMX50_bare/0001.5"
28 "/NFS/benchmark/water-cut1.0_GMX50_bare/0000.96"
29 "/NFS/benchmark/water-cut1.0_GMX50_bare/0000.65"
30 "/NFS/benchmark/ADH/adh_dodec"
31 "/NFS/benchmark/ADH/adh_cubic"
32 "/NFS/benchmark/rnase_cubic"
33 "/NFS/benchmark/rnase_dodec"
34 "/NFS/benchmark/rnase_dodec_vsites"
35 )
36

37 # Check if the Apptainer image exists
38 if [[ ! -f "$APPTAINER_IMAGE" ]]; then
39 echo "Error: Apptainer image '$APPTAINER_IMAGE' not found!"
40 exit 1
41 fi
42

43 # Loop through each benchmark directory
44 for BENCHMARK_DIR in "${BENCHMARK_DIRS[@]}"; do
45 if [[ ! -d "$BENCHMARK_DIR" ]]; then
46 echo "Warning: Directory '$BENCHMARK_DIR' not found. Skipping..."
47 continue
48 fi
49

50 echo "Processing benchmark in directory: $BENCHMARK_DIR"
51 cd "$BENCHMARK_DIR"
52

53 # Native execution
54 echo "Running native GROMACS..."
55 mpirun -np $SLURM_CPUS_PER_TASK gmx_mpi mdrun -s benchmark.tpr
56

57 # Podman execution
58 echo "Running GROMACS with Podman..."
59 podman run --rm -v "$PWD:/data" \



60 -e OMPI_ALLOW_RUN_AS_ROOT=1 \
61 -e OMPI_ALLOW_RUN_AS_ROOT_CONFIRM=1 \
62 -e OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK \
63 docker.io/gromacs/gromacs \
64 mpirun --allow-run-as-root -np $SLURM_CPUS_PER_TASK gmx mdrun -s /data/benchmark.tpr
65

66 # Apptainer execution
67 echo "Running GROMACS with Apptainer..."
68 apptainer exec --bind "$PWD:/data" \
69 --env OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK \
70 "$APPTAINER_IMAGE" mpirun -np $SLURM_CPUS_PER_TASK gmx mdrun -s /data/benchmark.tpr
71

72 echo "Completed processing for: $BENCHMARK_DIR"
73 echo "------------------------------------------"
74 done
75

76 echo "All benchmarks processed."
77

78 }

Sysbench I/O Benchmark BATCH script:
1 #!/bin/bash
2

3 #SBATCH --job-name=gromacs_benchmark
4 #SBATCH --output=gromacs_benchmark_%j.log
5 #SBATCH --error=gromacs_benchmark_%j.err
6 #SBATCH --time=02:00:00 # Max wall time
7 #SBATCH --mem=4GB # Memory per node
8 #SBATCH --cpus-per-task=1 # Number of CPUs per task
9 #SBATCH --ntasks=1 # Number of tasks

10 #SBATCH --nodes=1 # Number of nodes
11

12

13 # Parameters
14 file_nums=(1 10 100 1000)
15 total_sizes=(5G 10G 20G 40G)
16 results_dir="/NFS/benchmark/benchmark_results"
17 sif_file="/NFS/benchmark/alpine_sysbench.sif"
18

19 # Ensure sysbench, podman, and apptainer are installed
20 sudo dnf install -y sysbench podman apptainer
21

22 # Create results directory
23 mkdir -p $results_dir
24

25 # Function to run benchmark natively
26 run_native() {
27 echo "Running native benchmarks..."
28 for file_num in "${file_nums[@]}"; do
29 for total_size in "${total_sizes[@]}"; do
30 echo "== Native: File Num: $file_num, Total Size: $total_size =="
31 sysbench fileio --file-test-mode=seqwr --file-total-size=$total_size --file-num=$file_num \
32 --threads=1 run >> ${results_dir}/results_${file_num}_files_${total_size}_size.txt
33 done
34 done
35 }
36

37 # Function to run benchmark in Podman container
38 run_podman() {
39 echo "Running Podman benchmarks..."
40 podman pull docker.io/library/alpine:latest
41 for file_num in "${file_nums[@]}"; do
42 for total_size in "${total_sizes[@]}"; do
43 echo "== Podman: File Num: $file_num, Total Size: $total_size =="
44 podman run --rm -v ${results_dir}:/results docker.io/library/alpine:latest /bin/sh -c "
45 apk add --no-cache sysbench &&
46 sysbench fileio --file-test-mode=seqwr --file-total-size=$total_size --file-num=$file_num \
47 --threads=1 run" >> ${results_dir}/results_${file_num}_files_${total_size}_size.txt
48 done
49 done
50 }
51



52 # Function to run benchmark in Apptainer container
53 run_apptainer() {
54 echo "Running Apptainer benchmarks..."
55 for file_num in "${file_nums[@]}"; do
56 for total_size in "${total_sizes[@]}"; do
57 echo "== Apptainer: File Num: $file_num, Total Size: $total_size =="
58 apptainer exec -B {results_dir}:/results $sif_file /bin/sh -c "
59 sysbench fileio --file-test-mode=seqwr --file-total-size=$total_size --file-num=$file_num \
60 --threads=1 run" >> ${results_dir}/results_${file_num}_files_${total_size}_size.txt
61 done
62 done
63 }
64

65 # Run benchmarks
66 run_native
67 run_podman
68 run_apptainer
69

70 echo "Benchmarking completed! Consolidated results are saved in the ${results_dir} directory."
71
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