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Abstract
The seminar report explores the field of Quantum Neural Networks (QNNs) with a specific
focus on Quantum Autoencoders (QAEs). The introduction part of the report outlines
the fundamental concepts of quantum computing, emphasizing the unique properties of
qubits and quantum gates, essential for understanding QAEs’ operation. In the following
subsections of the introduction, basics of QAEs are also covered, as well as its advantages
in the domain of High-Performance Computing (HPC). Apart from the bright side, the
report also discusses existing challenges in realizing the full potential of QNNs. In the sec-
ond section, through two detailed use cases-denoising Greenberger–Horne–Zeilinger states
and real-life industrial applications-the report underscores QAEs’ practical utility and ef-
ficiency in data compression and representation tasks. These examples highlight QAEs’
ability to mitigate noise-induced errors in quantum systems and accurately compress com-
plex datasets for classification tasks, demonstrating their potential to advance quantum
machine learning research and real-world applications. In the next section, the report
provides a simple tutorial for individuals interested in exploring QAEs using the Qiskit
framework from IBM, showing the accessibility and resources available for newcomers to
delve into quantum computing research. In the end, the report reemphasize the potential
of the QNNs, especially QAEs, and provide outlook of the field.
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Declaration on the use of ChatGPT and comparable tools
in the context of examinations

In this work I have used ChatGPT or another AI as follows:

□ Not at all

□ During brainstorming

□ When creating the outline

✓□ To write individual passages, altogether to the extent of 10% of the entire text

□ For the development of software source texts

□ For optimizing or restructuring software source texts

✓□ For proofreading or optimizing

□ Further, namely: -

I hereby declare that I have stated all uses completely.
Missing or incorrect information will be considered as an attempt to cheat.
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Quantum Neural Networks: Libraries and Applications

1 Introduction
Driven by its remarkable potential, quantum computing is experiencing a growth in atten-
tion from both academia (Figure 1[ARO22]) and general public. The field is also rapidly
advancing thanks to contributions from top enterprises, research institutions, startups,
and well-resourced organizations worldwide [ARO22]. Among all the subfields within
quantum computing, quantum machine learning stands out for its popularity, partic-
ularly fuelled by the upsurge in artificial intelligence in recent years. In this landscape,
quantum autoencoder emerges as a particularly intriguing concept, as it offers a promising
efficient approach to data representation and compression. Based on the above reasons,
this seminar report provides an overview of quantum neural network, with a special focus
on quantum autoencoder. Additionally, it highlights available resources to facilitate entry
into the field.

Figure 1: Publication growth in quantum-related fields

1.1 Basic Concepts of Quantum Computing

Before diving in quantum computing, it is important to know its foundation theory – quan-
tum mechanics, as it is the framework for understanding quantum phenomena [Mar+18].
According to quantum mechanics, objects, prevalently limited to subatomic particles,
have wave-like qualities [Mar+18]. It has however been forecasted that quantum mechan-
ics will address computational challenges across various complex problems in domains
like chemistry, physics, and mathematics [BFD19]. Quantum computing is therefore the
result of the combination of quantum mechanics and information science.

Comparing to the classical systems, where binary bits are the cornerstone of comput-
ing, quantum computing works on the foundational unit of quantum bit, or qubit, which
can be in one of two states and possibly a superposition of the two states, meaning
a linear combination of 0 and 1 [ARO22]. Moreover, they can exhibit entanglement,
where the values of specific qualities of one system are correlated with the values of the
corresponding properties of the other system [Bia+17] —as famously described by Albert
Einstein as "spooky action at a distance."
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A qubit is most represented by a mathematical equation as follows:

|ψ⟩ = α |0⟩ + β |1⟩

Where α, β are complex numbers and |0⟩, |1⟩ are computational basis states that
form an orthonormal basis in this vector space [ARO22]. A qubit can also be represented
visually using a Bloch sphere (Figure 2 [ARO22]) which gives the angles and basis vectors
for the |ψ⟩ representation:

Figure 2: A Bloch sphere: it visualizes the qubit’s geometric state

Another crucial aspect of quantum computing involves quantum circuits and quan-
tum gates. A quantum circuit serves as a depiction of a sequential quantum opera-
tion. Logic qubits are conveyed along "wires" (illustrated by horizontal lines in Figure
3 [ARO22]), while quantum gates (depicted as blocks) manipulate the qubits within a
standard quantum circuit, as shown in Figure 3 [ARO22].

Figure 3: Quantum circuits and quantum gates

1.2 Current Situation of Quantum Computing

The drive to develop quantum computers capable of executing Shor’s algorithm [Sho94] for
large numbers has been a major force behind advancements in quantum computing. But
generally, it’s anticipated that quantum computers will also greatly benefit optimization
problems, which are crucial in various fields such as defence, cryptography, financial trad-
ing, etc [Gam19]. Figure 4 [Ber04] shows the relative advantage of quantum computing
when the task size exceeds a certain threshold.

Section 1 Zhuojing Huang 2



Quantum Neural Networks: Libraries and Applications

Figure 4: Computation times of classical and quantum computer

Figure 5 [Ezr23] shows how many qubits that the main companies in the field have at
the time being.

Figure 5: Number of qubits in major quantum companies

However, it’s crucial to recognize that quantum computers are likely to provide sig-
nificant speed-ups for specific types of problems only [Gam19]. And it’s also essential to
understand that quantum computing isn’t about replacing classical computing but rather
complementing it, addressing areas where classical methods may fall short [ARO22]. De-
spite the promising potential of quantum computing, several challenges must be addressed
to realize its full capabilities. These challenges include error correction, decoherence,
limited qubits, and qubit stability, which are inherent to quantum computing systems.
Existing research has already tried to address some of the problems and there will be
examples given later in the report.

Section 1 Zhuojing Huang 3



Quantum Neural Networks: Libraries and Applications

1.3 Quantum Autoencoder and HPC

The pursuit of more efficient and powerful computational models has led to the emergence
of Quantum Neural Networks (QNNs), a novel approach that combines the principles of
quantum computing with neural network architectures [ARO22]. QNNs extend the ca-
pabilities of classical neural networks by leveraging quantum computing’s inherent par-
allelism and entanglement. At its core, QNNs aim to process and manipulate quantum
data for tasks such as classification, regression, and optimization. As QNNs cover a lot of
different types of neural networks, this report is only going to focus on one of them, that
is, Quantum Autoencoders (QAEs).

Building upon the foundations laid by classical autoencoders and QNNs, QAEs intro-
duce unique challenges and opportunities in high-performance computing (HPC). Similar
to classical autoencoders (Figure 6 [Bar23]), where compressed data from encoder aim to
be efficiently and faithfully rebuilt to the original information through the use of decoder,
the fundamental idea behind a QAE is to compress a quantum state onto a smaller num-
ber of qubits while preserving the original information content [Qis23]. This compression
enables efficient representation and manipulation of quantum data.

Figure 6: Architecture of a classical Autoencoder

However, the architecture of QAE (Figure 7 [Qis23]) differs significantly from classical
autoencoders due to the constraints imposed by quantum computing: to be more specific,
the unitary nature of quantum encoding make it impossible to eliminate or create new
qubits during the process [Qis23].

The basic unit of a QAE usually composes of three parts, Input layer where input
|0⟩ contains n qubits, bottleneck layer to reduce the dimensionality to n− k qubits, and
output layer where k qubits (all in the state |0⟩) plus the new qubits. Among all the n
qubits, the k qubits that are set to |0⟩ are referred to as the trash space and the rest as the
latent space. Apart from the input |ψ⟩, there are also other important subsystems: refer-
ence space, auxiliary qubits and a classical register (Figure 8 [Qis23]). In quantum
computing, auxiliary qubits serve as crucial components that aid in specific quantum
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Figure 7: Architecture of a Quantum Autoencoder

operations by entangling with other qubits. They play a significant role in enhancing
computational processes by facilitating entanglement and enabling various quantum op-
erations. Reference states are utilized as benchmarks or standards for comparison within
quantum algorithms, allowing for the measurement of deviations in the quantum system
during computation. This comparison helps assess the progress and accuracy of compu-
tations. Meanwhile, classical registers are employed to store and process classical bits,
providing a bridge between classical and quantum computing paradigms [Qis23]. In later
sections of the report, there will be examples of how these subsystems work, which will
make their functions easier to understand.

Figure 8: Quantum autoencoder input circuit

2 Use Cases of QAEs
Despite that QAEs are still at its early stage in practice, there are some attempts that
reveal the potential of the field. In this section, I will briefly introduce two use cases: one
is resolving the problem of noisy states of quantum data by using QAE, the other is a
successful application of QAEs in industry.

2.1 Use Case 1: Denoising of Greenberger–Horne–Zeilinger States

In the pursuit of addressing the challenges posed by quantum noise in quantum systems,
QAEs present a promising solution. One such use case involves the denoising of Green-
berger–Horne–Zeilinger (GHZ) states subjected to random bit-flips and small unitary
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noise [AHS20]. GHZ states, characterized by high levels of entanglement among at least
three qubits, serve as valuable resources in quantum information processing [AHS20].
However, quantum noise, induced by random bit-flips and unitary noise, can degrade
the fidelity of GHZ states, posing significant challenges in quantum error correction and
quantum computation. The goal of utilizing QAE in this context is to reconstruct the
original GHZ states from noisy versions, thereby mitigating the effects of quantum noise
[AHS20].

This study by Achache et al. [AHS20] proposed a QAE architecture for such purpose.
The architecture consists of a QNN with l layers, each denoted as [m1, . . . ,mℓ]. The
quantum circuit comprises Q qubits, where Q = 1 + m1 + w, with w being the width
of the QNN, and employs techniques to reuse qubits from previous layers, optimizing
resource utilization. The architecture of the QAE is shown in Figure 9 [AHS20]. Here,
w = 4 and Q = 8.

Figure 9: Circuit for the training of a [3,1,3] QAE

During training, the QAE operates in an unsupervised manner, learning from pairs
of noisy and clean quantum states. The loss function is defined as the fidelity between
the reconstructed state and the original state, quantifying the accuracy of denoising.
Experimental results from the study demonstrate the effectiveness of QAEs in denoising
GHZ states, achieving near-perfect reconstruction despite the presence of quantum noise
(Figure 10 [AHS20]). These findings underscore the potential of QAE as valuable tools
in mitigating noise-induced errors in quantum systems, thereby advancing the reliability
and robustness of quantum computation and communication protocols.

2.2 Use case 2: QAE and classifier

The second use case is introduced by the paper Quantum neural network autoencoder and
classifier applied to an industrial case study [Man+22]. Based on the title, the authors of
the paper apply QAEs in real-life scenario, in particular using actual data from physical
plants instead of pedagogical data from benchmark datasets, which indicates the potential
of QNNs outside of academia.

The data of the paper is from a type of vessel that is designed to separate three
output streams—water, oil and gas—from the input of crude oil (as indicted in Figure
11 [Man+22]). The separator is regulated with three controllers: a pressure controller
for the gas stream, and controllers for the water and the oil stream. In an ideal machine
learning scenario, as many variables as possible, including other upstream controllers,
should be considered to reach a higher accuracy when predicting the behaviour of the
separator—whether it is working normally or faultily. However, due to the limitation in
available qubits and the complexity of the problem, the paper only considers four variables
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Figure 10: Training fidelity of the QAE

when training the model: the oil level, the oil output flow, the pressure and the opening
of the oil output valve. Nevertheless, measurements coming from tens of sensors not
not only include their instantaneous values, but also additional features such as moving
averages, and minimal or maximal values trends, which leads a situation where too many
input variables are available. Therefore, it is ineffective to directly feed all the available
data into the neural network classifier. One strategy is to use a dimensionality reduction
approach. Autoencoder has been improved to be an effective way for such purposes in
classical neural networks.

Since the data form the industry is classical by default, the first step of the project
is to encode such data on a quantum state to be later fed into a QAE. In this use case,
the authors choose to use a phase encoding strategy, which provides an effective way to
load classical data into a quantum state [Tac+19][Man+20]. According to this method,
given a data sample x = (x1, x2, . . . , xN) ∈ RN , this is encoded on the quantum state of
n = log2N qubits as follows:

|ψ⟩ =
∑2n

i=1 e
ixi|i⟩

The authors of the paper assessed the performance of their QAE by fully simulating
the wavefunction, enabling us to gauge the average reconstruction error at approximately
5%, which is nearly identical to that of a classical autoencoder. This confirms the quan-
tum autoencoder’s ability to efficiently store a condensed version of the original dataset
and recover it afterward. Moreover, they verified the accuracy of the quantum autoencod-
ing process by assessing the quantum fidelity between the original and decoded quantum
states, even in the presence of simulated stochastic measurement noise, finding them to be
closely similar. After determining the optimal parameters for the quantum autoencoder
during the training phase, the authors utilized the compressed quantum state as input for
a quantum classifier to undertake a binary classification task. This algorithm achieved
an accuracy exceeding 87%, comparable to the classical approach utilizing a neural net-
work autoencoder followed by a nearest-neighbour classifier [Man+22]. This indicates
once more the quantum algorithm’s proficiency in accurately compressing pertinent data
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Figure 11: Industrial separator

information. Furthermore, the paper evaluated the performance of the entire quantum
pipeline, comprising the quantum autoencoder and the classifier, on existing IBM quan-
tum hardware, attaining a classification accuracy of 82%, only slightly lower than the
ideal outcome [Man+22].

This paper marks a significant advancement in quantum machine learning, espicially
QAEs, as it represents one of the first cases where both quantum computing software and
hardware are directly utilized to examine genuine data sourced from industry.

2.3 Brief overview of Other Use Cases

Apart from the aforementioned use cases, the field of QAEs has also witnessed a growing
popularity regarding scientific publication in recent years. In this section, I will give some
more examples of recent research.

Being one of the first QAE paper, Romero et al. [ROA17] present an illustration of a
straightforward circuit capable of being trained as a proficient autoencoder. Their model
is employed within the domain of quantum simulation to condense ground states of the
Hubbard model and molecular Hamiltonians. Based on former works, Srikumar et al.’s
work [SHH21] introduces a unique approach using a hybrid quantum autoencoder to ex-
tract information from quantum states and represent it in a classical space. By training
on pure states, this variational algorithm learns to identify key characteristics, enabling
new methods for clustering and semi-supervised classification. The paper [SHH21] also
demonstrates the hybrid quantum autoencoder’s effectiveness with amplitude encoded
states, with potential extensions to analyse complex quantum datasets. Another different
type of QAE is quantum-enhanced variational autoencoder(QeVAE) [Rao+23]. The Qe-
VAE combines quantum correlations to enhance fidelity without exponentially increasing
parameters. The QeVAE paper [Rao+23] derives the QeVAE’s output distributions and
demonstrate its superiority over classical models across various quantum state classes,
achieving over 2x fidelity improvement in some cases. Furthermore, the QeVAE model
outperforms classical counterparts when implemented on the IBMq Manila quantum com-
puter. This work [Rao+23] opens avenues for quantum generative learning algorithms and
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understanding measurement distributions of high-dimensional quantum states. It is note-
worthy that this overview of current works is far from complete. The purpose of this
section is to serve as a window for the fast developing field of QAE.

3 Tutorial for Building QAEs
Although QNNs, or quantum computing in general, sounds obscure and difficult to be
implemented for those who are not yet experts in the field, people can actually utilise
various off-the-shelf frameworks in quantum computing. Figure 12 [ARO22] shows some
of the open-source quantum computing tools and their corresponding languages. Among
all these frameworks, Qiskit [Qis23], the quantum computing framework developed by
IBM, stands out for its comprehensive documentation, tutorials, and examples, making
it accessible for both beginners and experienced users. This report will only cover basic
tutorials for building QAEs using Qiskit.

Figure 12: Off-the-shelf quantum libraries

Building a QAE using Qiskit involves several steps [Qis23]. In the following paragraphs
I will offer a breakdown of the process:

1. Importing Libraries: Start by importing the required Qiskit libraries, including
components for constructing quantum circuits, neural networks, and optimizers.

1 from qiskit import ClassicalRegister, QuantumRegister
2 from qiskit import QuantumCircuit
3 from qiskit.circuit.library import RealAmplitudes
4 from qiskit.quantum_info import Statevector
5 from qiskit_algorithms.optimizers import COBYLA
6 from qiskit_algorithms.utils import algorithm_globals
7 from qiskit_machine_learning.circuit.library import RawFeatureVector
8 from qiskit_machine_learning.neural_networks import SamplerQNN

Section 3 Zhuojing Huang 9
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2. Defining the Quantum Circuit: Define the quantum circuit for the autoencoder,
including the input, latent, trash, and reference spaces, along with auxiliary qubits. The
reference state is not explicitly shown but is as the same number of our trash state. In
this experiment, I chose to use 8 qubits to build my QAE by using this prebuilt ansatz
function.

1 num_qubits = 8
2 circ = ansatz(num_qubits)
3 circ.decompose().draw("mpl")

1 def auto_encoder_circuit(num_latent, num_trash):
2 qr = QuantumRegister(num_latent + 2 * num_trash + 1, "q")
3 cr = ClassicalRegister(1, "c")
4 circuit = QuantumCircuit(qr, cr)
5 circuit.compose(ansatz(num_latent + num_trash), range(0, num_latent
6 + num_trash), inplace=True)
7 circuit.barrier()
8 auxiliary_qubit = num_latent + 2 * num_trash

3. Calculate the loss: the SWAP test is a procedure commonly used to compare two
states by applying CNOT gates to each qubit [Qis23]. By running the circuit M times,
and applying the SWAP test, we then measure the auxiliary qubit. We use the number
of states in the state 1 to compute:

S = 1− 2
M

· L

where L is the count for the states in the 1 state. So, maximizing this function corresponds
to the two states of which we are comparing being identical. We therefore aim to maximize
this function, i.e. minimize 2

M
· L. This value will therefore be our cost function. The

SWAP test can be realised by the code listed below.

1 circuit.h(auxiliary_qubit)
2 for i in range(num_trash):
3 circuit.cswap(auxiliary_qubit, num_latent + i, num_latent + num_trash
4 + i)
5 circuit.h(auxiliary_qubit)
6 circuit.measure(auxiliary_qubit, cr[0])
7 return circuit

4. Application: in this step, I will show you how to apply QAEs to real-life scenarios.
In total, I tried two tasks, which I showed during the presentation—1) Domain Wall;
2) Compressing and reconstructing MNIST images. In this report, I will only cover the
second example. In the task of compressing and reconstructing MNIST, I randomly chose
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two images from the MNIST dataset and cropped them into smaller size while keeping
the important information of the image.

Since the total number of qubits is limited, I tried the hyperparameter of 6 input
spaces and 2 trash spaces. Initially, the necessary quantum circuits are set up, including
the feature map circuit (fm) responsible for encoding classical data into quantum states
and the autoencoder circuit (ae) designed to compress and reconstruct the encoded data.
These circuits are then combined within a larger QuantumCircuit (qc) that encompasses
the entire computation, from input and latent qubits to trash qubits, along with an
additional qubit for the output. The QNN is then is configured with the quantum circuit,
input and weight parameters, an interpretation function, and the desired output shape
(Figure 13).

Figure 13: QAE circuit for MNIST

Next, a cost function is defined to compute the probabilities of class 1 based on the
output of the QNN, which is subsequently optimized using the COBYLA algorithm.
Throughout the optimization process, the objective function values are tracked and plot-
ted for visualization. After optimization, the code defines functions for generating datasets
of images and preparing test quantum circuits for evaluating the trained model on new
images. Finally, the performance of the model is assessed by sampling new images, com-
puting their original and reconstructed state vectors, and visualizing the results . The
reconstruct result can be seen in Figure 14. With limited qubits, the reconstructed images
are not perfect yet going to the right direction. Therefore, with more quantum computing
power, the task is expected to be solved without problem.

1 def cost_func_digits(params_values):
2 probabilities = qnn.forward(train_images, params_values)
3 cost = np.sum(probabilities[:, 1]) / train_images.shape[0]
4 return cost
5 opt = COBYLA(maxiter=150)
6 objective_func_vals = []

Section 4 Zhuojing Huang 11



Quantum Neural Networks: Libraries and Applications

1 test_qc = QuantumCircuit(num_latent + num_trash)
2 test_qc = test_qc.compose(fm)
3 ansatz_qc = ansatz(num_latent + num_trash)
4 test_qc = test_qc.compose(ansatz_qc)
5 test_qc.barrier()
6 test_qc.reset(7)
7 test_qc.reset(6)
8 test_qc.barrier()
9 test_qc = test_qc.compose(ansatz_qc.inverse())

Figure 14: Reconstructed MNIST images

4 Conclusion
To wrap up, this seminar report discusses about the state-of-the-art in the field of QNNs
with a specific lens on QAEs, as well as their advantages regarding HPC. Throughout
the report, I have offered the foundational concepts of quantum computing, including
qubits, superposition, entanglement, etc. Moreover, I also introduced existing research
of applying QAEs in both academia and industry, such as denoising GHZ states and
classifying data from industrial separator, illustrating how QAEs efficiently tackle data
compression and representation tasks. These instances present the robustness of QAEs
in handling noise-induced errors and compressing intricate datasets accurately.

While celebrating these advancements, we should not that there are still issues, e.g.,
the limited number of existing qubits, hindering the full potential of QNNs. It’s essential
to acknowledge the existing challenges for future innovative solutions and advancements.

Finally, for those eager to embark on their journey into QAEs or quantum computing
in general, the report offers a brief tutorial utilizing the Qiskit framework from IBM, which
shows the accessibility and wealth of resources available of the quantum community for
researchers and enthusiasts.
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