GEORG-AUGUST-UNIVERSITAT ©
=)\ GOTTINGEN i1 o

Seminar Report

Comparison of various runtimes in
Kubernetes

Jule Anger

MatrNr: 21968167

Supervisor: Jonathan Decker

Georg-August-Universitat Gottingen
Institute of Computer Science

March 31, 2024

Abstract

Containers and Kubernetes are being used more and more frequently by more and more
companies. The classic containers and container runtimes such as containerd are very
performant, but less secure than virtual machines. New approaches have therefore been
developed in recent years to combine the performance of containers and the security of
virtual machines. Three important innovative runtimes are Kata Containers, Firecracker
and gVisor. These three runtimes and containerd were installed in a test setup and
the startup time of containers was measured and compared with experiments from other
works. This showed that gVisor has the fastest startup time and the highest security,
while Firecracker in particular has a higher startup time.

Statement on the usage of ChatGPT and similar tools
in the context of examinations

In this work I have used ChatGPT or a similar Al-system as follows:
U Not at all
(] In brainstorming
(] In the creation of the outline
[0 To create individual passages, altogether to the extent of 0% of the whole text
[] For proofreading
(] Other, namely: -

I assure that I have stated all uses in full.
Missing or incorrect information will be considered as an attempt to cheat.

i

Contents

List of Tables iv
List of Figures iv
List of Listings iv
List of Abbreviations v
1 Introduction 1
1.1 Motivation 1

1.2 Outline. 1

2 Theoretical 2
2.1 Kubernetes 2
2.2 Container Runtimes 2
2.2.1 containerd 4

2.2.2 Kata Containers 4

2.2.3 Firecracker 4

224 gVISOro 6

3 Methods 6
3.1 Setup. . . .o 6
3.1.1 Installing the master node and a worker with containerd 7

3.1.2 Installing a worker node with Kata Containers 8

3.1.3 Installing a worker node with Firecracker 8

3.1.4 Installing a worker node with gVisor 10

3.2 Test tool clusterloader2 11

4 Results 11
4.1 Installation 11
4.2 Performance comparison 12
4.3 Security model comparisono 14

5 Conclusion 14
References 15
A Data Al
B Code samples A2
B.1 Sample deployment A2
B.2 Clusterloader2 script A3

1l

List of Tables

1

2

Average container startup times with different runtimes from different ex-
periments. e e 13
Performance comparison for a deployment with 10 pods for different runtimes. A1

List of Figures

=W N =

S Ot

10
11

Structure of Kubernetes [Kht|. o 0oL 3
Stack of Docker runtime [Lewb]|.o oo 3
Security model in Kata Containers [Foul7].. 5
Security model of Linux containers (a) and KVM-style virtualization like

Firecracker (b) [Aga+20]. 5

gVisor using an isolation layer between apllication and host kernel [Guo+23]. 7
An overview of the structure of the Kubernetes cluster with one master

and four worker nodes.o 7
A list of all containers running on the Kubernetes node with the Kata
Runtime. 8
A list of all containers running on the Kubernetes node with the Kata-
Firecracker Runtime. oo 10
A list of all containers running on the Kubernetes node with the gVisor
Runtime. 10
CPU benchmark for different runtimes [Den22]. 12

Performance comparison for a deployment with 10 pods for different run-
times, data from 100 test runs in each case are displayed. See Appendix 2
for details. 13

List of Listings

1

w

Example deploment that is to be executed on the worker-kata node with

the Kata Containers runtime. A2
Script to systematically execute the clusterloader2 test (1/3).. A3
Script to systematically execute the clusterloader2 test (2/3).. A4
Script to systematically execute the clusterloader2 test (3/3).. A5

v

List of Abbreviations

OCI Open Container Initiative

VM Virtual Machine

CVE Common Vulnerabilities and Exposures
GPU graphics processing unit

VMM Virtual Machine Monitor

CRI Container Runtime Interface

GVM Go version manager

OS Operation system

API application programming interface

CNI Container Network Interface

Comparison of various runtimes in Kubernetes

1 Introduction

1.1 Motivation

Serverless applications are becoming an increasingly important part of the modern working
world. Containers are resource-efficient and very fast, which is why they are often used.
An important system for serverless applications is Kubernetes, which can be used to run
containerized applications. The containerized applications are executed in a container
runtime. However, as containers share resources with the hosts, they are more susceptible
to vulnerabilities. In 2017, for example, over 450 security vulnerabilities were found in
the Linux kernel that could be exploited by applications running in containers to access
host data. Only recently, several Common Vulnerabilities and Exposuress (CVEs) were
discovered that make containers vulnerable. The CVEs CVE-2024-21626, CVE-2024-
23651, CVE-2024-23652 and CVE-2024-23653 are all classified as serious and can be
used to access sensitive data such as customer information or to execute further attacks.
Although the vulnerabilities were fixed immediately, the question arises as to whether
traditional containers are secure enough for day-to-day work or whether new concepts are
needed. [St624] [Guo+23]

Since Virtual Machines (VMs) are more secure by design but slower, various ap-
proaches are being developed to combine the performance of containers and the security
of VMs. In the following paper, three innovative, more secure alternatives to traditional
container runtimes, namely Kata Containers, Firecracker and gVisor, are presented and
compared with the traditional container runtime containerd in terms of design and per-
formance. This is done in the context of Kubernetes.

1.2 Outline

The following work starts with a theoretical look at what precisely Kubernetes and con-
tainer runtimes are. The four runtimes mentioned will then be discussed in more detail:
Their development, their concepts and their implementations. Next, the practical setup
is explained. A Kubernetes cluster will be set up, with each of the four worker nodes
having a different runtime. The installation of the four runtimes is then described. The
performance measurement tool used is also presented here. The results of the practical
experiments and the theoretical concepts of the different runtimes are then compared and
analyzed with the results of other studies.

Containers are normally less secure than VMs. To avoid this security risks, different
organizations implement lightweight hypervisors to use the well performance of containers
in combination with an increased security |Guo+23]. Three of this implementations with
different approaches will be presented next.

The following research questions are considered in particular:

R.1 How easily can the various runtimes be installed in a Kubernetes cluster?
R.2 How does the performance of the runtimes in a Kubernetes cluster differ?

R.3 How do the security mechanisms of the innovative runtimes differ?

Section 2 Jule Anger 1

Comparison of various runtimes in Kubernetes

2 Theoretical

2.1 Kubernetes

Kubernetes is a system for the automated execution and scaling of containerized appli-
cations. It does the orchestration of containers and storage. Kubernetes also has active
monitoring, i.e. errors are detected and automatic attempts are made to rectify them,
e.g. by restarting the crashed application or its container. Kubernetes also performs load
balancing. This means that if a machine is very highly utilized, this load is automatically
distributed to other machines. [Autg]| [JJ19]

All objects in Kubernetes can be created and customized using yaml configuration
files. The containers are organized in so-called pods. Within a pod, containers can
communicate with each other more directly and share a namespace. If there are one or
more volumes in the pod, the containers can access them. In many cases, a pod contains
an administration container and a container with the desired application. Pods and other
object types are managed by so-called deployments. In a deployment, it can be specified
which pods are to be created with which containers and volumes, which properties, which
quantity (this can be both a fixed number and rules for automatic scaling) and which
other objects are to be created. [JJ19]

Figure 1 shows the basic structure of a Kubernetes cluster with the most important
components. In a Kubernetes cluster, there are one or more machines called master
nodes that manage the cluster and one or more machines called worker nodes on which
the containerized applications run. In a minimal cluster, there is only one node that is
both master and worker; in a productive cluster, there are several masters and a larger
number of workers. The first important component on the master node is the application
programming interface (API) server. This is the interface through which the developer
or administrator configures the cluster and its objects, such as pods or deployments.
Next, there is the Controller Manager and its controllers, which are responsible, among
others, when a node goes down. The scheduler decides on which worker node a new pod
should run, taking into account set rules and available resources. The etcd database is a
consistent, highly available key value store that stores all cluster data. On each worker
node, the kubelet agent receives instructions from the API server and ensures that these
are implemented correctly, e.g. that the containers run in pods. The kube proxy is
a network poxy that enables users to communicate with the containerized applications.
A network plugin is responsible for assigning IP addresses to pods and thus enables
communication between the pods within the cluster. The most important component
for this work is the container runtime, which is described in more detail in the following
section. [Aute]

2.2 Container Runtimes

Kubernetes administers the containers using a container runtime. Any software that
implements the Open Container Initiative (OCI) standard, a widespread, open industry
standard for container formats, can be used for this. [Aute| [Fou]

A container runtime manages the container life cycle, which includes creating, starting,
stopping and deleting. These are some of the minimum operations that a runtime must
provide to fulfill the OCT standard [opel6]. The runtimes that only provide the basic

Section 2 Jule Anger 2

Comparison of various runtimes in Kubernetes

Kubernetes Master

/ Controller Manager
R (7] 2.8
Scheduler
r 8

Users
etcd I

Developer /
Operator
A

Pluging Network

B0 OmAS
T

Kubernetes Worker Kubernetes Worker

Figure 1: Structure of Kubernetes [Kht].

operations are called low-level runtimes. Common examples are runC, cRun and LXC
[Ren| [Lewal.

There are also many other runtimes that provide many other functions in addition
to the basic functions. They are called high-level runtimes. These functions include, for
example, loading a container image from a remote repository, monitoring various local
system resources, building, packaging and sharing container images [Lewa|. They run
on top of a low-level or other high-level runtime and expand or improve the exisiting
functionality. Common examples are Docker, containerd and CRI-O. Figure 2 shows that
the high-level runtime docker-containerd uses the low-level runtime docker-runc [Lewb].

socket/API

dockerd }

‘ socket/API

docker—containerdJ

OCl

=

-

docker-runc }

=

Figure 2: Stack of Docker runtime [Lewb|.

Section 2 Jule Anger 3

Comparison of various runtimes in Kubernetes

2.2.1 containerd

containerd is a well-known, widely used high-level runtime. Along with CRI-O and
Docker, it is one of the Kubernetes standard runtimes [Autf]. containerd’s low-level
runtime in RunC.

containerd uses two Linux features to isolate containers: cgroups and namespaces.
With the help of cgroups, the use of resources such as CPU and memory can be controlled
and monitored. Namespaces abstract a system resource so that a process running within
this namespace appears to use this resource exclusively. containerd creates cgroups and
namespaces for the containers and binds the container process to them. [Guo+23]

2.2.2 Kata Containers

Kata Containers is an innovative more secure container runtime using their own lightweight
virtual machines called Kata VMs.

It was developed by a community since 2017 and published as open source with open
design, development and community on GitHub! as a “open governance project under the
Open Infrastructure umbrella” [Ada20| [kat24b|. The GitHub repository has around 4 000
pull requests. Contributors are of Intel, IBM, Google, Microsoft and many more [Ada20].
Kata Containers is a merger of Clear Containers, that was launched 2015 by Intel, and
Hyper.SH runV. Both are published under Open Infrastructure Foundation [Ada20|. Intel
was focused on performance (<1000ms boot time) and enhanced security, while Hyper
was focused on compatibility and intended to be technology-agnostic by supporting many
different CPU architectures and hypervisors [Foul7|. It is mostly written in Rust.

Kata Containers works “seamlessly with Kubernetes and Docker and is a drop in
replacement for runc” [Ada20]|. It supports different architectures like x86, ARM, IBM
Power and IBM s/390x and different Hypervisors such as QEMU, Cloud Hypervisor,
Firecracker [Ada20|. It can be used together with high-level runtimes like containerd
[Comc|. Kata Containers supports graphics processing unit (GPU) since V1.3.0 which
was released in September 2018 [Ada20|. It is highly salable. As an example, the Ant
Group use Kata Containers “running on thousands of node and over 10K cores” [Ada20].

Kata Containers doesn’t support live migration and other Linux distributions than
Clear Linux [Guo+23].

While Traditional Containers have a kernel shared with the host, Kata Containers is
more isolated in its own lightweight VM. Due to their light weight, the VMs have a similar
performance to containers, but virtualize their own kernel with hardware virtualization
and thus an additional layer on top of the traditional namespace-based container concept,
which increases security. Within a Kubernetes cluster, a Kata VM is created for each pod
in which the associated containers run. [Ada20]

2.2.3 Firecracker

Firecracker is an innovative more secure virtualization technology with own lightweight
virtual machines called MicroVMs. Its most important component is a Virtual Machine
Monitor (VMM), which completely replaces QEMU. To create and run the MicroVMs,
the VMM uses the Linux Kernel’'s KVM virtualization infrastructure (see figure 4). It
therefore uses the same basic idea for isolation as Kata Containers, but is implemented in a

"https://github.com/kata-containers/kata-containers

Section 2 Jule Anger 4

https://github.com/kata-containers/kata-containers

Comparison of various runtimes in Kubernetes

Virtual Machine Virtual Machine Virtual Machine
App App App App
Namespace Hamespace Namespace Namespace

Containers in cloud today Kata Containers

(Shared kernel, isolation within namespace) (Each container/pod is hypervisor isolated,
As secure as a VM, As fast as a container,
Seamless integration with the container
ecosystem and management layers)

Figure 3: Security model in Kata Containers [Foul7].

significantly different way. While Kata Containers is a secure lightweight VM, Firecrackers
VMM creates a secure environment for guest Operation system (OS). [Aga+20] [WDL22|

Unlike Kata Containers, Firecracker itself is not a runtime. However, the MicroVMs
can be used with containerd or Kata Containers, for example. [Aga-+20]

Untrusted Code

|
|
|
|
|
|
|
|
|
|
a

Guest Kernel

Untrusted Code AP DU (R .|____|___

\|/ \|/ VMM
sandbox
—|—|— sandbox
Host Kernel KVM Host Kernel
(a) Linux container model (b) KVM virtualization model

Figure 4: Security model of Linux containers (a) and KVM-style virtualization like Fire-
cracker (b) [Aga+20].

Firecracker has been developed by Amazon and it’s community since 2014. It was
released as open source on GitHub? in Dec 2018 with the Apache 2 license and was used
since then used in production in AWS Lambda. It was not developed explicitly for use in
Kubernetes but for use in their own Cloud services AWS Lambda [Aga+20].

Firecracker does not support GPU usage. There is discussion within the community
as to how it should be integrated. However, this will not be possible in the near future,
as the concepts used by Firecracker contradict GPU support. [Comal]

’https://github.com/firecracker-microvm/firecracker

Section 2 Jule Anger 5

https://github.com/firecracker-microvm/firecracker

Comparison of various runtimes in Kubernetes

2.2.4 gVisor

Google’s gVisor is an application kernel, that “provides an additional layer of isolation
between running applications and the host operating system” [Autd|. Its approach to
security is different from the lightweight VMs that Kata and Firecracker use. Instead,
gVisor creates a virtualized environment and builds a sandbox around the container.
Inside each sandbox is a kernel that the container interacts with instead of the host
kernel, minimizing the risk of container escape exploits. This concept saves resources and
effort for virtualization, but has reduced application compatibility and higher per-system
call overhead. It is delivered together with a runtime called runsc, which implements OCI,
see figure 9). [Autd| The runtime has GPU spport [Autal.

It was developed by Google and its community since 2019 and was published open
source on GitHub®. The GitHub repository has around 8 000 pull requests.

Figure 5 shows the basic structure of gVisor. A sentry is present in every sandbox. The
sentry is basically a kernel that implements all the necessary functions, such as syscalls,
memory management, signal delivery, and more. However, no syscalls are forwarded to
the host kernel, but are processed directly by the sentry, although the sentry itself makes
syscalls to the host kernel. Since the sentry is started in a restricted seccomp container,
it has no access to file system resources. The gofer, which runs in every container of a
sandbox, provides access to file system resources. It communicates via the 9P protocol.
seccomp is the secure computing mode in the Linux kernel to restrict the actions available
within the container. [Autd|

gVisor improves the security of containers by protecting the system API in particular.
The System API allows an application to interact with the system, e.g. via system calls.
The gVisor runtime attempts to prevent the possibility of attacking a system via the
system API by placing a sentry between the container with the potentially insecure code
and the host kernel (see figure 5). This means that the application must communicate
with the sentry’s API instead of the host’s API, thus preventing direct communication.
This principle is also used for VMs. In contrast to a VM, the API of the sentry is based
on the host; in a VM it is based on virtualized hardware and the guest operating system.
In addition, the system API that the sentry can access is redirected to a secure set. This
means that a user can never use the actual system resources, only the virtualized ones.
The creation of new sockets or the opening of files, for example, are not included by
default. [Autc]

gVisor doesn’t support live migration [Guo-+23|.

3 Methods

3.1 Setup

A test setup was set up to test the innovative container runtimes. Five VMs were created
on the GWDG’s OpenStack?* for this purpose. All VMs have 4GB RAM, 4 virtual CPUs
and a 40GB disk. One VM is used as the Kubernetes master node. The other four are
added to the Kubernetes cluster as worker nodes. A different runtime is used for each
one. Preparations were made on each node according to [Mut| in order to run Kubernetes:

3https://github.com/google/gvisor
‘https://cloud.gudg.de

Section 3 Jule Anger 6

https://github.com/google/gvisor
https://cloud.gwdg.de

Comparison of various runtimes in Kubernetes

runsc
¢ Sandbox

: | 9P

' Container Soniyiiisen space L S Gofer

' kernel) :

User ! B

space /O
Kernel
space | KVM or ptrace Host Kernel

Figure 5: gVisor using an isolation layer between apllication and host kernel [Guo-+23|.

The packages kubeadm, kubectl and kubelet, all with version v1.28.2 provided via the
repository https://apt.kubernetes.io/ were installed using apt, swap disabled and the
kernel modules br_netfilter and overlay enabled. Also sysctl was configured, so that
Kubernetes can use the network.

: 5 kubectl get nodes
NAME STATUS ROLES VERSION
master Ready control-plane v1.28.2

worker-contd Ready <none> vi.28.
worker-fire Ready <none> v1.28.
worker-gvisor Ready <none:= v1.28.
worker-kata Ready <none> v1.28.

Figure 6: An overview of the structure of the Kubernetes cluster with one master and
four worker nodes.

Each worker node receives the label type={contd|fire|katalgvisor} depending on
the installed container runtime. This label can later be used to specify that a pod or
deployment should be executed on a specific node. An example use of this can be found
in Appendix B.1.

3.1.1 Installing the master node and a worker with containerd

The master node and the containerd worker node were configured according to the above
guide. After the preparations, containerd version 1.6.26 was installed on the master node
and the first worker node. To do this, the package was installed with apt, configured with
the default configuration file and started.

On the master node, kubelet was activated and a cluster was initialized using the
command sudo kubeadm init and the subsequent commands requested in the output.
All settings were left at default. Calico was then installed as the network plugin.

The join command is output with the init command and can be displayed again if re-
quired when a new token is created using sudo kubeadm token create -print-join-command.
This join command adds the worker node to the cluster that has just been created.

Section 3 Jule Anger 7

https://apt.kubernetes.io/

Comparison of various runtimes in Kubernetes

3.1.2 Installing a worker node with Kata Containers

The worker node with Kata Containers was installed using one of the official guides, that
installs Kata Containers together with containerd.

One way to install Kata Containers is to join the node with containerd to the Kuber-
netes cluster and then install two yaml configuration files Kata automatically. This has
failed as the pods created from it get stuck without an error message. [Comd|]

Therefore another installation method was choosen. Kata Containers and containerd
was first installed with the help of a script kata-manager.sh. Since nothing else was
explicitly requested, QEMU is used as the hypervisor here [kat24c|. Next, the Container
Network Interface (CNI) plugins and cri-tools were installed. For this, the two required
GitHub repositories were downloaded and built with make and a provided build script.
Next, the CNI plugins and cri-tools were installed. For this, the two required GitHub
repositories were downloaded and built with make or a build script. The containerd con-
figuration file /etc/containerd/config.toml was then adapted according to the given
template, as was the cri-tools configuration file under /etc/cni/net.d/10-mynet.conf
and that of cri-tools under /etc/crictl.yaml. [Comc]

This completed the setup and containers could be successfully started with the Kata
Containers Runtime using the ctr command.

$ sudo ctr image pull docker.io/library/busybox:latest
$ sudo ctr run --cni --runtime io.containerd.run.kata.v2 -t --rm docker.io/library/

The node was then added to the Kubernetes cluster using kubeadm as mentioned in
section 3.1.1. Figure 7 shows all containers and their respective runtime after a successful
join.

:$ sudo ctr --namespace k8s.io containers 1s | cut -d\
IMAGE RUNTIME
registry.k8s.io/pause:3.6 io.containerd.runtime.v1i.linux
docker.io/weaveworks/weave-npc:latest io.containerd.runtime.v1i.linux
registry.k8s.io/pause:3.6 10.containerd.kata.v2
registry.k8s.io/pause:3.6 io.containerd.runtime.vl.linux
docker.io/weaveworks/weave-kube:latest io.containerd.runtime.v1.linux
docker.io/weaveworks/weave-npc:latest io.containerd.runtime.v1.linux
registry.k8s.io/pause:3.6 io.containerd.runtime.v1l.linux
docker.1o/weaveworks /weave-kube:latest io.containerd.runtime.v1i.linux
docker.io/library/nginx:latest 10.containerd.kata.v2
registry.k8s.io/pause:3.6 io.containerd.runtime.v1i.linux
registry.k8s.io/kube-proxy:v1.28.4 1o0.containerd.runtime.v1.linux
docker.io/weaveworks/weave-kube:latest io.containerd.runtime.vl.linux
registry.k8s.io/kube-proxy:v1.28.4 io.containerd.runtime.v1.linux

Figure 7: A list of all containers running on the Kubernetes node with the Kata Runtime.

3.1.3 Installing a worker node with Firecracker

Firecracker is often used together with Kata Containers, especially for an installation for
Kubernetes. A promising variant without Kata Containers is firecracker-containerd, in
which the firecracker MicroVMs are controlled by containerd. However, the connection
to Kubernetes and the Container Runtime Interface (CRI) conformance required for this
has not yet been guaranteed, as described in the Roadmap section of [fir24].
Nevertheless, this installation variant was tried out first. The current versions of
Docker and Go were installed first. Then a current Linux kernel was downloaded from

Section 3 Jule Anger 8

Comparison of various runtimes in Kubernetes

Amazon. Then the firecracker-containerd GitHub repository was downloaded. The next
step was to build in the repository, but the make command failed with an unhelpful er-
ror message consisting only of the name of a Go module and error code 1, which made
it very difficult to fix. It was finally fixed by using an older Go version: v1.17.13 in-
stead of v1.21.8. This allowed me to run all make commands. After all the required
components were successfully built and linked in the PATH, an additional containerd con-
figuration file had to be created under /etc/containerd/, for which a template was
provided. Next, the devmapper snapshotter must be configured. This requires a thinpool
device. A script that performs the complete configuration is provided in the repository
and only had to be executed. The containerd runtime plugin was then configured under
/etc/containerd/config.toml using a given template. An image could then be pulled
as a test with firecracker-ctr and then started, whereby the configuration file and the
socket had to be specifically specified. A Kata firecracker container could then be started.
[kat24a)

To use this runtime after the successful installation as Kubernetes runtime, the join
command from the 3.1.1 section was supplemented by the configuration parameter
-cri-socket unix:///run/firecracker-containerd/containerd.sock, so that not the
normal containerd but the one used by firecracker is used. This was needed as the normal
containerd and the containerd with firecracker cannot run side by side as they require
contradictory settings (e.g. the root parameter, which specifies the path to the binaries,
and others). The join command results in the following error:

[ERROR CRI]: container runtime is not running: output: time=
"2024-02-14T16:15:05+01:00" level=fatal msg="validate service connection:
CRI vl runtime API is not implemented for endpoint
\"unix:///var/run/firecracker-containerd/containerd.sock\": rpc error:
code = Unimplemented desc = unknown service runtime.vl.RuntimeService"

This means that this runtime is not compatible with the Kubernetes interface CRI.

Therefore, Firecracker is used in this work together with Kata Containers, as in many
other works, e.g. in [Guo+23| and [Den22|. Firecracker is the virtualization technology
and Kata is the low-level runtime. This means that Firecracker replaces QEMU compared
to the setup in 3.1.2. The corresponding runtime is called kata-fc.

Kata Containers was installed first, as described in section 3.1.2. However, a dif-
ferent hypervisor, i.e. Firecracker, was selected here. Then the binaries for Firecracker
and Jailer, a program to isolate the Firecracker process, should be downloaded accord-
ing to the instructions. The specified download paths were not (or no longer) up-to-
date. Instead, a tar archive containing the two desired binaries was downloaded and
unpacked. These were then linked in the PATH. The containerd plugin devmapper must
then run without errors, which has not yet been the case. In order to configure it cor-
rectly, a script was supplied which issued further instructions. After these were executed,
devmapper ran without an error message. Next, as with the Kata containers, the de-
vmapper snapshotter must be configured using a supplied script. Then Kata Containers
had to be configured so that Firecracker can also be used correctly. To do this, the
configuration file created during the build had to be copied to a directory read by the
kata-runtime. The last thing to be adjusted was containerd. To do this, a shim file
/usr/local/bin/containerd-shim-kata-fc-v2 must be created as specified and the
containerd configuration file must be extended to include this runtime. |kat24al

Now an image can be pulled with the cri command and a container can be started
with it:

Section 3 Jule Anger 9

Comparison of various runtimes in Kubernetes

:§ sudo ctr --namespace k8s.io containers 1ls | ¢
IMAGE RUNTIME
docker.ilo/weaveworks/weave-kube:latest io.containerd.runc.v2
registry.k8s.io/pause:3.6 io.containerd.runc.v2
docker.io/library/nginx:latest io.containerd.kata-fc.v2

docker.io/weaveworks/weave-kube:latest io.containerd.runc.v2
registry.k8s.io/kube-proxy:v1.28.4 io.containerd.runc.v2
registry.k8s.io/pause:3.6 io.containerd.kata-fc.v2
registry.k8s.io/pause:3.6 io.containerd.runc.v2

docker.io/weaveworks/weave-npc:latest io.containerd.runc.v2

Figure 8: A list of all containers running on the Kubernetes node with the Kata-
Firecracker Runtime.

$ sudo ctr images pull --snapshotter devmapper \
docker.io/library/ubuntu:latest

$ sudo ctr run --snapshotter devmapper --runtime \
io.containerd.run.kata-fc.v2 -t --rm docker.io/library/ubuntu

In the following, the combination of Kata Containers and Firecracker is referred to
simply as Firecracker and the combination of Kata Containers and QEMU as Kata Con-
tainers.

3.1.4 Installing a worker node with gVisor

gVisor was installed manually using the official documentation. A short bash script was
supplied for the installation, which downloads the runsc runtime and moves it to PATH.
An install command for the runsc runtime must then be executed. [Autb].

Then containerd had to be configured using its configuration file so that this runtime
can also be used correctly [Comb|. The suggested tests failed. First a sandbox was created
and then a container was created in this sandbox. However, the sandbox became inactive
after just one second, which meant that the container could not be created.

After the nodes were added to the Kubernetes cluster like the other workers, it turned
out that the runtime in the cluster still worked as desired. Figure 9 shows the running
containers and their runtime.

:-$ sudo ctr --namespace k8s.io containers 1s | cut -d\

IMAGE RUNTIME
registry.k8s.io0/pause:3.6 io.containerd.runc.v2
docker.1o/weaveworks/weave-npc:latest io.containerd.runc.v2
docker.1o/weaveworks/weave-npc:latest io.containerd.runtime.v1
registry.k8s.1io0/pause:3.6 io.containerd.runtime.vl
docker.io/weaveworks/weave-kube:latest io.containerd.runtime.vl
registry.k8s.io/pause:3.6 io.containerd.runtime.v1
docker.io/weaveworks/weave-kube:latest 1o.containerd.runc.v2
docker.io/library/nginx:latest io.containerd.runsc.vl
registry.k8s.io/kube-proxy:v1.28.4 io.containerd.runtime.vl
registry.k8s.io/pause:3.6 io.containerd.runc.v2
registry.k8s.io/kube-proxy:v1.28.4 1o.containerd.runc.v2
registry.k8s.1io/pause:3.6 io.containerd.runtime.vl
docker.io/weaveworks/weave-kube:latest io.containerd.runtime.vil
registry.k8s.io/pause:3.6 io.containerd.runsc.vl

Figure 9: A list of all containers running on the Kubernetes node with the gVisor Runtime.

Section 3 Jule Anger 10

Comparison of various runtimes in Kubernetes

3.2 Test tool clusterloader2

The clusterloader2 is an official, highly configurable testing tool from Kubernetes for
performance and scalability. It was published on GitHub®. It can test the availability
of cluster’s control plane, reaction of the cluster to failed nodes, time required to create
objects (e.g. deployments and pods), the CPU and memory usage, the database size of
etcd and many other metrics.

First, the GitHub repository was cloned. Go was then installed using the Go version
manager (GVM). Instead of a Kind managed cluster,, as suggested in the guide, the local
cluster described in the previous chapters is used. Other options are a cluster managed
by gce, gke, kubemark, aws, vsphere and skeleton. The configuration file described was
adopted and deployment was adapted to the cluster so that a test run is always executed
on a specific node with a specific runtime (see Appendix B.1). [kub23|

The following command is used to run tests:

go run cmd/clusterloader.go --testconfig=${HOME}/perf-configs/config.yaml \
--provider=local --kubeconfig=${HOME}/.kube/config --v=2

The test results are written to standard error. First there are many descriptive debug
messages output. When the tests are completed, the test details are output in JSON
format. Three different test sets are output. Once for so-called stateless pods, which are
the standard pods, then once for statefull pods, which are not used in this setup and
therefore have 0 entered everywhere as the result, and once a summary of both, which is
identical to the first in this setup. Different metrics are output for each test set. The metric
used here is called pod_startup. For each metric, three values are specified next to the
unit: The time required until 50%, 90% and 99% of the pods under consideration have
fulfilled the corresponding metric. Finally, there are many descriptive debug messages
again.

A self-written script simplifies the execution of systematic tests (see Appendix B.2).
Various things can be configured in the script: There is a list of nodes, each node has a
list of runtimes. There is the number of pods that are to be created simultaneously, as
well as the number of runs per node-runtime combination. The script then executes the
clusterloader2 test multiple times on each node-runtime combination. The relevant data
is extracted from each execution, so that at the end a list with the respective results is
output for each node-runtime combination. The script was executed in a tmux session so
that the script can continue to run despite a disconnection of the VM.

4 Results

4.1 Installation

An important aspect of the usability of container runtimes in Kubernetes is the difficulty
of installation (research question R.1). Containerd is very easy to install and there are
many instructions and forum posts that help, describe in detail and address possible
problems. Kata Containers is a little more complex. Although there is also a seemingly
very simple method, it is difficult to debug and there is less help with errors. The method
used is more complex, but the instructions are very detailed, which means that hardly

Shttps://github.com/kubernetes/perf-tests/tree/master/clusterloader?

Section 4 Jule Anger 11

https://github.com/kubernetes/perf-tests/tree/master/clusterloader2

Comparison of various runtimes in Kubernetes

50
45
40 .
35
30
25
20
15

10

v

host runc gvisor (ptrace) gvisor (kvm) firecracker
Figure 10: CPU benchmark for different runtimes [Den22].

any problems have arisen. The installation of Kata Containers is therefore fine. The
installation of gVisor is short, but the suggested tests fail. As a result, I spent a lot of
time troubleshooting, only to find that the runtime still works in the Kubernetes context.
So overall, installing gVisor is easy, but the instructions are very misleading. Installing
Firecracker was difficult because Firecracker is not designed to be used in a Kubernetes
cluster. Using Firecracker together with Kata Containers is complex as two systems need
to be installed and set up.

4.2 Performance comparison

As Li et al., Wang at al. and Dendauw all have shown in their experiments, the CPU
performance of the four runtimes is almost identical [Guo+23] [WDL22| [Den22|. Figure
10 shows the CPU Dendauw’s performance graph.

In the startup time experiments in this work, 10 pods were created simultaneously for
each runtime. Measurements were taken with the clusterloader2 tool (see section 3.2).
100 runs were carried out for each runtime. The results can be viewed in Figure 11 and
Appendix 2. They show that RunC, Kata Containers and gVisor have similar boot times.
Only Firecracker took considerably longer.

Section 4 Jule Anger 12

Comparison of various runtimes in Kubernetes

Performance for 10 pods

20000 ©
o
17500
8
15000 o 8
£ o ®
< 12500 1
£
= 10000 -
o
7500 - o o
2500 : : : :
runc kata gvisor firecracker

Container Runtime

Figure 11: Performance comparison for a deployment with 10 pods for different runtimes,
data from 100 test runs in each case are displayed. See Appendix 2 for details.

Table 1: Average container startup times with different runtimes from different experi-
ments.

Source ‘ Runtime ‘ Startup time ‘ Compared to gVisor ‘
RunC - -
Li et al. Kata Containers 1.43 s +72%
Firecracker 1.33 s +60%
gVisor ~ 0.83 s -
RunC 1.62 s -9%
Wang et. al | Kata Containers 2.06 s +16%
Firecracker - -
gVisor 1.77 s -
RunC 551.0 s —-3%
Dendauw | Kata Containers - -
Firecracker 611.6 s +16%
gVisor 568.7 s -
RunC 4.67 s —8%
This work | Kata Containers 4.82 s —5%
Firecracker 12.98 s +129%
gVisor 5.68 s -

The startup time was also determined by Li et al. and Wang et al. in a container
environment, not specifically in Kubernetes. Li at al. came to the conclusion that gVisor
has a very low startup time, while Kata Containers (72% slower than gVisor) and Fire-
cracker (60% slower) have a significantly higher time, with Firecracker being only slightly
faster than Kata Containers. Wang et al. also find that gVisor has a low startup time,

Section 4 Jule Anger 13

Comparison of various runtimes in Kubernetes

9% longer than RunC, which is used by containerd, while Kata Containers takes around
27% longer than RunC. This means that Kata Containers takes around 16% longer than
gVisor.

Dendauw also conducted tests in a Kubernetes environment. In his results, Firecracker
was only 16% slower than gVisor, while in the tests in this paper it was 129% slower.

All the papers that have compared gVisor and RunC conclude that gVisor is a little
slower than RunC, the difference is less than 10%. All papers comparing gVisor and Fire-
cracker conclude that Firecracker is slower than gVisor, but the differences vary between
16% and 129%. In the comparison between gVisor and Kata Containers, the difference
varies between —8% and 72%.

4.3 Security model comparison

Wang et al. examined the security of the various runtimes with the help of. This showed
that, as expected, RunC clearly has the least isolation and is therefore the most vulnera-
ble. gVisor has the stronger isolation and thus the higher security than RunC and Kata
Containers, but this comes at the loss of performance overhead for memory allocation,
network and system call. Kata Containers is more secure than RunC , but less secure
than gVisor Containers. [WDL22]

5 Conclusion

The analysis of the three innovative runtimes has shown that all three significantly im-
prove security compared to traditional container runtimes such as containerd with RunC.
However, the innovative container alternatives have an increased startup time and in some
cases further performance restrictions. gVisor has the lowest startup time, Firecracker the
highest. In order to decide which container runtime makes the most sense, the specific
situation must be considered. If the best possible security and fast startup time is re-
quired, gVisor can be a good choice. For other use cases, other factors such as memory
bandwidth, memory usage or network throughput must be considered, which were not
tested in this study.

It can also be seen that the innovative runtimes are already very advanced, but that
further development work is still required in some cases, e.g. for using Firecracker without
Kata Containers in Kubernetes.

Section 5 Jule Anger 14

Comparison of various runtimes in Kubernetes

References

[Ada20] Eric Adams. 2020. URL: https://www.katacontainers.io/collateral/
kata-containers-onboarding-deck.pptx.

[Aga+20| Alexandru Agache et al. “Firecracker: Lightweight Virtualization for Serverless
Applications”. In: 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20). Santa Clara, CA: USENIX Association, Feb.
2020, pp. 419-434. 1SBN: 978-1-939133-13-7. URL: https://www.usenix.org/
conference/nsdi20/presentation/agache.

[Auta] The gVisor Authors. gVisor: GPU Support. Accessed on: 2024-03-27. URL:
https://gvisor.dev/docs/user_guide/gpu/.

[Autb] The gVisor Authors. gVisor: Installation. Accessed on: 2024-01-13. URL: https:
//gvisor.dev/docs/user_guide/install/.

[Autc] The gVisor Authors. gVisor: Security Model. Accessed on: 2024-03-26. URL:

https://gvisor.dev/docs/architecture_guide/security/.

[Autd] The gVisor Authors. What is gVisor? Accessed on: 2024-03-26. URL: https:
//gvisor.dev/docs/.

[Aute] The Kubernetes Authors. Kubernetes Components. Accessed on 2023-11-27.
URL: https://kubernetes.io/docs/concepts/overview/components/.
[Autf] The Kubernetes Authors. Kubernetes Container Runtimes. Accessed on 2023-

11-28. URL: https://kubernetes.io/docs/setup/production-environment/
container-runtimes/.

[Autg] The Kubernetes Authors. Kubernetes: Overview. Accessed on: 2024-03-28.
URL: https://kubernetes.io/docs/concepts/overview/.

Coma Firecracker Community. GPU Support. Accessed on: 2024-03-29. URL: https:
p
//github.com/firecracker-microvm/firecracker/issues/849.

[Comb] gVisor Community. Containerd Quick Start. https://gvisor.dev/docs/
user_guide/containerd/quick_start/. Accessed on: 2024-01-05.

[Comc] Kata Containers Community. How to use Kata Containers and Containerd.
https://github.com/kata-containers/kata-containers/blob/main/
docs/how-to/containerd-kata.md. Accessed on: 2023-12-18.

[Comd] Kata Containers Community. kata-deploy. Accessed on: 2024-02-18. URL: https:
//github.com/kata-containers/kata-containers/blob/main/tools/
packaging/kata-deploy/README.md.

[Den22] Willem Dendauw. A comparative study of secure container runtimes in a cloud
computing environment. 2022. URL: https://libstore.ugent.be/fulltxt/
RUG01/003/063/383/RUGO1-003063383_2022_0001_AC.pdf#subsection.
5.3.2.

[fir24] firecracker-microvm. “Firecracker-Containerd”. In: GitHub repository (2024).
Accessed on: 2024-03-25. URL: https://github.com/firecracker-microvm/
firecracker-containerd.

[Foul] The Linux Foundation. About the Open Container Initiative. Accessed on
2023-11-29. URL: https://opencontainers.org/about/overview/.

Section 5 Jule Anger 15

https://www.katacontainers.io/collateral/kata-containers-onboarding-deck.pptx
https://www.katacontainers.io/collateral/kata-containers-onboarding-deck.pptx
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://gvisor.dev/docs/user_guide/gpu/
https://gvisor.dev/docs/user_guide/install/
https://gvisor.dev/docs/user_guide/install/
https://gvisor.dev/docs/architecture_guide/security/
https://gvisor.dev/docs/
https://gvisor.dev/docs/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/setup/production-environment/container-runtimes/
https://kubernetes.io/docs/setup/production-environment/container-runtimes/
https://kubernetes.io/docs/concepts/overview/
https://github.com/firecracker-microvm/firecracker/issues/849
https://github.com/firecracker-microvm/firecracker/issues/849
https://gvisor.dev/docs/user_guide/containerd/quick_start/
https://gvisor.dev/docs/user_guide/containerd/quick_start/
https://github.com/kata-containers/kata-containers/blob/main/docs/how-to/containerd-kata.md
https://github.com/kata-containers/kata-containers/blob/main/docs/how-to/containerd-kata.md
https://github.com/kata-containers/kata-containers/blob/main/tools/packaging/kata-deploy/README.md
https://github.com/kata-containers/kata-containers/blob/main/tools/packaging/kata-deploy/README.md
https://github.com/kata-containers/kata-containers/blob/main/tools/packaging/kata-deploy/README.md
https://libstore.ugent.be/fulltxt/RUG01/003/063/383/RUG01-003063383_2022_0001_AC.pdf#subsection.5.3.2
https://libstore.ugent.be/fulltxt/RUG01/003/063/383/RUG01-003063383_2022_0001_AC.pdf#subsection.5.3.2
https://libstore.ugent.be/fulltxt/RUG01/003/063/383/RUG01-003063383_2022_0001_AC.pdf#subsection.5.3.2
https://github.com/firecracker-microvm/firecracker-containerd
https://github.com/firecracker-microvm/firecracker-containerd
https://opencontainers.org/about/overview/

Comparison of various runtimes in Kubernetes

[Foul7] OpenStack Foundation. “Kata Containers: The speed of containers, the secu-
rity of VMs”. In: (2017). URL: https://katacontainers.io/collateral/
kata-containers-1pager.pdf.

[Guo+23] Guoqing Li et al. “The Convergence of Container and Traditional Virtual-
ization: Strengths and Limitations”. In: SN Computer Science 4 (May 2023).
DOI: 10.1007/s42979-023-01827-9.

[JJ19] John Arundel and Justin Domingus. Cloud Native DevOps mit Kubernetes.
dpunkt.verlag, 2019.
|kat24a] kata-containers. “Configure Kata Containers to use Firecracker”. In: GitHub

repository (2024). Accessed on: 2024-03-24. URL: https://github . com/
kata-containers/kata-containers/blob/main/docs/how-to/how-to-
use-kata-containers-with-firecracker.md.

[kat24b] kata-containers. “Kata-Containers”. In: GitHub repository (2024). Accessed
on: 2024-03-24. URL: https ://github . com/kata - containers /kata -
containers.

|kat24c|] kata-containers. “Utilities: Kata Manager”. In: GitHub repository (2024). Ac-
cessed on: 2024-01-19. URL: https://github.com/kata-containers/kata-
containers/blob/main/utils/README.md.

[Kht| Khtan66. File:Kubernetes.png. Accessed on 2023-11-25, changed. URL: https:
//commons .wikimedia.org/wiki/File:Kubernetes.png.

[kub23| kubernetes. ClusterLoader2. 2023. URL: https://github.com/kubernetes/
perf-tests/blob/master/clusterloader2/docs/GETTING_STARTED.md.

[Lewa| lan Lewis. Container Runtimes Part 1: An Introduction to Container Run-
times. https://www.ianlewis . org/en/container - runtimes-part-1-
introduction-container-r. Accessed on: 2024-01-12.

[Lewb] lan Lewis. Container Runtimes Part 3: High-Level Runtimes. https://wuw.
ianlewis.org/en/container-runtimes-part-3-high-level-runtimes.
Accessed on: 2024-01-12.

[Mut] Josphat Mutai. How To Install Kubernetes on Ubuntu 20.04 using kubeadm.
Accessed on: 2024-03-27. URL: https://computingforgeeks.com/deploy-
kubernetes-cluster-on-ubuntu-with-kubeadm/.

[opel6] opencontainer-runtime-spec. “Open Container Initiative Runtime Specifica-
tion”. In: GitHub repository (2016). URL: https : //wking . github . io/
opencontainer-runtime-spec/runtime-spec.pdf.

[Ren] Christian Rentrop. Low-Level Container Runtimes. https : / /wuw . dev -
insider.de/low-level-container-runtimes-a-7c2c3ce41340e09d0ffc94e705a6f965/
Accessed on: 2024-01-10.

[St624] Marc Stockel. “Hacker konnen aus Containern auf Hostsysteme zugreifen”. In:
Golem (2024). URL: https://www.golem.de/news/docker - kubernetes -
und-co-hacker-koennen-aus-containern-auf-hostsysteme-zugreifen-
2402-181875.html.

[WDL22] Xingyu Wang, Junzhao Du, and Hui Liu. “Performance and isolation analysis
of RunC, gVisor and Kata Containers runtimes”. In: Cluster Computing 25
(Apr. 2022), pp. 1-17. DOI: 10.1007/510586-021-03517-8.

Section Jule Anger 16

https://katacontainers.io/collateral/kata-containers-1pager.pdf
https://katacontainers.io/collateral/kata-containers-1pager.pdf
https://doi.org/10.1007/s42979-023-01827-9
https://github.com/kata-containers/kata-containers/blob/main/docs/how-to/how-to-use-kata-containers-with-firecracker.md
https://github.com/kata-containers/kata-containers/blob/main/docs/how-to/how-to-use-kata-containers-with-firecracker.md
https://github.com/kata-containers/kata-containers/blob/main/docs/how-to/how-to-use-kata-containers-with-firecracker.md
https://github.com/kata-containers/kata-containers
https://github.com/kata-containers/kata-containers
https://github.com/kata-containers/kata-containers/blob/main/utils/README.md
https://github.com/kata-containers/kata-containers/blob/main/utils/README.md
https://commons.wikimedia.org/wiki/File:Kubernetes.png
https://commons.wikimedia.org/wiki/File:Kubernetes.png
https://github.com/kubernetes/perf-tests/blob/master/clusterloader2/docs/GETTING_STARTED.md
https://github.com/kubernetes/perf-tests/blob/master/clusterloader2/docs/GETTING_STARTED.md
https://www.ianlewis.org/en/container-runtimes-part-1-introduction-container-r
https://www.ianlewis.org/en/container-runtimes-part-1-introduction-container-r
https://www.ianlewis.org/en/container-runtimes-part-3-high-level-runtimes
https://www.ianlewis.org/en/container-runtimes-part-3-high-level-runtimes
https://computingforgeeks.com/deploy-kubernetes-cluster-on-ubuntu-with-kubeadm/
https://computingforgeeks.com/deploy-kubernetes-cluster-on-ubuntu-with-kubeadm/
https://wking.github.io/opencontainer-runtime-spec/runtime-spec.pdf
https://wking.github.io/opencontainer-runtime-spec/runtime-spec.pdf
https://www.dev-insider.de/low-level-container-runtimes-a-7c2c3ce41340e09d0ffc94e705a6f965/
https://www.dev-insider.de/low-level-container-runtimes-a-7c2c3ce41340e09d0ffc94e705a6f965/
https://www.golem.de/news/docker-kubernetes-und-co-hacker-koennen-aus-containern-auf-hostsysteme-zugreifen-2402-181875.html
https://www.golem.de/news/docker-kubernetes-und-co-hacker-koennen-aus-containern-auf-hostsysteme-zugreifen-2402-181875.html
https://www.golem.de/news/docker-kubernetes-und-co-hacker-koennen-aus-containern-auf-hostsysteme-zugreifen-2402-181875.html
https://doi.org/10.1007/s10586-021-03517-8

Comparison of various runtimes in Kubernetes

A Data

Table 2: Performance comparison for a deployment with 10 pods for different runtimes.

’ Runtime \ Metric \ Mean \ Standard deviation ‘

50% pods ready | 4128.88 ms 793.24 ms

containerd | 90% pods ready | 4533.79 ms 801.09 ms
99% pods ready | 4689.61 ms 1201.43 ms

50% pods ready | 4302.24 ms 801.99 ms

kata 90% pods ready | 4653.57 ms 835.57 ms
99% pods ready | 4816.61 ms 1307.15 ms

50% pods ready | 12086.14 ms 1341.74 ms

firecracker | 90% pods ready | 12680.12 ms 1309.83 ms
99% pods ready | 12972.27 ms 1475.66 ms

50% pods ready | 4790.04 ms 913.58 ms

gvisor 90% pods ready | 5215.96 ms 917.74 ms
99% pods ready | 5683.4 ms 2061.3 ms

Section A

Jule Anger

Al

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Comparison of various runtimes in Kubernetes

B Code samples

B.1 Sample deployment

apiVersion: apps/vil
kind: Deployment
metadata:
name: nginx-deployment
labels:
app: nginx
spec:
replicas: 3
selector:
matchLabels:
app: nginx
template:
metadata:
labels:

app: nginx

spec:
containers:
- name: nginx

image: nginx:1.14.2

ports:

- containerPort: 80
runtimeClassName: kata
nodeSelector:

nodetype: kata

Listing 1: Example deploment that is to be executed on the worker-kata node with the

Kata Containers runtime.

Section B

Jule Anger

A2

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Comparison of various runtimes in Kubernetes

B.2 Clusterloader2 script

import subprocess, sys, ast, numpy as np

COMMAND = "cd /home/cloud/perf-tests/clusterloader2 && go run

— cmd/clusterloader.go --testconfig=${HOME}/perf-configs/config.yaml
— --provider=local --kubeconfig=${HOME}/.kube/config --v=2"

CONFIG = "/home/cloud/perf-configs/config.yaml"

DEPLOY = "/home/cloud/perf-configs/deployment.yaml"

Il

settings = {"cont": [""],
"kata": ["kata"],
"gvisor": ["gvisor"],
"fire": ["kata-fc"],

}
nr_pods = 10
nr_iter = 5
data = []

def write_deploy(node, runtime):
f = open(DEPLQY)
new_lines = []
for line in f.readlines():
if "runtimeClassName" in line:
if runtime == "":

new_lines += [" #runtimeClassName: %s\n" % runtime]
else:
new_lines += [" runtimeClassName: %s\n" % runtime]
elif "nodetype" in line:
new_lines += [" nodetype: %s\n" % nodel
else:
new_lines += [line]
if not new_lines[-1][-1] == "\n":

new_lines += ["\n"]
f = open(DEPLOY, "w")
f.write("".join(new_lines))

Listing 2: Script to systematically execute the clusterloader2 test (1/3).

Section B Jule Anger A3

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

Comparison of various runtimes in Kubernetes

def write_config():
f = open(CONFIG)
new_lines = []
for line in f.readlines():
if "Replicas" in line:
new_lines += [" Replicas: %d\n" % nr_pods]
else:
new_lines += [line]
if not new_lines[-1][-1] == "\n":
new_lines += ["\n"]
f = open(CONFIG, "w"
f . write("".join(new_lines))

def test():
data = []
for i in range(nr_iter):
print(" Start Iteration", i)

result = subprocess.run(COMMAND,
shell=True, executable="/bin/bash",
capture_output=True, text=True)

dict_str = ""
read_dict = False
for line in result.stderr.split("\n"):
if " StatelessPodStartuplLatency_PodStartupLatency" in line:
read_dict = False
if read_dict:
dict_str += line
if " PodStartupLatency_PodStartupLatency" in line:
read_dict = True
dict_str = "{"

try:
d = ast.literal_eval(dict_str)
except SyntaxError:
print(result.stderr)
continue
1st = d["dataltems"]

for e in lst:
if e["labels"]["Metric"] == "schedule_to_watch":
data += [e["data"]l]
print(e["data"])
return data

Listing 3: Script to systematically execute the clusterloader2 test (2/3).

Section B Jule Anger A4

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

Comparison of various runtimes in Kubernetes

if __name_

== "__main__":

write_config()
output = ""

for node, runtimes in settings.items():

for runtime in runtimes:

print("Start tests at node %s with runtime %s..." % (node,

< runtime))

output += "Start tests at node %s with runtime %s...\n\n" %

— (node, runtime)
write_deploy(node, runtime)
data = test()

print(data)

output += str(data)

output += "\n\n"

print ()

f = open("results", "w")

f . write(output)

Listing 4: Script to systematically execute the clusterloader2 test (3/3).

Section B

Jule Anger A5

	Contents
	List of Tables
	List of Figures
	List of Listings
	List of Abbreviations
	Introduction
	Motivation
	Outline

	Theoretical
	Kubernetes
	Container Runtimes
	containerd
	Kata Containers
	Firecracker
	gVisor

	Methods
	Setup
	Installing the master node and a worker with containerd
	Installing a worker node with Kata Containers
	Installing a worker node with Firecracker
	Installing a worker node with gVisor

	Test tool clusterloader2

	Results
	Installation
	Performance comparison
	Security model comparison

	Conclusion
	References
	Data
	Code samples
	Sample deployment
	Clusterloader2 script

