

Institute for Computer Science

Nils Rosenboom

Modern Methods of HPC-Benchmarking

Unveiling Contemporary Approaches in HPC Benchmarking

SPEChpc 2021

Table of contents

- 1 Introduction
- 2 Popular HPC Benchmarks

3 SPEC

- 4 SPEChpc 2021
- 5 Efficient Computing

6 Further Research

Popular HPC Benchmarks

SPEC

SPEChpc 2021

Efficient Computing

Further Research

Benchmarking at home

What is Benchmarking?

- Performance Evaluation
- Standardized testing

Example: Building computer to maximize framerate in favorite video games

Image source: https://www.reddit.com/r/pcmasterrace/comments/db8zew/the_real_pc_benchmark/

HPC-Benchmarking

Popular HPC Benchmarks

SPEC

SPEChpc 2021

Efficient Computing

Further Research

Benefits of Benchmarking

Why is benchmarking important?

- Assess Performance Against Expectations
- Pinpoint Hardware and Software Configuration Issues
 - E.g. Misconfigured BIOS (wrong Clock Speeds)
 - Missing RAM DIMMs
- Enable Comparison with Industry Standards
- Validate System Reliability
- Informed Decision-Making for Upgrades or Changes

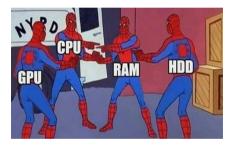


Image source: https://i.pinimg.com/736x/d7/57/7d/d7577d5adb9790df39160c8297f07e5c.jpg

HPC-Benchmarking

SPEChpc 2021

Challenges in Benchmarking

- Increasingly Complex and heterogeneous systems
- Progress in Hardware development is too fast
- Difficult to design well scaling benchmarks
- What are you measuring?
- Heterogeneous fields of tasks
- System performance varies over different tasksets

SPEChpc 2021

Efficient Computing

Further Research

HPC Systems - What's different?

Execute code on large parallel Systems

- Additional Complexity
- Much larger compute power
- Hugely parallel
- Many CPUs and GPUs or other accelerator cards

SPEC

- Different Kinds of Parallelism
- Network and Message Parsing between Notes
 - (Network-) Interfaces also become Important
- New Questions arise:
 - How well does the performance scale with the number of nodes?
 - Power Consumption?

Introduction

Popular HPC Benchmarks

SPEC

SPEChpc 2021

Efficient Computing

Further Research

Parallel Computing

- Simultaneous execution of multiple tasks, improving performance by dividing a problem into smaller parts and solving them concurrently.
- Different kinds of parallelism:
 - SIMD (Single Instruction, Multiple Data)
 - MIMD (Multiple Instructions, Multiple Data)

Image: https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial

SPEChpc 2021

Parallel Computing

Benefits:

- Increased computational speed.
- Efficient utilization of resources.
- Scalability for larger problem sizes.

Considerations:

- Communication overhead in distributed systems.
- Load balancing to ensure optimal resource usage.
- Code complexity and potential for synchronization issues.

Introduction

Popular HPC Benchmarks

SPEC

SPEChpc 2021

Efficient Computing

Further Research

Parallel Computing - Examples

Galaxy Formation

Planetary Movments

Climate Change

Real world phenomena can be simulated with parallel computing

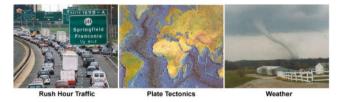


Image: https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial

HPC-Benchmarking

Principles of Parallel Computing

MPI (Message Passing Interface):

Communication framework for distributed memory systems.

SPEC

- Enables coordination among multiple processors by exchanging messages.
- Commonly used in cluster and supercomputer environments.

OpenMP:

- API for shared-memory parallelization (Node Level Parallelism)
- Adds parallelism to existing code through compiler directives.
- Facilitates the creation of multithreaded applications for enhanced performance.

OpenACC:

- Accelerator directive-based approach.
- Designed for heterogeneous computing environments, targeting GPUs and other accelerators.
- Simplifies parallel programming by adding directives to high-level languages like C. C++. and Fortran.

Introduction

00000000

Introduction

Popular HPC Benchmarks

SPEC 000000 SPEChpc 2021

Efficient Computing

Further Research

Parallel Code & Compiler Optimization

••• #pragma omp parallel #pragma omp for for(int i = 0: i < ARRAY_SIZE: i++)</pre> arr[i] = arr[i] / arr[i] + arr[i] / 5 - 14; 3

Use "-fopenmp" flag to compile:

g++ hello.cpp -o hello -fopenmp

Popular HPC Benchmarks

SPEC

SPEChpc 2021

Efficient Computing

Further Research

Popular HPC Benchmarks

LINPACK

- HPC Challange
- NAS Parallel Benchmark
- SPEChpc 2021

SPEChpc 2021

LINPACK Benchmark

- Developed by Jack Dongarra in the 1970s 6
- Measures a computer's floating-point computing power
- Widely used for ranking supercomputers in the TOP500 list
- However, it has its limitations and may not represent real-world performance for all applications

Weaknesses of LINPACK Benchmark

- Limited Scope: LINPACK focuses primarily on floating-point performance, neglecting other important aspects of HPC systems, such as I/O, memory hierarchy, and interconnect efficiency
- Algorithmic Specificity: The benchmark relies on the specific LU factorization algorithm
- Single Precision Emphasis: LINPACK tends to emphasize single-precision performance
- Measures performance that is unattainable in real applications unless meticulously optimized for one system only

Introduction

Introduction	Popular HPC Benchmarks ○○○●○○○	SPEC 000000	SPEChpc 2021	Efficient Computing	Further Research
Тор500					

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory United States	8,699,904	1,194.00	1,679.82	22,703
2	Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max, Slingshot-11, Intel DOE/SC/Argonne National Laboratory United States	4,742,808	585.34	1,059.33	24,687
3	Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Microsoft Azure United States	1,123,200	561.20	846.84	
	https://www.top500.org/lists	/tonE00/202			

https://www.top500.org/lists/top500/2023/11/

SPEChpc 2021

Efficient Computing

Further Research

What's wrong with Top500

Based on LINPACK

- Outdated benchmark
- Hardly represents any real world application

Intransparent

- no Information about the test circumstances
- no Information about used Hardware & Software
- Mostly PR relevant

SPEChpc 2021

Further Research

NAS Parallel Benchmark (NPB)

- Developed by NASA Ames Research Center in the 1990s 4
- Mimics a set of scientific applications
- Examples: Integer Sort, random memory access, Conjugate Gradient, discrete 3D fast Fourier Transform, all-to-all communication
- Nowadays different versions exist utilzing MPI and OpenMP
- Different sizes classified as:
 - Class S: small for quick test purposes
 - Class W: workstation size (a 90's workstation; now likely too small)
 - Classes A, B, C: standard test problems; 4X size increase going from one class to the next
 - Classes D, E, F: large test problems; 16X size increase from each of the previous classes

Further Research

HPCC (High-Performance Computing Challenge)

- A suite of benchmarks designed to assess HPC systems comprehensively 5
- Includes HPL (LINPACK), DGEMM, STREAM, PTRANS, and RandomAccess benchmarks
- Strengths: Addresses a broader range of system characteristics than LINPACK alone
- Weaknesses: Some argue that it still does not cover all aspects of real-world HPC applications, and the emphasis on specific benchmarks might lead to over-optimization for those

Further Research

Standard Performance Evaluation Corporation

SPEC

00000

- Non-profit consortium
- Develops and maintains benchmark suites
- Reviews and publishes submitted results
- Who's involved? 1
 - High Performance Group:
 - AMD, Cisco, Dell, HP, Intel, Lenovo, NVIDIA, Supermicro ...
 - Universities from USA, China, Southkorea, Germany ...
 - International Standards Group
 - Open Systems Group

Research Group

SPEChpc 2021

Efficient Computing

Further Research

History of SPEC Benchmarks

Various Benchmarks for High Performance Computing

SPEC

00000

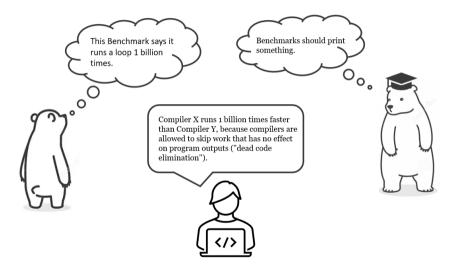
- SPECaccel 2023
- SPEC ACCEL
- SPEChpc 2021
- SPEC MPI 2007
- SPEC OMP 2012

Other Benchmarks, also for non HPC Systems

Java Client/Server

Storage

Power


Popular HPC Benchmarks

SPEC 000000 SPEChpc 2021

Efficient Computing

Further Research

SPEC - Common Benchmarking Mistakes

Introduction

SPEChpc 2021

Efficient Computing

Further Research

SPEC - Common Benchmarking Mistakes

If the benchmark description says:	There may be potential difficulties:	Solutions
The benchmark is already compiled. Just download and run.	You may want to compare new hardware, new operating systems, new compilers.	Source code benchmarks allow a broader range of systems to be tested.
The benchmark measures X.	Has this been checked? If not, measurements may be dominated by benchmark setup time, rather than the intended operations.	Analyze profile data prior to release, verify what it measures.

SPEChpc 2021

Efficient Computing

Further Research

SPEC - Common Benchmarking Mistakes

If the benchmark description says:	There may be potential difficulties:	Solutions
The benchmark is a slightly modified version of Well Known Benchmark.	Is there an exact writeup of the modifications? Did the modifications break comparability?	Someone should check. Create a process to do so.
The benchmark is a collection of low-level operations representing X.	How do you know that it is representative?	Prefer benchmarks that are derived from real applications.

Full list: https://www.spec.org/hpc2021/docs/overview.html

What is a good Benchmark?

Table 1: Characteristics of	useful performance benchmarks					
Specifies a workload	A strictly-defined set of operations to be performed.					
Produces at least one <i>metric</i>	A numeric representation of performance. Common metrics include:					
	 Time - For example, seconds to complete the workload. Throughput - Work completed per unit of time, for example, jobs per hour. 					
Is reproducible	If repeated, will report similar (*) metrics.					
Is portable	Can be run on a variety of interesting systems.					
Is comparable	If the metric is reported for multiple systems, the values are meaningful and useful.					
Checks for correct operation	Verify that meaningful output is generated and that the work is actually done. <i>"I can make it run as fast as you like if you remove the constraint of getting correct answers."</i> (**)					
Has run rules	A clear definition of required and forbidden hardware, software, optimization tuning, and procedures.					

(**) Author unknown. If you know who said it first, write 27.

SPEChpc 2021

- Designed to be used for heterogeneus Systems
- Contains a variety of tasks from different fields
- Is available in different sizes
- Is available with different extensions
 - pure MPI
 - MPI + OpenACC
 - MPI + OpenMP
 - MPI + OpenMP with target Offload

SPEChpc 2021 (cont.)

SPEChpc 2021 intentionally depends on all of the below - not just the processor.

- Processor The CPU chip(s) and optionally, an acceleration device such as a GPU.
- Memory The memory hierarchy, including caches and main memory.
- Interconnects The communication between nodes of a cluster.
- Compilers C, C++, and Fortran compilers, including optimizers.
- MPI The MPI implementation.

Not intented to test graphics, Java libraries, or the I/O system

SPEChpc 2021

SPEChpc 2021 - Overview

Application Name		Bench	mark		Language	Approximate LOC	Application Area		
	Tiny	Small	Medium	Large					
LBM D2Q37	505.lbm_t	605.lbm_s	705.lbm_m	805.lbm_l	С	9000	Computational Fluid Dynamics		
SOMA Offers Monte-Carlo Acceleration	513.soma_t	613.soma_s	Not in	cluded.	С	9500	Physics / Polymeric Systems		
Tealeaf	518.tealeaf_t	618.tealeaf_s	718.tealeaf_m	818.tealeaf_l	С	5400	Physics / High Energy Physics		
Cloverleaf	519.clvleaf_t	619.clvleaf_s	719.clvleaf_m	819.clvleaf_l	Fortran	12,500	Physics / High Energy Physics		
Minisweep	521.miniswp_t	621.miniswp_s	Not in	cluded.	С	17,500	Nuclear Engineering - Radiation Transport		
POT3D	528.pot3d_t	628.pot3d_s	728.pot3d_m	828.pot3d_l	Fortran	495,000 (Includes HDF5 library)	Solar Physics		
SPH-EXA	532.sph_exa_t	632.sph_exa_s	Not in	cluded.	C++14	3400	Astrophysics and Cosmology		
HPGMG-FV	534.hpgmgfv_t	634.hpgmgfv_s	734.hpgmgfv_m	834.hpgmgfv_l	С	16,700	Cosmology, Astrophysics, Combustion		
miniWeather	535.weather_t	635.weather_s	735.weather_m	835.weather_l	Fortran	1100	Weather		

Image: https://www.spec.org/hpc2021/docs/overview.html

SPEChpc 2021

Running SPEChpc Benchmark

- Free for non-commercial use
- Requirements:
 - Main Memory: 40GB (Tiny), 480GB(SMALL), 4TB(Medium), 14,5TB (Large)
 - 50 GB disk space
 - ▶ C, C++, and Fortran compilers
 - > A MPI implementation configured for use with your compilers
 - ARM, Power ISA, or x86_64 CPU(s)

SPEChpc 2021

SPEChpc 2021 - Results

Metrics

- Single composite score (higher is better)
- Can be compared to other results from the same Suite

Typically:

- Time For example, seconds to complete a workload.
- Throughput Work completed per unit of time, for example, jobs per hour.

SPEChpc 2021 is a time-based, strong scaling metric.

SPEChpc 2021

Further Research

SPEChpc Reference Machine

For each benchmark, a performance ratio is calculated as:

- Time on a reference machine / time on the SUT
- The reference machine ran 505.lbm_t (Fluid Dynamics) in 2250 seconds.
- A particular SUT (System under Test) took only 444 seconds
- The score is: 2250/444 = 5.067567
- TU Dresden's Taurus System was used as a reference System,
 - It's score is always 1

SPEChpc 2021

Base & Peak Measurement

Base Metric

- Compiled using the same flags, in the same order
- Use the same node-level parallel model
- Use the same number of ranks
- Use the same number of host threads per rank
- All reported results must include the base metric.

SPEChpc 2021

Base & Peak Measurement

The Peak metric allows greater flexibility

- Different compiler options
- Different node-level parallel models may be used for each benchmark
- Number of ranks and threads set individually for each benchmark
- Limited source code modification to tune the directive models (OpenACC and OpenMP) for their system

Introduction	
000000000	

Popular HPC Benchmarks

SPEC

SPEChpc 2021

Efficient Computing

Further Research

Actual Results

SPEC SPEChpc TM 2021 Medium Result Copyright 2021-2022 Standard Performance Evaluation Corporation							
NVIDIA Corp		SPEChpc 2021_med_	<u>base</u> = 44.7				
	IA DGX SuperPOD 7742 2.25 GHz, Tesla A100-SXM-80 GB)	SPEChpc 2021_med	<u>peak</u> = Not Run				
hpc2021 License:	019	Test Date:	Sep-2022				
Test Sponsor:	NVIDIA Corporation	Hardware Availability:	Jul-2020				
Tested by:	NVIDIA Corporation	Software Availability:	Mar-2022				

Benchmark result graphs are available in the PDF report.

	Results Table																	
D on ohm only				I	Base								Р	eak				
Benchmark	Model	Ranks	Thrds/Rnk	Seconds	Ratio	Seconds	Ratio	Seconds	Ratio	Model	Ranks	Thrds/Rnk	Seconds	Ratio	Seconds	Ratio	Seconds	Ratio
705.lbm_m	ACC	1024	16	18.3	66.9	18.2	<u>67.2</u>	18.1	67.6									
718.tealeaf_m	ACC	1024	16	35.3	38.3	35.8	37.7	35.5	<u>38.0</u>									
719.clvleaf_m	ACC	1024	16	26.8	68.9	27.3	67.7	27.0	<u>68.4</u>									
728.pot3d_m	ACC	1024	16	63.8	<u>29.0</u>	63.6	29.1	65.2	28.4									
734.hpgmgfv_m	ACC	1024	16	66.3	15.1	66.6	15.0	66.3	15.1									
735.weather_m	ACC	1024	16	23.0	<u>104</u>	23.8	101	22.7	106									
		SPECh	npc 2021_n	ned_base	44.7													
		DECL		ad most	Not													
	SPEChpc 2021_med_peak Run																	
		Resul	ts appear ir	the orde	r in whi	ch they v	vere r	un. Bold	under	lined t	ext ind	icates a me	dian mea	suren	ient.			

Screenshot: https://www.spec.org/hpc2021/results/res2022q4/hpc2021-20221017-00137.html

HPC-Benchmarking

SPEChpc 2021

Efficient Computing

Further Research

Actual Results

Hard	ware Summary	Software Summary			
Type of System: Compute Node:	SMP DGX A100	Compiler:	C/C++/Fortran: Version 22.3 of NVIDIA HPC SDK for Linux		
Interconnects:	Multi-rail InfiniBand HDR fabric	MPI Library:	OpenMPI Version 4.1.2rc4		
	DDN EXAScalar file system	Other MPI Info:	HPC-X Software Toolkit Version 2.10		
Compute Nodes Used:	64	Other Software:	None		
Total Chips:	128	Base Parallel Model:	ACC		
Total Cores:	8192	Base Ranks Run:	1024		
Total Threads:	16384	Base Threads Run:	16		
Total Memory:	128 TB	Peak Parallel Models:	Not Run		

Screenshot: https://www.spec.org/hpc2021/results/res2022q4/hpc2021-20221017-00137.html

HPC-Benchmarking

SPEChpc 2021

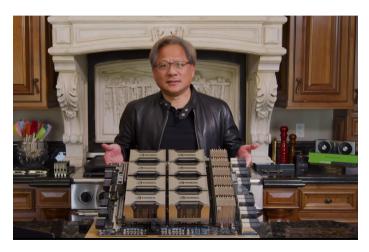
Actual Results

Node Description: DGX A100								
	Hardware	Software						
Number of nodes:	64	Accelerator Driver:	NVIDIA UNIX x86_64 Kernel Module 470.103.01					
Uses of the node:	compute	Adapter:	NVIDIA ConnectX-6 MT28908					
Vendor:	NVIDIA Corporation	Adapter Driver:	InfiniBand: 5.4-3.4.0.0					
Model:	NVIDIA DGX A100 System	Adapter Firmware:	InfiniBand: 20.32.1010					
CPU Name:	AMD EPYC 7742	Adapter:	NVIDIA ConnectX-6 MT28908					
CPU(s) orderable:	2 chips	Adapter Driver:	Ethernet: 5.4-3.4.0.0					
Chips enabled:	2	Adapter Firmware:	Ethernet: 20.32.1010					
Cores enabled:	128	Operating System:	Ubuntu 20.04					
Cores per chip:	64		5.4.0-121-generic					
Threads per core:	2	Local File System:	ext4					
CPU Characteristics:	Turbo Boost up to 3400 MHz	Shared File System:	Lustre					
CPU MHz:	2250	System State:	Multi-user, run level 3					
Primary Cache:	32 KB I + 32 KB D on chip per core	Other Software:	None					
Secondary Cache:	512 KB I+D on chip per core							
L3 Cache:	256 MB I+D on chip per chip (16 MB shared / 4 cores)							

Detailed description for Interconnection and Compiler is also available

Screenshot: https://www.spec.org/hpc2021/results/res2022q4/hpc2021-20221017-00137.html

Introduction


Popular HPC Benchmarks

SPEC 000000 SPEChpc 2021

Efficient Computing

Further Research

DGX A100

https://8f430952.rocketcdn.me/wp-content/uploads/2020/05/aim_nvidia.png

HPC-Benchmarking

Introduction

Popular HPC Benchmarks

SPEC

SPEChpc 2021

Efficient Computing

Further Research

DGX A100

https://www.skyblue.de/de/erbe-und-exoten/gpu-pcie-karten-server/d-nvidia-dgx-a100

HPC-Benchmarking

Introduction

Popular HPC Benchmarks

SPEC 000000 SPEChpc 2021

Efficient Computing

Further Research

64 x DGX A100

Nils Rosenboom

Introduction	
000000000	

Popular HPC Benchmarks

SPEC 000000 SPEChpc 2021

Efficient Computing

Further Research

Ranking

		System Configuration					Results	
Test Sponsor	System Name	Node-level Parallelization Model	Compute Nodes Used	MPI	Base Threads Per Rank	Base	Peak	
NVIDIA Corporation	Selene: NVIDIA DGX SuperPOD (AMD EPYC 7742 2.25 GHz, Tesla A100-SXM-80 GB) HTML CSV Text PDF PS Config	ACC	64			44.7	Not Run	
Oak Ridge National Laboratory	Summit: IBM Power System AC922 (IBM Power9, Tesla V100-SXM2-16GB) HTML CSV Text PDF PS Config	ACC	700	4200	1	41.3	Not Run	
RWTH Aachen University	CLAIX-2018: Intel Compute Module HNS2600BPM (Intel Xeon Platinum 8160) HTML CSV Text PDF PS Config	MPI	100	4800	1	2.00	2.32	
Technische Universitaet Dresden	Taurus: bullx DLC B720 (Intel Xeon E5-2680 v3) HTML CSV Text PDF PS Config	MPI	85	2040	1	1.04	Not Run	

lamge: https://www.spec.org/hpc2021/results/hpc2021medium.html

SPEChpc 2021 - Case Studies

Case study 1: RWTH Aachen 3

- Showed significantly lower performance than similar HPC Systems
- Performance Data showed that execution times differ in MPI time
- Especially MPI_Allreduce
- Faulty Memory DIMMS
- Case study 2: TU Dresden 3
 - Similar situation
 - Faulty BIOS configuration on serveral nodes
 - Kernel bug
 - Unfavorable SLURM configuration

SPEChpc 2021

Limitations of SPEChpc 2021

- The ideal benchmark for vendor or product selection is your own workload on your own application.
- No standardized benchmark can perfectly model the realities of your particular system and user community.
- Consider the uniqueness of your workload and application when assessing benchmark results.

SPEChpc 2021

Efficient Computing

Further Research

Efficient Computing

Efficiency vs. Performance at any Cost

- Rising electricity price
- Increased environmental awareness
- Green500
- SPECpower

Introduction	Popular HPC Benchmarks	SPEC 000000	SPEChpc 2021	Efficient Computing ○●○○○○	Further Research
Green50	0				

Rank	TOP500 Rank	System	Cores	Rmax (PFlop/s)	Power (kW)	Energy Efficiency (GFlops/watts)
1	293	Henri - ThinkSystem SR670 V2, Intel Xeon Platinum 8362 32C 2.8GHz, NVIDIA H100 80GB PCIe, Infiniband HDR, Lenovo Flatiron Institute United States	8,288	2.88	44	65.396
2	44	Frontier TDS - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot- 11, HPE D0E/SC/Oak Ridge National Laboratory United States	120,832	19.20	309	62.684

https://www.top500.org/lists/green500/2023/11/

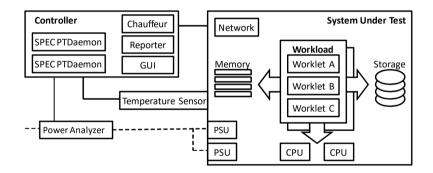
SPECpower Committee

SERT 2 Suite

- Approximates server efficiency across diverse applications
- User-friendly with GUI and predetermined tuning parameters.
- ▶ Tested on various 64-bit processors, operating systems, and JVMs
- Scalable, tested up to 8 processor sockets and 64 nodes.
- Applicable to standalone servers and multi-node sets with shared infrastructure
- > Written in Java for cross-platform support; accommodates other languages
- Generates machine- and human-readable results for certification and customer reports

Introduction
000000000

Popular HPC Benchmarks

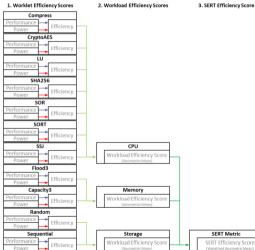

SPEC

SPEChpc 2021

Efficient Computing

Further Research

SERT Setup


https://www.spec.org/sert2/SERT-designdocument.pdf

Introduction	Popular HPC Benchmarks	SPEC	SPEChpc 2021
00000000	000000	000000	000000000000000000000000000000000000000

Efficient Computing 000000

Further Research

SERT Components

SERT Components

All SERT worklets, except Idle run at multiple load levels. For each of those load levels, energy efficiency is calculated separately. We define per load level energy efficiency Effload as follows:

 $\mathsf{Eff}_{\mathsf{load}} = \frac{\mathsf{Normalized} \; \mathsf{Performance}}{\mathsf{Power} \; \mathsf{Consumption}}$

Introduction

SPEC

SPEChpc 2021

Outlook

SPECIaaS

- Benchmarks for AI Applications
- SPEChpc 2021 Benchmarks on Ice Lake and Sapphire Rapids Infiniband Clusters: A Performance and Energy Case Study 2
- Trends in efficient computing
 - How do systems evolve?

SPEChpc 2021

References

- 1. https://www.spec.org/consortium/.
- 2. https://dl.acm.org/doi/pdf/10.1145/3624062.3624197.
- 3. https://ieeexplore.ieee.org/document/9826013.
- 4. https://www.nas.nasa.gov/software/npb.html.
- 5. https://hpcchallenge.org/hpcc/.
- 6. https://www.top500.org/project/linpack/.