

Jule Anger, supervisor Jonathan Decker

Comparison of various runtimes in Kubernetes

Project Preliminary Results

Table of contents

- 1 Introduction
- 2 Runtimes
- 3 Performance tests
- 4 Comparison
- 5 Results

Comparison

Outline

Introduction

•0000

- 1 Introduction
- 2 Runtimes
- 3 Performance tests
- 4 Comparisor
- 5 Result

Comparison

Kubernetes

Introduction

00000

- Does Orchestration of containers and storage
- Scales applications automatically
- Monitors the containers actively (i.e. restarts crashed applications)
- Does load balancing

Structure of Kubernetes

Introduction

00000

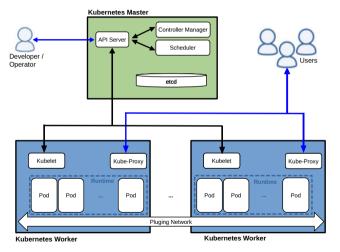
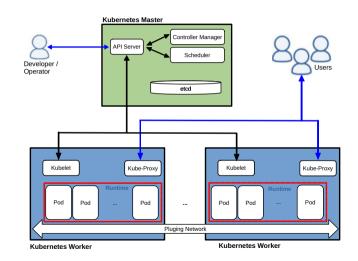


Image source: https://commons.wikimedia.org/wiki/File:Kubernetes.png (Accessed on 2023-11-25, changed)


Comparison

Results

Tasks of a container runtime

A container runtime...

- Manages the entire container life cycle
- Loads container images from a repository
- Monitors different local system resources
- Isolates system resources for use of a container

0000

Kubernetes Terminology

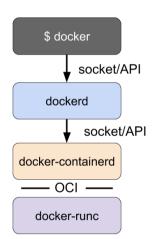
- Pod: contains one or more containers and volumes
- Deployment: is an object used to manage pods (and other objects)

John Arundel and Justin Domingus, Cloud Native DevOps mit Kubernetes

Outline

- 1 Introduction
- 2 Runtimes
- 3 Performance tests
- 4 Comparison
- 5 Results

Types of runtimes


- Many different runtimes available
- Grouped into Low-Level and High-Level runtimes

Low-level runtimes

- Limited Functionality: start and manage containers
- Examples: RunC, cRun, LXC

Source: Rentrop, Low-Level Container Runtimes; Lewis, Container Runtimes Part 1: An Introduction to Container Runtimes

High-Level runtimes

- More Functionality: image management, building, packaging, sharing, and running containers
- Runs on top of low-level or other high-level runtimes (each runtime delegates the more low-level one)
- Examples: Docker, containerd, CRI-O

Uncommon Container Runtimes

- This presentation focuses on some less common runtimes, namely
 - ► Kata Containers (low-level)
 - Firecracker (low-level)
 - gVisor (low-level)

Runtime Kata Containers

- Runs with containerd or CRI-O
- Uses a combination of Virtual Machines and Containers
- Has been developed by a community since 2017
- Is published as open source
 (https://github.com/kata-containers/,
 around 4 000 pull requests)
- Is written in Rust & Go

Source: https://katacontainers.io/community/
Source & Image Source: https://www.katacontainers.io/collateral/kata-containers-onboarding-deck.pptx

Runtime Firecracker

- Runs with CRI-O or containerd and Kata
- Also uses a combination of Virtual Machines and Containers: "MicroVMs"
- Has been developed by Amazon and a communitysince 2014
- Is published as open source
 (https://github.com/firecracker-microvm/firecracker, around 3 000
 pull requests)
- Is written in Rust & Python

Source: F. Community, Firecracker FAQs Image source: Foy, How to deploy Kubernetes with Firecracker?

Runtime gVisor

- Runs with containerd
- Uses nested virtualization (running containers in virtual machines)
- Has been developed by Google and a community since 2019
- Is published as open source (https://github.com/google/gvisor, around 8.000 pull requests)
- Is written in Go & C++

Outline

- 1 Introduction
- 2 Runtimes
- 3 Performance tests
- 4 Comparison
- 5 Results

Setup: Kubernetes cluster

Introduction

- Build on OpenStack by the GWDG (cloud.gwdg.de)
- Consists of one master node and four worker nodes

```
cloud@master:~$ kubectl get nodes
                STATUS
                                                 VERSION
NAME
                          ROLES
                                          AGE
                                           31d
master
                Ready
                          control-plane
                                                 v1.28.2
worker-contd
                Readv
                                           16d
                                                 v1.28.2
                          <none>
worker-fire
                Ready
                                           15d
                                                 v1.28.2
                          <none>
worker-avisor
                Readv
                                           10d
                                                 v1.28.2
                          <none>
worker-kata
                Ready
                                                 v1.28.2
                                           25d
                          <none>
```

Setup: Kubernetes cluster

cloud@worker-kata:~\$ sudo ctr --namespace k8s.io containers ls | **TMAGE** RUNTTMF io.containerd.runtime.v1.linux registry.k8s.io/pause:3.6 docker.io/weaveworks/weave-npc:latest io.containerd.runtime.v1.linux registry.k8s.io/pause:3.6 io.containerd.kata.v2 registry.k8s.io/pause:3.6 io.containerd.runtime.v1.linux docker.io/weaveworks/weave-kube:latest io.containerd.runtime.v1.linux docker.io/weaveworks/weave-npc:latest io.containerd.runtime.v1.linux registry.k8s.io/pause:3.6 io.containerd.runtime.v1.linux docker.io/weaveworks/weave-kube:latest io.containerd.runtime.v1.linux docker.io/library/nginx:latest io.containerd.kata.v2 registry.k8s.io/pause:3.6 io.containerd.runtime.v1.linux reaistry.k8s.io/kube-proxy:v1.28.4 io.containerd.runtime.v1.linux docker.io/weaveworks/weave-kube:latest io.containerd.runtime.v1.linux registry.k8s.io/kube-proxy:v1.28.4 io.containerd.runtime.v1.linux

Setup: Kubernetes cluster

Introduction

cloud@worker-gvisor:~\$ sudo ctr --namespace k8s.io containers ls TMAGE RUNTTMF registry.k8s.io/pause:3.6 io.containerd.runc.v2 docker.io/weaveworks/weave-npc:latest io.containerd.runc.v2 docker.io/weaveworks/weave-npc:latest io.containerd.runtime.v1.linux registry.k8s.io/pause:3.6 io.containerd.runtime.v1.linux docker.io/weaveworks/weave-kube:latest io.containerd.runtime.v1.linux registry.k8s.io/pause:3.6 io.containerd.runtime.v1.linux docker.io/weaveworks/weave-kube:latest io.containerd.runc.v2 docker.io/library/nginx:latest io.containerd.runsc.v1 registry.k8s.io/kube-proxy:v1.28.4 io.containerd.runtime.v1.linux registry.k8s.io/pause:3.6 io.containerd.runc.v2 registry.k8s.io/kube-proxy:v1.28.4 io.containerd.runc.v2 registry.k8s.io/pause:3.6 io.containerd.runtime.v1.linux docker.io/weaveworks/weave-kube:latest io.containerd.runtime.v1.linux registry.k8s.io/pause:3.6 io.containerd.runsc.v1

Example deployment

```
vaml
    apiVersion: apps/v1
    kind: Deployment
    [\ldots]
3
    spec:
      replicas: 3
5
      template:
6
         f...1
         spec:
           containers:
q
           - name: nginx
10
             image: nginx:1.14.2
11
           runtimeClassName: kata
12
13
           nodeSelector:
                    nodetype: kata
14
```

Testing tool

- The tool used is called clusterloader?
- Has been published on the Kubernetes GitHub page
- Can test the following aspects:
 - Availability of cluster's control plane
 - ▶ Reaction of the cluster to failed nodes
 - ▶ Time required to create objects (e.g. deployments and pods)
 - **.**.


Testing tool

Demo

Some notes about the performance tests

- The tool provides various metrics
- Here the time between *Scheduled* and *Running* is used
- The application start time is not considered
- The tool indicates the time until 50%, 90% and 99% of the pods have fullfilled the desired state
- The tool gives the average times of all pods under consideration
- I ran each test several times and used the average value

Performance tests with a deployment with 10 Pods

Introduction

Results

Outline

- 1 Introduction
- 2 Runtimes
- 3 Performance tests
- 4 Comparison
- 5 Results

Installation

- containerd: simple (default)
- Docker, CRI-O: relative simple (common)
- Kata: bit complicated (needs common high level runtime and kata)
- Firecracker: more complicated (needs common high level runtime and kata and own storage partition)
- gVisor: very simple in Google Kubernetes, otherwise a bit complicated

Source: K. C. Community, How to use Kata Containers and Containerd, F. M. Community, Getting Started with Firecracker, Community, Containerd Quick Start

Security

- containerd: normal
- Kata: high
- Firecracker: high
- gVisor: high

Performance

- containerd: normal
- Kata: around 8% higher than containerd
- Firecracker: ?
- gVisor: around 35% higher than containerd

Outline

- 1 Introduction
- 2 Runtimes
- 3 Performance tests
- 4 Comparison
- 5 Results

Further work

Introduction

- Firecracker
 - ► Finish installation
 - ► Run performance tests

Further work

- Firecracker
 - ▶ Finish installation
 - Run performance tests
- Performance tests
 - Test more object types
 - ▶ Run with higher number of pods
 - Maybe use a second tool

Further work

- Firecracker
 - ► Finish installation
 - ► Run performance tests
- Performance tests
 - ► Test more object types
 - Run with higher number of pods
 - Maybe use a second tool
- More research
 - Security improvements
 - Internal functioning
 - Resource consumption

(Preliminary) Results

- Containerd is the easiest to install
- Kata, Firecracker and gVisor have increased security precautions
- Kata is 8% slower than containerd, gVisor 35%

Comparison

References I

Introduction

Community, Firecracker. Firecracker FAOs. https://firecracker-microvm.github.io/. Accessed: 2024-01-09.

Community, Firecracker MikroVM, Getting Started with Firecracker.

https://github.com/firecracker-microvm/firecracker/blob/main/docs/getting-started.md. Accessed: 2023-12-29.

Community, gVisor, Containerd Ouick Start.

https://qvisor.dev/docs/user_quide/containerd/quick_start/. Accessed: 2024-01-05.

Community, Kata Containers, How to use Kata Containers and Containerd, https://github.com/katacontainers/kata-containers/blob/main/docs/how-to/containerd-kata.md. Accessed: 2023-12-18.

Foy, Baptiste. How to deploy Kubernetes with Firecracker?

https://www.padok.fr/en/bloq/deploy-kubernetes-firecracker.Accessed: 2024-01-12.

John Arundel and Justin Domingus. Cloud Native DevOps mit Kubernetes, dpunkt.verlag, 2019.

Kienzler, Simon, Welcome To The Container Jungle: Docker vs. containerd vs. Nabla vs. Kata vs. Firecracker and more!

https://www.inovex.de/de/blog/containers-docker-containerd-nabla-kata-firecracker/ Accessed: 2023-11-28

References II

Lewis, Ian. Container Runtimes Part 1: An Introduction to Container Runtimes.

- https://www.ianlewis.org/en/container-runtimes-part-1-introduction-container-r. Accessed: 2024-01-12.
- .Container Runtimes Part 3: High-Level Runtimes. https://www.ianlewis.org/en/container-runtimes-part-3-high-level-runtimes. Accessed: 2024-01-12.

Rentrop, Christian. Low-Level Container Runtimes. https://www.dev-insider.de/low-level-container-runtimes-a-7c2c3ce41340e09d0ffc94e705a6f965/. Accessed: 2024-01-10.

Performance tests with a deployment with 10 Pods

Node	Runtime	Time (50%)	Time (99%)
worker-contd	containerd	4161 ms	4628 ms
worker-kata	containerd	3780 ms	4875 ms
	kata	4525 ms	4977 ms
worker-gvisor	containerd	3958 ms	4289 ms
	gvisor (runsc)	4373 ms	6218 ms