
SH

∞

Seminar Report

Machine Learning performance and
behaviour of HPC storage systems

Sheila Navarro Carrasco

MatrNr: 12613836

Supervisor: Patrick Höhn

Georg-August-Universität Göttingen
Institute of Computer Science

March 30, 2024

Abstract
High-performance computing (HPC) plays a main role in modern scientific research, span-
ning various fields and facilitating advancements in areas such as drug discovery and ar-
tificial intelligence (AI) development. However, the emergence of machine learning (ML)
workloads presents challenges to traditional HPC tasks, particularly in terms of managing
input/output (I/O) operations effectively.

While Parallel File Systems (PFS) have been effective for traditional HPC tasks, they
may struggle to meet the I/O requirements of ML workloads, necessitating the exploration
of alternative solutions such as Burst Buffers (BB).

This report explores the benefits of incorporating burst buffers as a layer in HPC sys-
tems to address the challenges posed by ML workloads, offering improved performance
and efficiency in managing I/O tasks. Through an in-depth analysis of storage systems
in HPC environments, including PFS and burst buffers, alongside a performance evalu-
ation, the effectiveness of burst buffers in enhancing the performance of ML workloads
is demonstrated, providing valuable insights for optimizing computational resources in
diverse scientific applications.

i

Statement on the usage of ChatGPT and similar tools
in the context of examinations

In this work I have used ChatGPT or a similar AI-system as follows:

□ Not at all

□ In brainstorming

□ In the creation of the outline

□ To create individual passages, altogether to the extent of 0% of the whole text

✓□ For proofreading

□ Other, namely: -

I assure that I have stated all uses in full.
Missing or incorrect information will be considered as an attempt to cheat.

ii

Contents

List of Tables iv

List of Figures iv

List of Abbreviations v

1 Introduction 1

2 Workloads in HPC 2

3 Storage Systems 3
3.1 Parallel File Systems (PFS) . 4
3.2 Burst Buffer (BB) . 5

4 Performance Analysis 6
4.1 PFS vs. Burst Buffer . 7

5 Conclusion 11

References 13

iii

List of Tables
1 Comparison of the percentage of read-intensive (RI) vs write-intensive (WI)

vs read–write (RW) ML jobs using IBM Spectrum Scale (GPFS) or burst
buffer classified by the four scientific domains that use burst buffer. [Source:
[KPW22]] . 8

List of Figures
1 Checkpoint/restart-based High-Performance Computing (HPC) I/O be-

haviour logic. [Source: [Res23]] . 2
2 Parallel file system architecture in HPC. [Source: [Ed18]] 5
3 Architecture of a burst buffer system. [Source: [Wan+15]] 6
4 Number of ML jobs using burst buffer and GPFS classified by different

scientific domains on Summit. [Source: [KPW22]] 7
5 The mean number of read and write calls per job made in each group of file

access sizes classified by science domains. The file access sizes are grouped
into < 1MB, 1MB–10MB, 10MB–100MB, 100MB–1GB, and > 1GB bins.
≈ 99 % of the read and write calls are less than 10MB calls. [Source:
[KPW22]] . 9

6 Percentage of read-intensive (RI), write-intensive (WI), and read–write
(RW) ML jobs which have common files across GPFS and burst buffer
classified by science domain. [Source: [KPW22]] 10

7 Burst Buffer and GPFS I/O performance comparison [Source: [KPW22]] . 11
8 Burst Buffer and GPFS I/O performance comparison by science domain

[Source: [KPW22]] . 11

iv

List of Abbreviations
ML Machine Learning

HPC High-Performance Computing

BB Burst Buffer

PFS Paralell File System

GPFS IBM Spectrum Scale

v

Machine Learning performance and behaviour of HPC storage systems

1 Introduction
Modern scientific research heavily relies on High Performance Computing (HPC) to per-
form computations and simulations, across fields. It addresses massive data analysis in
science, finance, and more. HPC boosts advancements in drug discovery and AI develop-
ment and also gives businesses a competitive edge and helps humans address global chal-
lenges like climate change. However, the emergence of Machine Learning (ML) workloads
introduces new challenges to traditional HPC tasks, necessitating a closer examination
of classical storage systems such as Parallel File Systems (PFS), used in supercomputers
like Summit.

While exploring possibilities to enhance the performance of these storage systems for
ML tasks, one may consider the option of Burst Buffers (BB). BB serves as an in-system
storage layer positioned between non-persistent memory and persistent storage, designed
to handle a burst of read or write I/O at a high rate, making it an excellent candidate for
improving I/O performance for ML workloads.

Consequently, this report explores the realm of HPC workloads, highlighting the dif-
ferences between traditional tasks and those involving ML. It delves into how these differ-
ences can pose challenges depending on the storage system used, emphasizing the crucial
role played by storage systems, with Parallel File Systems being a well-known storage
system in supercomputers like Summit, and Burst Buffer emerging as a potential solution
for the I/O performance issues that may arise in PFS when performing ML tasks.

In HPC, distinguishing between workloads and ML workloads reflects how computa-
tional practices are evolving. Traditional tasks involve computations such as large-scale
simulations, numerical analyses and modelling while ML workloads focus on training
models for activities like image recognition and predictive analysis.

One key challenge lies in understanding the I/O behaviours of traditional versus ML
workloads. Traditional tasks typically follow checkpoint/restart-based I/O patterns while
ML workloads introduce frequent I/O operations that pose unique storage system chal-
lenges.

Various solutions exist to address these challenges with PFS being a choice for man-
aging data in HPC environments. Though effective for tasks PFS may face difficulties in
handling the I/O requirements of ML workloads prompting a search for alternative op-
tions such, as burst buffers. This report delves into the advantages of incorporating burst
buffers as a layer, in HPC systems to tackle the issues presented by ML workloads. Burst
buffers provide a solution, for handling regular I/O tasks ultimately boosting performance
and efficiency.

For this purpose, this report proceeds with an in-depth analysis of storage systems in
HPC environments, focusing on PFS and BB. This analysis encompasses their architec-
ture, functionality, and performance characteristics. Subsequently, a performance analysis
section evaluates the effectiveness of BB compared to PFS in enhancing the performance
of ML workloads, drawing insights from real-world data and empirical studies. Finally,
the report concludes with key findings and recommendations for leveraging burst buffers
effectively in HPC environments to meet the growing computational demands of diverse
scientific applications. [Dar]

Section 2 Sheila Navarro Carrasco 1

Machine Learning performance and behaviour of HPC storage systems

Figure 1: Checkpoint/restart-based HPC I/O behaviour logic. [Source: [Res23]]

2 Workloads in HPC
Regarding workloads in HPC, traditional workloads and machine learning workloads can
be differentiated, as they have slight but relevant differences for the topic that attaches
to this report.

Starting with the traditional workloads in HPC, they typically involve computationally
intensive tasks that require high-performance computing resources. Some examples of
these tasks are the following:

• Large-scale simulations: This can involve simulating complex physical, chemical, or
biological processes, such as weather forecasting, climate modelling, or drug discov-
ery. These simulations typically involve solving large sets of equations that require
significant computational power.

• Numerical analysis: This involves solving complex mathematical problems that are
too difficult or time-consuming to solve analytically. Examples include financial
modelling, risk analysis, and engineering design optimization.

• Modeling: This refers to creating mathematical models of real-world systems or
processes to study their behaviour. Examples include designing aircraft wings, op-
timizing traffic flow, and understanding the behaviour of galaxies.

It’s important to note that these categories of tasks are not mutually exclusive, and
many traditional HPC workloads involve elements of all three.

Regarding the I/O behaviour, these workflows follow a traditional checkpoint/restart-
based HPC behaviour. The logic behind this pattern is to create checkpoint files period-
ically during the execution of the HPC application, after passing the consistency check.

Section 2 Sheila Navarro Carrasco 2

Machine Learning performance and behaviour of HPC storage systems

These files contain a snapshot of the state of the application at the specific moment of the
creation of the checkpoint. With these files, if the consistency check of the application
fails, it is possible to restart from the most recent checkpoint file and avoid having to
execute the whole application from the beginning again. This behaviour can be observed
in Figure 1. This pattern allows the minimisation of the amount of work that needs to be
redone if an application fails. Still, the downside is that it can be expensive and inefficient
under certain circumstances or workflows, to store these periodic checkpoint files. Some
examples of circumstances where this pattern could become expensive and inefficient are
when there are too frequent checkpoints, which can lead to an excessive I/O overhead
due to the constant writing in the storage, slowing down the overall execution. Another
possibility is when it is a huge data set, typical from Machine Learning (ML) workflows.
Under these circumstances the checkpoint files can become very large, leading to sig-
nificant storage requirements and slowing down writing and reading checkpoints during
restarts.

Another characteristic is the typical use of parallel file systems, and naturally, all the
other features typical from HPC systems such as parallelism, high memory requirements,
large scale, distributed computing, etc.

Regarding machine learning workloads in HPC, slight differences can be observed
from the traditional ones. The first difference is the type of task that they solve. Machine
learning workloads focus on training and deploying ML, which pursue different goals like
solving problems of image recognition, predictive analysis, natural language processing,
etc. These tasks are often data-driven meaning that the success of the model hinges on
the quality and analysis of large amounts of data [Syd23].

In a data-driven approach, decisions and actions are based on insights extracted from
data, rather than intuition or gut feeling. This requires collecting, storing, processing,
and analyzing vast amounts of information to identify patterns, trends, and relationships
that can inform model development and optimization [Syd23]. The huge amounts of data
and speed needed for processing these kinds of tasks pushed to the utilization of GPUs
or combinations of GPUs and CPUs. Regarding I/O behaviour, it can be observed that
the ML workloads present different behaviours in this regard depending on the domain
in which they are being developed. Nevertheless, a common characteristic in the I/O
behaviour is the presence of a large number of small writes and reads, which is a key
point for the subject that concerns this report.

3 Storage Systems
Storage systems in HPC systems play a crucial role as they are essential for delivering
optimal performance. Adequate storage management reduces data access latency, opti-
mizes storage utilization, and increases data availability. Meanwhile, inadequate storage
can lead to bottlenecks, delays, or, in the worst cases, job failures.

Multiple types of storage systems exist in HPC systems. Among them are Paralell
File System (PFS), object storage systems, block storage, and intermediate storage lay-
ers. Parallel file systems such as GPFS, Lustre, and BeeGFS are designed to manage and
distribute large datasets across multiple nodes in a cluster. They enable efficient concur-
rent access to data, facilitating parallel data processing for HPC applications. However,
PFS can experience bottlenecks which lead to a reduced I/O performance if they face the
problem of having a large number of files with small sizes (the "small file issue").

Section 3 Sheila Navarro Carrasco 3

Machine Learning performance and behaviour of HPC storage systems

In the case of object storage systems, examples include Amazon S3 and Ceph. These
systems offer highly scalable and durable storage for large-scale unstructured data.

Block storage devices, such as SSDs and NVMe drives, provide high-performance I/O
for critical data and temporary storage needs. They are frequently employed as scratch
disks for HPC applications.

Another storage option is Hadoop [Apa], which is a framework created by Apache
that is designed for large-scale data processing and analysis. It has its own distributed
file system, HDFS, and can be implemented in HPC systems. However, this distributed
file system present the same problem as PFS: the "small file issue". However, Zongwei
Zhu et al. propose a solution for this problem PHDFS [Zhu+20]. This solution solves the
"small file issue" by introducing a file aggregation method called Pile, which merges a
group of small files based on their correlation.

Finally, an intermediate layer, one popular option being the burst buffer, plays a cru-
cial role in enhancing the performance of HPC systems. It acts as a high-performance
intermediate layer positioned between the compute nodes and the main storage system.
By caching frequently accessed data on the burst buffer, it can significantly reduce I/O
latency and improve the overall performance of HPC applications.

This report focuses on two of the previously presented storage systems, PFS and BB.
Although PHDFS could also be a suitable storage system approach for ML workloads,
as it addresses the "small file issue" introduced by ML in HPC, it has been decided for
this report to only compare the two previously mentioned storage systems due to their
different purposes in terms of I/O performance when talking about ML workloads. In
the one hand is PFS, an efficient storage system used in well known supercomputers such
as Summit [Ene18], but it may experience reduced performance when running ML jobs
due to its handling of small read and write tasks. When exploring different solutions for
this problem an excellent candidate could be BB, BB serves as an in-system storage layer
positioned between non-persistent memory and persistent storage, designed to handle a
burst of read or write I/O at a high rate. By comparing both options, this report aims
to determine if a burst buffer is indeed a viable option that could be much more suitable
than parallel file systems for enhancing the performance of ML workloads.

3.1 Parallel File Systems (PFS)

HPC applications generate and process massive amounts of data, necessitating efficient
data distribution across multiple nodes in the cluster. PFS handle this process by frag-
menting data into smaller chunks and distributing them across the nodes, as illustrated in
Figure 2. When HPC applications request data, PFS intercept these requests and route
them to the appropriate nodes where the requested data is stored. This routing process
ensures that data is accessed from the nodes where it resides, minimizing unnecessary
data movement and improving I/O performance. During these data requests, parallel
data transfer is ensured by utilizing parallel I/O techniques to enable multiple processes
or threads to read or write data simultaneously. This parallelization significantly reduces
I/O latency and improves overall throughput.

As data is accessed and modified, PFS update their internal data placement maps
to reflect the changes in data distribution across the cluster. This update process helps
maintain data locality and optimize data movement for improved performance, considering
factors like load balancing and access patterns. [Usm+23]

Section 3 Sheila Navarro Carrasco 4

Machine Learning performance and behaviour of HPC storage systems

Figure 2: Parallel file system architecture in HPC. [Source: [Ed18]]

Other important characteristics of these kinds of storage systems are related to fault
tolerance and other optimizations, such as data movement and communication between
nodes. They implement robust fault tolerance mechanisms to ensure data availability
even in the event of node failures. These mechanisms consist of storing the same data in
more than one node (redundancy). Looking at Figure 2, it can be observed that piece 1
of data is stored in the first cluster, but from that first piece, the first half is stored in
the first cluster and could also be at the end of the third one, for example. These data
replication and redundancy strategies guarantee that data can be accessed and recovered
even if individual nodes (the first node in our example) experience hardware or software
issues.

Regarding optimization, PFS employ various techniques to optimize data movement
and communication between nodes, minimizing data congestion and improving overall
system performance. This includes techniques such as network caching, TCP segmenta-
tion offload (TSO), and RDMA (Remote Direct Memory Access). Network caching is a
technique that stores frequently accessed data in a cache located at the network interface
card (NIC). This can reduce the need to read data from slower storage media and im-
prove the performance of ML applications. TCP segmentation offload is a technique that
offloads the task of TCP segmentation and reassembly from the operating system to the
NIC. This can improve the performance of ML applications by reducing the amount of
CPU overhead associated with data transfers. Finally, RDMA is a technique that allows
applications to directly access memory on another node over the network. This can sig-
nificantly reduce the I/O latency of ML applications, as it eliminates the need for data to
be copied between the network buffers and the application’s memory. [Dub19; IBM21]

3.2 Burst Buffer (BB)

Burst buffer is an intermediate layer, located between the processing nodes and a storage
system (such as a parallel file system in HPC), as shown in Figure 3. It is specifically
designed to handle bursts of I/O traffic, such as those that occur during scientific simula-
tions or machine learning training. It acts as a temporary staging area for data that needs
to be accessed quickly, offloading it from slower storage like hard disk drives (HDDs) or
network-attached storage (NAS) devices. Concerning this paper, more specifically, burst

Section 3 Sheila Navarro Carrasco 5

Machine Learning performance and behaviour of HPC storage systems

Figure 3: Architecture of a burst buffer system. [Source: [Wan+15]]

buffer acts as temporary staging area between the processing area and the parallel file
system, taking as reference of HPC system the super computer Summit [Ene18; KPW22]
By storing frequently accessed data in the burst buffer, it can significantly improve the
performance of applications that rely on high I/O rates.

Burst buffers typically incorporate solid-state drives (SSDs) or high-speed memory
(RAM) as the underlying storage medium. These devices offer much faster I/O perfor-
mance compared to traditional HDDs, allowing them to handle bursts of data requests
without bottlenecks. The burst buffer acts as a cache, storing copies of frequently ac-
cessed data from the slower storage tiers. When an application requests this data, the
burst buffer can quickly retrieve it, reducing the need to access the slower storage de-
vices.[Wan+15; Fun15]

4 Performance Analysis
By measuring the performance of a system, it can be assessed how efficiently, referring to
speed, and effectively, referring to accuracy, the system accomplishes its tasks, ultimately
reflecting the amount of valuable work it accomplishes. There exist countless measures to
determine the performance of a system; among them, we can find the speed of a system,
the latency, the efficiency, or the scalability. These measures have the following formal
descriptions:

• Speed: The ability to complete tasks or computations promptly, measured in FLOPS
(floating-point operations per second). This is particularly important for HPC ap-
plications that handle large datasets and require rapid processing.

• Latency: The time it takes for a system to respond to a request, measured in
milliseconds. Low latency is crucial for real-time applications and those that involve
tight communication between multiple components. In HPC, latency is important
for minimizing delays and ensuring the smooth execution of parallel computations.

• Efficiency: The ratio of useful work performed by a system to the energy consumed.

Section 4 Sheila Navarro Carrasco 6

Machine Learning performance and behaviour of HPC storage systems

Figure 4: Number of ML jobs using burst buffer and GPFS classified by different scientific
domains on Summit. [Source: [KPW22]]

This metric is becoming increasingly important in HPC, as energy efficiency is
critical for reducing operating costs and environmental impact.

• Scalability: The ability of a system to handle increasing workloads or data volumes
without compromising performance. Scalability is essential for HPC as applications
and datasets continue to grow in size and complexity.

Getting more specific in the topic that concerns this report, we can ask how to evaluate
the performance of HPC systems. For that, it can analyse, among other things, the
I/O performance, the computation efficiency or the workloads. To measure the I/O
performance, which is the key parameter in this report, they can be used multiple tools
such as Darshan [Dar] or Recorder [Wan+20]. Karim et al. [KPW22] make use of Darshan
which provides information on the executable and filenames of machine learning (ML) jobs
running on Summit in 2020. Measuring this parameter allows us also to detect possible
I/O bottlenecks.

Regarding computing efficiency, is closely related to the utilization of processor units
such as GPUs and CPUs. Efficient memory management and data access patterns can
improve computation efficiency. Moreover, the design and optimization of algorithms used
in the computation process can affect efficiency.

Finally, the classification of workloads based on science domains provides insights into
the different IO behaviours.

4.1 PFS vs. Burst Buffer

Karimi et al., in their article "I/O performance analysis of machine learning workloads
on leadership scale supercomputer" [KPW22], conducted various comparisons to evaluate
the performance of both storage options, parallel file system, and burst buffer, regarding
different characteristics.

In their study, Karimi et al. [KPW22] analyzed the I/O behaviour of machine learning
jobs on the Summit supercomputer, one of the world’s fastest supercomputers [Ene18].
The study utilized the Darshan logs, which provide information on the executable and

Section 4 Sheila Navarro Carrasco 7

Machine Learning performance and behaviour of HPC storage systems

filenames of machine learning (ML) jobs running on Summit in 2020. A dataset 1 of 23,389
ML jobs running on Summit in 2020 was obtained from the Darshan logs for analysis. It
is noteworthy that the parallel file system on Summit is known as GPFS; henceforth, in
this review, it will be referred to as the parallel file system.

Once the data were collected, the authors initially classified ML jobs into different
scientific domains, including biology, computer science, materials, chemistry, earth sci-
ences, physics, machine learning, engineering, and fusion, based on the number of ML
jobs using burst buffer and those using GPFS, as depicted in Figure 4. It is evident from
the figure that out of the various scientific domains available in the dataset, only four of
them—biology, computer science, materials, and chemistry—utilized burst buffer as an
intermediate storage system. Moreover, it is notable that the usage of GPFS significantly
exceeded that of burst buffer in all four domains, with the highest number of burst buffer
jobs being in computer science. This limited adoption of burst buffer by domains may
suggest that its utilization could be hindered by a lack of understanding of how burst
buffer could enhance I/O performance.

For the remainder of the analysis, the authors classified ML jobs into three categories:
Read-Intensive (RI), Write-Intensive (WI), and Read-Write (RW).

result =
ReadBytes − WriteBytes
ReadBytes + WriteBytes

(1)

The classification into these three categories was performed using the formula above
(Equation 1), with the results categorized as follows:

• −1 ≤ result ≤ −0.5: Write-Intensive (WI)

• 0.5 ≤ result ≤ 1: Read-Intensive (RI)

• −0.5 < result < 0.5: Read–Write (RW)

This classification revealed, as shown in Table 1, that chemistry and computer science
exhibited a high number of RI jobs using GPFS. This suggests that a significant portion
of read-intensive jobs could potentially be transferred from GPFS to burst buffer, thereby
enhancing I/O performance.

Job Size GPFS Burst Buffer

RI WI RW RI WI RW

Comp. Sc. 82.21 9.41 8.38 31.47 67.41 1.12
Biology 43.29 24.59 32.12 97.28 1.36 1.36
Materials 21.15 18.82 60.03 100.0 0 0
Chemistry 76.78 9.72 13.50 0 100.0 0

Table 1: Comparison of the percentage of read-intensive (RI) vs write-intensive (WI) vs
read–write (RW) ML jobs using GPFS or burst buffer classified by the four scientific
domains that use burst buffer. [Source: [KPW22]]

The subsequent analysis focuses on the sizes of accessed files. Tables 2 and 3 present
the mean number of read and write calls used per machine learning job across different

1Dataset: https://doi.ccs.ornl.gov/ui/doi/384, DOI: 10.13139/OLCF/1865904.

Section 4 Sheila Navarro Carrasco 8

https://doi.ccs.ornl.gov/ui/doi/384

Machine Learning performance and behaviour of HPC storage systems

Figure 5: The mean number of read and write calls per job made in each group of file
access sizes classified by science domains. The file access sizes are grouped into < 1MB,
1MB–10MB, 10MB–100MB, 100MB–1GB, and > 1GB bins. ≈ 99 % of the read and
write calls are less than 10MB calls. [Source: [KPW22]]

access sizes, categorized into bins: < 1MB, 1MB–10MB, 10MB–100MB, 100MB–1GB,
and > 1 GB.

Analyzing the behaviour of read and write calls by file size is crucial, as larger access
sizes, indicating sequential read and write operations, yield better performance when
using GPFS, as previously demonstrated in this report. Conversely, small read and write
operations, signified by small bin sizes, are more efficient when burst buffer is utilized, as
shown in section 3.2.

It is evident that the majority of read and write calls fall into the smallest bins, under
1MB. Particularly noteworthy is that almost 99% of the read and write calls for machine
learning workloads are less than 10 MB, implying that the burst buffer is an excellent
candidate for improving I/O performance. This is because a significant number of small
read and write requests overload the parallel file system, as previously observed. Focusing
on domains that do not utilize the burst buffer at all, as depicted in Figure 4, the example
of physics stands out. Physics represents a considerable opportunity for improving I/O
performance, as it is the domain with the highest number of jobs among those that do
not utilize the burst buffer at all and exhibits a very large number of small file accesses
using only the parallel file system, which does not offer the most effective performance in
this scenario.

If the jobs that use BB for ML are specifically examined, an important feature is
that typically write-intensive jobs use BB to write the data temporarily and then write it
persistently in GPFS. In the case of read-intensive jobs, the files are copied from GPFS to
BB and then read from BB instead of from GPFS, thus improving the read performance.

When observing Figure 6, it is easily distinguishable how the domains Biology, Chem-
istry, and Materials (all of them using BB) have an outstanding percentage of Jobs

Section 4 Sheila Navarro Carrasco 9

Machine Learning performance and behaviour of HPC storage systems

Figure 6: Percentage of read-intensive (RI), write-intensive (WI), and read–write (RW)
ML jobs which have common files across GPFS and burst buffer classified by science
domain. [Source: [KPW22]]

(≈ 100%) that do not use common files in BB and GPFS in their WI/RI jobs, which
makes sub-optimal usage of BB. This is especially remarkable in Chemistry, where only
write-intensive jobs are registered with no common files in BB and GPFS. The only do-
main following the trend of common files across all the jobs is Computer Science, which
has been previously explained to improve performance.

This suggests that for optimal system-wide I/O performance, ML users of all domains
need to be well educated on the benefits of BB, especially in novel I/O optimization
techniques, as this behaviour suggests unawareness of users outside Computer Science
about all the potential of using BB to improve I/O performance.

After examining the theoretical performance improvements that the use of BB could
bring, by observing the different types of jobs submitted in different science domains and
analyzing their use of BB and GPFS, let’s dive into whether the burst buffer provides
better real I/O performance.

In Figure 7, it is depicted how BB outperforms GPFS I/O rate in both writing and
reading, in all three statistical measures: mean, median, and standard deviation, which
is consistent with the theoretical peak. Upon closer examination, this trend is confirmed.
In Figure 8, the performance of ML jobs classified by science domain can be observed,
whether they exclusively use GPFS or have at least one file access from BB. Note that the
zero values corresponding to Chemistry and Materials in the burst buffer are due to the
lack of reads in BB, in the case of Chemistry, and the lack of BB writes in Materials. After
these clarifications, it can be confirmed that the performance of both reads and writes
in BB surpasses those in GPFS, aligning with the previous observations and conclusions.
This confirms that there is significant potential for performance improvement by using
BB.

Another observation that can be made in Figure 8 is that Computer Science has
a better mean performance combining accesses on GPFS and BB. This confirms the
suggestion that better-educated specialists in the topic of using BB efficiently would bring
a significant performance improvement by having knowledge of the full potential of the
burst buffer and the newest optimization techniques.

Section 5 Sheila Navarro Carrasco 10

Machine Learning performance and behaviour of HPC storage systems

Figure 7: Burst Buffer and GPFS I/O performance comparison [Source: [KPW22]]

Figure 8: Burst Buffer and GPFS I/O performance comparison by science domain [Source:
[KPW22]]

5 Conclusion
Based on a comprehensive analysis of workloads in HPC systems, encompassing both con-
ventional and machine learning workloads, as well as an in-depth examination of storage
systems including parallel file systems and burst buffers, several key conclusions can be
drawn.

Firstly, the distinction between conventional and machine learning workloads under-
scores the evolving computational requirements in HPC environments. Conventional
workloads, characterized by large-scale simulations and modelling tasks, typically ex-
hibit checkpoint/restart-based I/O behaviours and heavily rely on parallel file systems.
In contrast, machine learning workloads present new challenges, particularly in terms of
I/O behaviour characterized by a large number of small reads and writes.

Secondly, the role of storage systems, notably PFS and BB, is crucial in determining
the overall performance of HPC systems. PFS, with its capability to distribute large
datasets across multiple nodes and facilitate parallel data processing, remains a funda-
mental component of HPC environments. However, the limitations of PFS in handling
small, frequent I/O operations highlight the importance of burst buffers as an interme-
diate layer to alleviate I/O bottlenecks and enhance overall performance, especially for
machine learning workloads.

The analysis of task classifications based on scientific domains reveals varying lev-
els of adoption and utilization of burst buffers across different disciplines. While some
domains, such as computer science, demonstrate a higher inclination for effectively em-
ploying burst buffers, others, like physics, present significant opportunities for improving
I/O performance through better training and awareness of burst buffer advantages.

Furthermore, performance comparisons between PFS and burst buffers validate the

Section 5 Sheila Navarro Carrasco 11

Machine Learning performance and behaviour of HPC storage systems

theoretical benefits of burst buffers in enhancing I/O rates for both reading and writing
operations. These findings underscore the potential for significant performance enhance-
ments by leveraging burst buffers, particularly when combined with novel optimization
strategies and well-informed practitioners proficient in utilizing burst buffers effectively.

In conclusion, the study highlights the evolving landscape of HPC workloads and the
crucial role of storage systems, particularly burst buffers, in addressing the specific chal-
lenges posed by machine learning workloads. By efficiently leveraging burst buffers and
promoting awareness and education across scientific domains, HPC systems can achieve
optimal performance and meet the growing computational demands of diverse scientific
applications.

Section 5 Sheila Navarro Carrasco 12

Machine Learning performance and behaviour of HPC storage systems

References
[Apa] Apache. Apache Hadoop. https://hadoop.apache.org/. [Accessed 27.03.2024].

[Dar] Darshan. Darshan HPC I/O Characterization Tool. https://www.mcs.anl.
gov/research/projects/darshan/. [Accessed 27.03.2024].

[Dub19] Viacheslav Dubeyko. “Comparative Analysis of Distributed and Parallel File
Systems’ Internal Techniques”. In: CoRR abs/1904.03997 (2019). arXiv: 1904.
03997. url: http://arxiv.org/abs/1904.03997.

[Ed18] Price Ed. Parallel File Systems for HPC Storage on Azure. https://techcommunity.
microsoft.com/t5/azure- high- performance- computing/parallel-
file- systems- for- hpc- storage- on- azure/ba- p/306223. [Accessed
3.12.2023]. 2018.

[Ene18] U.S Department of Energy. Summit Supercomputer Ranked Fastest Computer
in the World. https://www.energy.gov/articles/summit-supercomputer-
ranked-fastest-computer-world. [Accessed 9.01.2024]. 2018.

[Fun15] Mark Funk. The What And Why Of Burst Buffers. https://www.nextplatform.
com/2015/05/19/the- what- and- why- of- burst- buffers/. [Accessed
3.12.2023]. 2015.

[IBM21] IBM. Introducing General Parallel File System. https://www.ibm.com/
docs/en/gpfs/4.1.0.4?topic=guide-introducing-general-parallel-
file-system. [Accessed 13.12.2023]. 2021.

[KPW22] Karimi, Paul, and Wang. “I/O performance analysis of machine learning work-
loads on leadership scale supercomputer”. In: Performance Evaluation 157-
158 (2022), p. 102318. issn: 0166-5316. doi: https://doi.org/10.1016/
j.peva.2022.102318. url: https://www.sciencedirect.com/science/
article/pii/S0166531622000268.

[Res23] Northeastern University Research Computing. Checkpoint/Restart Discov-
ery Jobs. https://rc-docs.northeastern.edu/en/2.0.0/07_best-
practices/01_checkpointing.html. [Accessed 3.12.2023]. 2023.

[Syd23] Sydle. Data-Driven: What It Is and Why It’s Important. https: // www .
sydle.com/blog/data-driven-what-it-is-and-why-it-s-important-
606c8a4e4b136c41e0e2c334. [Accessed 20.12.2023]. 2023.

[Usm+23] Sardar Usman et al. “Data Locality in High Performance Computing, Big
Data, and Converged Systems: An Analysis of the Cutting Edge and a Future
System Architecture”. In: Electronics 12.1 (2023). issn: 2079-9292. doi: 10.
3390/electronics12010053. url: https://www.mdpi.com/2079-9292/12/
1/53.

[Wan+15] Teng Wang et al. “Development of a Burst Buffer System for Data-Intensive
Applications”. In: ArXiv abs/1505.01765 (2015). url: https://api.semanticscholar.
org/CorpusID:18324427.

[Wan+20] Chen Wang et al. “Recorder 2.0: Efficient Parallel I/O Tracing and Analysis”.
In: May 2020, pp. 1–8. doi: 10.1109/IPDPSW50202.2020.00176.

Section 5 Sheila Navarro Carrasco 13

https://hadoop.apache.org/
https://www.mcs.anl.gov/research/projects/darshan/
https://www.mcs.anl.gov/research/projects/darshan/
https://arxiv.org/abs/1904.03997
https://arxiv.org/abs/1904.03997
http://arxiv.org/abs/1904.03997
https://techcommunity.microsoft.com/t5/azure-high-performance-computing/parallel-file-systems-for-hpc-storage-on-azure/ba-p/306223
https://techcommunity.microsoft.com/t5/azure-high-performance-computing/parallel-file-systems-for-hpc-storage-on-azure/ba-p/306223
https://techcommunity.microsoft.com/t5/azure-high-performance-computing/parallel-file-systems-for-hpc-storage-on-azure/ba-p/306223
https://www.energy.gov/articles/summit-supercomputer-ranked-fastest-computer-world
https://www.energy.gov/articles/summit-supercomputer-ranked-fastest-computer-world
https://www.nextplatform.com/2015/05/19/the-what-and-why-of-burst-buffers/
https://www.nextplatform.com/2015/05/19/the-what-and-why-of-burst-buffers/
https://www.ibm.com/docs/en/gpfs/4.1.0.4?topic=guide-introducing-general-parallel-file-system
https://www.ibm.com/docs/en/gpfs/4.1.0.4?topic=guide-introducing-general-parallel-file-system
https://www.ibm.com/docs/en/gpfs/4.1.0.4?topic=guide-introducing-general-parallel-file-system
https://doi.org/https://doi.org/10.1016/j.peva.2022.102318
https://doi.org/https://doi.org/10.1016/j.peva.2022.102318
https://www.sciencedirect.com/science/article/pii/S0166531622000268
https://www.sciencedirect.com/science/article/pii/S0166531622000268
https://rc-docs.northeastern.edu/en/2.0.0/07_best-practices/01_checkpointing.html
https://rc-docs.northeastern.edu/en/2.0.0/07_best-practices/01_checkpointing.html
https://www.sydle.com/blog/data-driven-what-it-is-and-why-it-s-important-606c8a4e4b136c41e0e2c334
https://www.sydle.com/blog/data-driven-what-it-is-and-why-it-s-important-606c8a4e4b136c41e0e2c334
https://www.sydle.com/blog/data-driven-what-it-is-and-why-it-s-important-606c8a4e4b136c41e0e2c334
https://doi.org/10.3390/electronics12010053
https://doi.org/10.3390/electronics12010053
https://www.mdpi.com/2079-9292/12/1/53
https://www.mdpi.com/2079-9292/12/1/53
https://api.semanticscholar.org/CorpusID:18324427
https://api.semanticscholar.org/CorpusID:18324427
https://doi.org/10.1109/IPDPSW50202.2020.00176

Machine Learning performance and behaviour of HPC storage systems

[Zhu+20] Zongwei Zhu et al. “PHDFS: Optimizing I/O performance of HDFS in deep
learning cloud computing platform”. In: Journal of Systems Architecture 109
(2020), p. 101810. issn: 1383-7621. doi: https://doi.org/10.1016/j.
sysarc.2020.101810. url: https://www.sciencedirect.com/science/
article/pii/S1383762120301028.

Section 5 Sheila Navarro Carrasco 14

https://doi.org/https://doi.org/10.1016/j.sysarc.2020.101810
https://doi.org/https://doi.org/10.1016/j.sysarc.2020.101810
https://www.sciencedirect.com/science/article/pii/S1383762120301028
https://www.sciencedirect.com/science/article/pii/S1383762120301028

	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Workloads in HPC
	Storage Systems
	Parallel File Systems (PFS)
	Burst Buffer (BB)

	Performance Analysis
	PFS vs. Burst Buffer

	Conclusion
	References

