



Zhuojing Huang

# Quantum Neural Networks: Libraries and Applications

An example of quantum autoencoder

Newest Trends in High-Performance Data Analytics

01/18/2024

#### Main Takeaways

## Table of contents

- **1** Introduction: Quantum Computing
- 2 Overview: Quantum Neural Network
- 3 Use Case: Quantum Autoencoder
- 4 Getting into the Field
- 5 Main Takeaways

Getting into the Field Main Takeaways

# What is Quantum Computing?

#### Multidisciplinary fields

- Computer science
- Physics
- Mathematics



# Essential Concepts in Quantum Computing

### Qubits and Supersupposition

- > Utilizes quantum bits, or **qubits**, instead of classical bits.
- Superposition: qubits can exist in multiple states simultaneously.

#### Entanglement

- The state of one qubit can be dependent on another, even at a distance. "Spooky action at a distance" — Albert Einstein
- > Enables faster information transfer and parallel processing.

# Essential Concepts in Quantum Computing

#### Quantum Gates

Quantum gates act on the qubits in a quantum circuit



- Exploit superposition to process multiple possibilities, allowing for complex operations
- Create entanglement, where the state of two qubits become correlated

# Essential Concepts in Quantum Computing



Source: Moreno-Pineda et al., "Molecular Spin Qudits for Quantum Algorithms"

Getting into the Field Main Takeaways

# Essential Concepts in Quantum Computing



Source: https://arstechnica.com/science/2015/09/d-wave-unveils-

new-quantum-computing-benchmark-and-its-fast/

:D

Overview: Quantum Neural Network Use Case: Quantum Autoencoder

Getting into the Field Main Takeaways 

## Essential Concepts in Quantum Computing



Source: https://arstechnica.com/science/2015/09/d-wave-unveils-

new-quantum-computing-benchmark-and-its-fast/

:D



#### Source:

https://venturebeat.com/business/ibm-releases-giskit-modules-

that-use-guantum-computers-to-improve-machine-learning/

# Why Do We Need Quantum Computers?

#### Limitations of supercomputers

- Reliant on 20th-century transistor technology
- Slow or unable to solve some complex problems
- What quantum computers can do
  - ► Lead to more efficient computation for certain tasks with parallelism
  - Provide exponential speedup for certain computational tasks:
    - factoring large numbers
    - searching unsorted databases
  - Excel in solving complex optimization problems

Introduction: Quantum Computing Overview: Quantum Neural Network Use Case: Quantum Autoencode October Oscillation (Main Takeaways)

### Current stage of Quantum Computing



Source: Berggren, "Quantum Computing with Superconductors"

## Current stage of Quantum Computing



Source: Ezratty, "Is there a Moore's law for quantum computing?"

# What fields can Quantum Computing be useful?

- Optimization Problems
- Cryptography
- Quantum Simulation
- Machine Learning
- Molecular Modeling
- Integer Factorization

. . .

### What is Quantum Neural Network?



# Recap on Classical Autoencoder: Basics



Source: Rao, "Learning hard distributions with quantum-enhanced

Encoder and Decoder

- Encoder maps input to a latent space
- Decoder reconstructs data from the latent space

#### Essential ideas

- Unsupervised
- Reconstruct original data from the compressed data
- Minimize the difference between input and output

Variational Autoencoders"

### Recap on Classical Autoencoder: Applications

#### Data Compression



Source: https://medium.com/edureka/autoencoders-tutorial-cfdcebdefe37

# Recap on Classical Autoencoder: Applications

### Data Denoising



Source: https://medium.com/analytics-vidhya/reconstruct-corrupted-data-using-denoising-autoencoder-python-code-aeaff4b0958e

Inspired by classical autoencoder

- Inspired by classical autoencoder
- Compress a quantum state onto a smaller amount of qubits, while retaining the initial information
- Can be used for the same purpose, i.e., dimentionality reduction

- Inspired by classical autoencoder
- Compress a quantum state onto a smaller amount of qubits, while retaining the initial information
- Can be used for the same purpose, i.e., dimentionality reduction
- Copy the structure of the classcial autoencoder?

- Inspired by classical autoencoder
- Compress a quantum state onto a smaller amount of qubits, while retaining the initial information
- Can be used for the same purpose, i.e., dimentionality reduction
- Copy the structure of the classcial autoencoder?
  - No

- Inspired by classical autoencoder
- Compress a quantum state onto a smaller amount of qubits, while retaining the initial information
- Can be used for the same purpose, i.e., dimentionality reduction
- Copy the structure of the classcial autoencoder?
  - No
  - Quantum computations follow a unitary evolution
  - Not possible to eliminate or create new qubits during quantum computation

# Basic Architecture of QAE



Source: QiskitCommunity, Quantum Autoencoder Tutorial

- Input layer: input  $|\psi\rangle$  contrains n qubits
- Bottleneck layer: Reduce the dimensionality to n k qubits
- Output layer: k qubits (all in the state  $|0\rangle$ ) plus the new qubits

# Basic Architecture of QAE



Source: QiskitCommunity, Quantum Autoencoder Tutorial

Auxiliary Qubit

- Aid in certain quantum operations
- Entangle quantum state with auxiliary qubits
- Reference State
  - A reference for comparison in quantum algorithms
  - Measure deviations in the quantum system during computation
- Classical Register
  - Store and process classical bits

### Current Challenges of QAE

#### Error Correction

#### Decoherence

- Limited Qubits
- Qubit Stability

- Motivation: a possible solution to tackle the quantum noise problem
- Goal: reconstruct Greenberger–Horne–Zeilinger (GHZ) states subject to random bit-flips and small unitary noise.
- What are GHZ states?
  - > A certain type of entangled quantum state that involves at least three qubits
  - ► A M-qubit GHZ state can be defined by

$$|\mathrm{GHZ}
angle = rac{|\mathbf{0}
angle^{\otimes M}+|\mathbf{1}
angle^{\otimes M}}{\sqrt{2}}$$

#### Why do we do this?

- GHZ states are highly entangled quantum states
- ▶ Random bit-flips introduce errors and decoherence in quantum systems
- Crucial for developing effective quantum error correction codes



#### Architecture

- ▶ A QNN with  $\ell$  layers, denoted as  $[m_1, \ldots, m_\ell]$
- Each layer has size  $m_i$ ,  $1 \le i \le \ell$
- The quantum circuit is made up of *Q* qubits, where  $Q = 1 + m_1 + w$



$$F(|\phi_i\rangle,\rho) = \langle \phi | \rho | \phi_i \rangle$$

$$\mathsf{p}_0 = \frac{1}{2} (\mathbf{1} + \mathcal{F}(|\phi_i\rangle, \rho))$$

Source: Achache, Horesh, and Smolin, "Denoising quantum states with quantum autoencoders - theory and applications"

Zhuojing Huang

Newest Trends in High-Performance Data Analytics



Reuse the qubits of the precedent layers by resetting themOnly need the qubits representing two consecutive layers

#### Training

- Unsupervised
- ▶ Train on pairs (x, y); x and y are from the same noisy distribution

• Loss function: 
$$C(\kappa) = \frac{1}{N} \sum_{i=1}^{N} F(|\phi_i\rangle, \rho_i^{\kappa})$$

#### Results





### Frameworks support QAE out of the box

| Tool              | Language   |
|-------------------|------------|
| Cirq              | Python     |
| Qiskit            | Python     |
| Dwave-system      | Python     |
| FermiLib          | Python     |
| Qbsolv            | С          |
| QGL.jl            | Julia      |
| Qiskit.js         | JavaScript |
| Qrack             | C++        |
| Quirk             | JavaScript |
| Strawberry Fields | Python     |

Getting into the Field Main Takeaways

### Frameworks support QAE out of the box: Qiskit

- Open-source quantum computing framework developed by IBM
- Detailed documentation, tutorials, and examples are available
- Allows users to run quantum circuits on real quantum devices

# **Building QAE at Home**

#### Import necessary Qiskit libraries

| P | ython |                                                                            |
|---|-------|----------------------------------------------------------------------------|
| 1 | from  | qiskit import ClassicalRegister, QuantumRegister                           |
| 2 | from  | qiskit <b>import</b> QuantumCircuit                                        |
| 3 | from  | qiskit.circuit.library import RealAmplitudes                               |
| 4 | from  | qiskit.quantum_info <b>import</b> Statevector                              |
| 5 | from  | qiskit_algorithms.optimizers                                               |
| 6 | from  | qiskit_algorithms.utils                                                    |
| 7 | from  | <pre>qiskit_machine_learning.circuit.library import RawFeatureVector</pre> |
| 8 | from  | <pre>qiskit_machine_learning.neural_networks import SamplerQNN</pre>       |
|   |       |                                                                            |

Source: QiskitCommunity, Quantum Autoencoder Tutorial

Use Case: Quantum Autoencoder

# **Building QAE at Home**





Use Case: Quantum Autoencoder

# **Building QAE at Home**

#### Define the autoencoder circuit

Source: QiskitCommunity, Quantum Autoencoder Tutorial

Introduction: Quantum Computing

Overview: Quantum Neural Network

Use Case: Quantum Autoencoder

Getting into the Field Main Takeaways

# **Building QAE at Home**



- $\blacksquare$   $q_0 q_3$ : Laten space
- $\blacksquare$   $q_4 q_7$ : Trash space
- **a**  $q_8$   $q_1$ 1: Reference space
- **q**<sub>12</sub>: Auxiliary qubit
- c: Classical register

Source: QiskitCommunity, Quantum Autoencoder Tutorial

Overview: Quantum Neural Network

Use Case: Quantum Autoencoder

Getting into the Field Main Takeaways

### **Building QAE at Home**



Source: QiskitCommunity, Quantum Autoencoder Tutorial

# Building QAE at home

Maximizing this function corresponds to two states being identical

$$S = 1 - \frac{2}{M} \cdot L \tag{1}$$

# Building QAE at Home: Domain Wall

### Apply the X gate (bit-flip)

| Ρ  | ython                                                                          |
|----|--------------------------------------------------------------------------------|
| 1  | <pre>def domain_wall(circuit, a, b):</pre>                                     |
| 2  | # Here we place the Domain Wall to qubits a - b in our circuit                 |
| 3  | <pre>for i in np.arange(int(b / 2), int(b)):</pre>                             |
| 4  | circuit.x(i)                                                                   |
| 5  | return circuit                                                                 |
| 6  |                                                                                |
| 7  | ae = auto_encoder_circuit(num_latent, num_trash)                               |
| 8  | <pre>qc = QuantumCircuit(num_latent + 2 * num_trash + 1, 1)</pre>              |
| 9  | <pre>qc = qc.compose(domain_wall_circuit, range(num_latent + num_trash))</pre> |
| 10 | <pre>qc = qc.compose(ae)</pre>                                                 |
| 11 | <pre>qc.draw("mpl")</pre>                                                      |

Source: QiskitCommunity, Quantum Autoencoder Tutorial

### Building QAE at Home: Domain Wall

### Initialize Qubits

- > Start with 8 qubits, initially set to the  $|0\rangle$  state.
- Apply X-Gates
  - > Apply an X-gate (bit-flip) operation on qubits 1 through 4.
  - > This flips the states to  $|1\rangle$ , representing the "domain wall."

Overview: Quantum Neural Network

Use Case: Quantum Autoencoder

Getting into the Field Main Takeaways

### Building QAE at Home: Domain Wall



Source: QiskitCommunity, Quantum Autoencoder Tutorial

Use Case: Quantum Autoencoder

Getting into the Field Main Takeaways

### Building QAE at Home: Domain Wall

#### Define loss function

| Python                      |                                                                                                                                                                                                 |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 <b>def</b><br>2<br>3<br>4 | <pre>cost_func_domain(params_values): probabilities = qnn.forward([], params_values) # we pick a probability of getting 1 as the output of the network cost = np.sum(probabilities[:, 1])</pre> |

Source: QiskitCommunity, Quantum Autoencoder Tutorial

Introduction: Quantum Computing

Overview: Quantum Neural Network

Use Case: Quantum Autoencoder

Getting into the Field Main Takeaways

### Building QAE at Home: Domain Wall



Zhuojing Huang

#### Newest Trends in High-Performance Data Analytics

Use Case: Quantum Autoencoder

Getting into the Field Main Takeaways

# Building QAE at Home: Domain Wall





Use Case: Quantum Autoencoder

Getting into the Field Main Takeaways

### Building QAE at Home: Domain Wall

### Compare final fidelity between input and output

#### Python

3

- 1 domain\_wall\_state = Statevector(domain\_wall\_circuit).data
- 2 output\_state = Statevector(test\_qc).data
- 4 fidelity = np.sqrt(np.dot(domain\_wall\_state.conj(), output\_state) \*\* 2)

#### ▶ Fidelity of our Output State with our Input State: 0.9740570467513804

Overview: Quantum Neural Network

Use Case: Quantum Autoencoder

Getting into the Field Main Takeaways







Use Case: Quantum Autoencoder

Getting into the Field Main Takeaways



Introduction: Quantum Computing

Overview: Quantum Neural Network

Use Case: Quantum Autoencoder

Getting into the Field Main Takeaways



Overview: Quantum Neural Network

Use Case: Quantum Autoencoder

Getting into the Field Mai

Main Takeaways





Introduction: Quantum Computing

Overview: Quantum Neural Network

Use Case: Quantum Autoencoder

Getting into the Field Ma

Main Takeaways

# Building QAE at Home: Image Compression



#### Results with smaller images

- ▶ Image size: 4 × 8
- Number of qubits: 5
- Laten space: 3
- Trash space: 2

Source: QiskitCommunity, Quantum Autoencoder Tutorial

# Main Takeaways

- Push the boundaries of machine learning capabilities
- Applications: optimization, data compression, and data denoising
- Integrate into industry: the key to the full power of quantum computing
- Ongoing research promises enhanced efficiency and scalability
- Out-of-the-box frameworks like Qiskit facilitate experimentation

Introduction: Quantum Computing

Overview: Quantum Neural Network

Use Case: Quantum Autoencoder

Getting into the Field Main Takeaways

# Conclusion

### "Nature isn't classical, and if you want to make a simulation of Nature, you'd better make it quantum mechanical"

—- Richard Feynman

### References

Achache, Tomer, Lior Horesh, and John Smolin. "Denoising quantum states with quantum autoencoders – theory and applications". In: (Dec. 2020). arXiv: 2012.14714 [guant-ph]. URL:

https://arxiv.org/abs/2012.14714.

- Ayoade, O., P. Rivas, and J. Orduz. "Artificial Intelligence Computing at the Quantum Level". In: *Data* 7 (2022), p. 28. URL: http://link.aip.org/link/?RSI/72/4477/1.
- Berggren, Karl. "Quantum Computing with Superconductors". In: *Proceedings of the IEEE* 92 (2004), pp. 1630–1638. DOI: 10.1109/JPR0C.2004.833672.

Ezratty, Olivier. "Is there a Moore's law for quantum computing?" In: (2023).

Moreno-Pineda, Eufemio et al. "Molecular Spin Qudits for Quantum Algorithms". In: *Chemical Society Reviews* 47 (2017). DOI: 10.1039/C5CS00933B.

QiskitCommunity. Quantum Autoencoder Tutorial. Qiskit Machine Learning Repository. 2023. URL: https://github.com/qiskit-community/qiskit-machine-

learning/blob/stable/0.7/docs/tutorials/12\_quantum\_autoencoder.ipynb.

Rao, A. "Learning hard distributions with quantum-enhanced Variational Autoencoders". In: (May 2023). arXiv: 2305.01592 [quant-ph].