

SeminarNewest Trends in High-Performance Data AnalyticsSupervisorChirag Mandal

Emerging Trends in Cloud Storage

Johann Eilts

Agenda

Introduction 1

- **Emerging Trends** 2
 - a Edge Computing

- b Sustainability in Cloud
- c Al in Data Management

Conclusion 3

Cloud Computing Definition^[1]

- On-demand access to shared computing resources
 - ➢ E.g., networks, storage, service, ...

Cloud Computing Definition^[1]

- On-demand access to shared computing resources
 - E.g., networks, storage, service, ...
- Self Service
 - Minimal interaction with providers

Conclusion

Al in Data Management

Conclusion

Introduction

Cloud Computing Definition^[1]

- On-demand access to shared computing resources
 - E.g., networks, storage, service, ...
- Self Service
 - Minimal interaction with providers
- Network Access
 - Access through standard mechanisms for thin & thick clients

Sustainability in Cloud

Conclusion

Al in Data Management

Introduction

Cloud Computing Definition^[1]

- On-demand access to shared computing resources
 - E.g., networks, storage, service, ...
- Self Service
 - Minimal interaction with providers
- Network Access
 - Access through standard mechanisms for thin & thick clients
- Resource Pool
 - > Provider's computing resources are pooled to serve multiple and diverse consumers

[1] P. Mell, T. Grance, and National Institute of Standards and Technology, "The NIST Definition of Cloud Computing."

Sustainability in Cloud

Al in Data Management

Conclusion

Introduction

Cloud Computing Definition^[1]

- On-demand access to shared computing resource
 - E.g., networks, storage, service, ...
- Self Service
 - Minimal interaction with providers
- Network Access
 - Access through standard mechanisms for
- Resource Pool
 - Provider's computing resources are poole

Own illustration based on NIST definition [1]

[1] P. Mell, T. Grance, and National Institute of Standards and Technology, "The NIST Definition of Cloud Computing."

What is Cloud Storage?^[2]

- Remotely store data
- Accessible via the internet
- Data access and management without local storage infrastructure

[2] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou, "Privacy-Preserving Public Auditing for Secure Cloud Storage."

[3] D. Kirsch and J. Hurwitz, Cloud computing for dummies, 2nd ed.

What is Cloud Storage?^[2]

- Remotely store data
- Accessible via the internet
- Data access and management without local storage infrastructure

Cloud Storage Characteristics^[3]

- Architecture depends on use case and user data protection
- Physical & technical storage connections depend on use cases
 - SATA [cost] vs. NVMe [performance]
- Different access protocols
 - APIs (to integrate with applications)
 - File based protocols file transfer independent of applications (FTP, NFS,...)

^[2] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou, "Privacy-Preserving Public Auditing for Secure Cloud Storage."

Why is it important to consider Cloud Storage?^{[1][3][4]}

- Reduces "burden" of local data storage
- Major part of cloud computing
- cloud resources can be tailored to use cases
- Worldwide data consumption continues to grow each year

[1] P. Mell, T. Grance, and National Institute of Standards and Technology, "The NIST Definition of Cloud Computing."

[3] D. Kirsch and J. Hurwitz, Cloud computing for dummies, 2nd ed.

[4] Statista, "Public Cloud: market data & analysis,"

[1] P. Mell, T. Grance, and National Institute of Standards and Technology, "The NIST Definition of Cloud Computing."

[3] D. Kirsch and J. Hurwitz, Cloud computing for dummies, 2nd ed.

[4] Statista, "Public Cloud: market data & analysis,"

.

•

•

What do you think is an important trend in the cloud?

Edge Computing

Edge Computing

Sustainability in Cloud

Al in Data Management

Conclusion

Edge Computing (What?)

Emerging Trends

Description^{[5] [6] [7] [8]}

- Computing tasks / services are pushed from network core to network edge
- Brings cloud services closer to the edge of the network
 - Where data originates / is generated
 - Reduces network latency of cloud
- Architecture and complimentary approach to cloud computing

[5] IEEE, "Real-Life Use Cases for Edge Computing,"

[6] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, "Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing,"

[7] M. Simic, I. Prokic, J. Dedeic, G. Sladic, and B. Milosavljevic, "Towards Edge Computing as a Service: Dynamic Formation of the Micro Data-Centers,"

[8] Red Hat, "What is edge architecture?,"

Conclusion

Edge Computing (What?)

Description^{[5] [6] [7] [8]}

- Computing tasks / services are pushed from netwc
- Brings cloud services closer to the edge of the netv
 - Where data originates / is generated
 - Reduces network latency of cloud
- Architecture and complimentary approach to cloud

Adapted illustration from IEEE [5]

[5] IEEE, "Real-Life Use Cases for Edge Computing,"

[6] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, "Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing,"

[7] M. Simic, I. Prokic, J. Dedeic, G. Sladic, and B. Milosavljevic, "Towards Edge Computing as a Service: Dynamic Formation of the Micro Data-Centers,"

[8] Red Hat, "What is edge architecture?,"

Edge Computing (Why?)

Why is it important / an emerging trend?^{[9] [10]}

- Growth of mobile internet traffic
 - Online gaming, UDH streaming
 - Increased speed with 5G
 - Reduction of latency needed
 - High access speed needed

[9] Statista, "Internet of Things: market data & analysis,"

[10] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, "A Survey on Mobile Edge Computing: The Communication Perspective,"

Edge Computing (Why?)

Why is it important / an emerging trend?^{[9] [10]}

- Growth of mobile internet traffic
 - Online gaming, UDH streaming
 - Increased speed with 5G
 - Reduction of latency needed
 - High access speed needed
- Content created and consumed locally
 - Need for decentraliced storage / caching

[10] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, "A Survey on Mobile Edge Computing: The Communication Perspective,"

^[9] Statista, "Internet of Things: market data & analysis,"

Edge Computing (Why?)

Why is it important / an emerging trend?^{[9] [10]}

- Growth of mobile internet traffic
 - Online gaming, UDH streaming
 - Increased speed with 5G
 - Reduction of latency needed
 - High access speed needed
- Content created and consumed locally
 - Need for decentraliced storage / caching

[9] Statista, "Internet of Things: market data & analysis,"

[10] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, "A Survey on Mobile Edge Computing: The Communication Perspective,"

00000

 Emerging Trends
 Edge Computing
 Sustainability in Cloud
 AI in Data Management
 Conclusion

Edge Computing (How?)

How does it work?^{[11] [12] [13]}

- Storage and computing resources are located at the "edge" of the network
 - Edge nodes; edge computing layer
- IoT devices are data consumers & data producers
- Edge devices request service/content from cloud & perform computing tasks from the cloud
 - > Data storage, caching, processing, delivery service from cloud to user

[11] F. Sepulveda, J. S. Thangraj, and J. Pulliam, "The Edge of Exploration: An Edge Storage and Computing Framework for Ambient Noise Seismic Interferometry Using Internet of Things Based Sensor Networks,"
[12] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, "Edge Computing: Vision and Challenges,"
[13 Y. Zhao, W. Wang, Y. Li, C. Colman Meixner, M. Tornatore, and J. Zhang, "Edge Computing and Networking: A Survey on Infrastructures and Applications,"

Edge Computing (How?)

How does it work?^{[11] [12] [13]}

- Storage and computing resources are located at the
 - Edge nodes; edge computing layer
- IoT devices are data consumers & data producers
- Edge devices request service/content from cloud &
 - Data storage, caching, processing, delivery serv

[11] F. Sepulveda, J. S. Thangraj, and J. Pulliam, "The Edge of Exploration: An Edge Storage and Computing Framework for Ambient Noise Seismic Interferometry Using Internet of Things Based Sensor Networks,"
 [12] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, "Edge Computing: Vision and Challenges,"
 [13 Y. Zhao, W. Wang, Y. Li, C. Colman Meixner, M. Tornatore, and J. Zhang, "Edge Computing and Networking: A Survey on Infrastructures and Applications,"

Edge Computing Case Study

Content Creation/Consumption/Delivery^[14]

Also known as "Mobile edge computing"

- Video streaming as example:
 - Large amount of bandwith needed
 - Esp. Live video streaming like twitch.tv

Edge Computing Case Study

Content Creation/Consumption/Delivery^[14]

Also known as "Mobile edge computing"

- Video streaming as example:
 - Large amount of bandwith needed
 - Esp. Live video streaming like twitch.tv
- Edge devices offer possibility for data processing outside of cloud storage
 - Data only needs to be sent to cloud for storage service
 - transcoding and processing of video data can happen at the edge
 - i.e. edge devices = smartphone

^[14] K. Bilal and A. Erbad, "Edge computing for interactive media and video streaming,"

COCO Edge Computing

Sustainability in Cloud

Al in Data Management

Conclusion

Edge Computing Case Study

Autonomous Vehicles/Driving^[15]

Emerging Trends

- Large amounts of data needed (many sensors)
- Processed with as little latency as possible (high speed on the roads)
- Many different technologies come at play
 - Sensing, decision making, computer vision, ...
- Heterogenous systems need to communicate

Conclusion

Edge Computing Case Study

Autonomous Vehicles/Driving^[15]

- Large amounts of data needed (many sensors)
- Processed with as little latency as possible (high speed
- Many different technologies come at play
 - Sensing, decision making, computer vision, ...
- Heterogenous systems need to communicate

Autonomous driving reference architecture [11]

Sustainability in Cloud

Introduction Emerging Trends Edge Computing Sustainability in Cloud AI in Data Management Conclusion

Sustainability in Cloud (What?)

Description [16] [17]

- Sustainability in environmental context (in contrast to social, economical...)
- Minimize environmental impact and promote responsible resource use in cloud services
- efficient management of energy consumption, processing, and transport within cloud
- Reducing impact on climate change

[16] J. Baliga, R. W. A. Ayre, K. Hinton, and R. S. Tucker, "Green Cloud Computing: Balancing Energy in Processing, Storage, and Transport,"
 [17] K. L. Pendergrass, W. Sampson, T. Walsh, and L. Alagna, "Toward Environmentally Sustainable Digital Preservation,"

Sustainability in Cloud (Why?)

(Real World) Example / Case Study

"As of 2020, **Facebook's** operations are now supported by 100% renewable energy and have reached net zero emissions"^[18]

[18] M. Roe and Facebook, "Facebook Reaches 100% Renewable Energy,"

[19] R. Evans and J. Gao, "DeepMind AI Reduces Google Data Centre Cooling Bill by 40%."

[20] Statista, "Value of the green data center market in Europe from 2020 to 2023, with a forecast until 2030,"

Sustainability in Cloud (Why?)

(Real World) Example / Case Study

"As of 2020, **Facebook's** operations are now supported by 100% renewable energy and have reached net zero emissions"^[18]

"DeepMind AI Reduces **Google** Data Centre Cooling Bill by 40%"^[19]

[18] M. Roe and Facebook, "Facebook Reaches 100% Renewable Energy,"

[19] R. Evans and J. Gao, "DeepMind AI Reduces Google Data Centre Cooling Bill by 40%."

[20] Statista, "Value of the green data center market in Europe from 2020 to 2023, with a forecast until 2030,"

Sustainability in Cloud (Why?)

(Real World) Example / Case Study

"As of 2020, **Facebook's** operations are now supported by 100% renewable energy and have reached net zero emissions"^[18]

"DeepMind AI Reduces **Google** Data Centre Cooling Bill by 40%"^[19]

"Value of the green data center market in Europe"^[20] 2023: 14.57 Billion USD **2030: 49.84 Billion USD (***almost 3.5x as 2023***)**

[18] M. Roe and Facebook, "Facebook Reaches 100% Renewable Energy,"

[19] R. Evans and J. Gao, "DeepMind AI Reduces Google Data Centre Cooling Bill by 40%."

[20] Statista, "Value of the green data center market in Europe from 2020 to 2023, with a forecast until 2030,"

Newest Trends in High-Performance Data Analytics

Taxonomy developbed by Gill & Buyya to measure sustainability [21]

Taxonomy developbed by Gill & Buyya to measure sustainability [21]

Sustainability in Cloud (How?)

How does capacity planning influence sustainability?^[22]

Consider the (large) number of physical machines (PMs) in data centers:

- Low service downtime cost
- But high Operational costs
- Optimal PM capacity requirements need to be determined

[22] R. Ghosh, F. Longo, R. Xia, V. K. Naik, and K. S. Trivedi, "Stochastic Model Driven Capacity Planning for an Infrastructure-as-a-Service Cloud,"

Introduction Emerging Trends Edge Computing Sustainability in Cloud AI in Data Management Conclusion

Sustainability in Cloud (How?)

How does capacity planning influence sustainability?^[22]

Consider the (large) number of physical machines (PMs) in data centers:

- Low service downtime cost
- But high Operational costs
- > Optimal PM capacity requirements need to be determined

Ghosh et al. developed an algorithm:^[22]

Optimal number of PMs:

Minimizing total cost of ownership (incl. operational costs) with a service level agreement for downtime requirements

Cheaper & less reliable PMs VS costlier but more reliable PMs for same service availablity

Taxonomy developbed by Gill & Buyya to measure sustainability [18]

Taxonomy developbed by Gill & Buyya to measure sustainability [18]

Introduction	Emerging Trends	Edge Computing	Sustainability in Cloud	Al in Data Management	Conclusion

Sustainability in Cloud (How?)

Green Cloud Strategies Examples^[23]

Location of Data Centers

- Microsoft built data centers near dams to harness hydro-power
- Water can also be used for logistics

Introduction	Emerging Trends	Edge Computing	Sustainability in Cloud	Al in Data Management	Conclusion

Sustainability in Cloud (How?)

Green Cloud Strategies Examples^[23]

Location of Data Centers

- Microsoft built data centers near dams to harness hydro-power
- Water can also be used for logistics

Virtualization

- Multiple operating systems on single physical machine
- Fully utilize available resource
- Physical space is reduced by virtual instances
 - Power consumption and cooling also reduced
- Virtual machines can also be deployed on edge computing infrastructure

Al in Data Management

Conclusion

Al in Data Management (What? Why?)

Description^[24]

- Handling data as a valuable asset to improve decision making
- Data governance •
- Architecture
- Security
- Quality
- Metadata management

[4] Statista, "Public Cloud: market data & analysis," [24] tableau, "Data Management: What It Is, Importance, And Challenges."

Edge Computing

 $\bigcirc \bigcirc \bigcirc \bigcirc$

Al in Data Management

Conclusion

Al in Data Management (What? Why?)

Emerging Trends

Description^[24]

- Handling data as a valuable asset to improve decision making
- Data governance
- Architecture
- Security

Introduction

- Quality
- Metadata management

Why?^[4]

- 28 % more data created, captured, consumed annually
- Influences cloud storage

Sustainability in Cloud

 ^[4] Statista, "Public Cloud: market data & analysis,"
 [24] tableau, "Data Management: What It Is, Importance, And Challenges."

Introduction Emerging Trends Edge Computing Sustainability in Cloud Al in Data Management Conclusion

Al in Data Management (How?)

Metadata Description^[25]

- "Data about data"
- Describes data
- Makes it easier to manage and use data

Name	Age	Gender	

[25] J. Park and S. Jeoung, "Raison d'être of the benchmark dataset: A Survey of Current Practices of Benchmark Dataset Sharing Platforms,"
 [26] Expert.ai, "What Is Metadata Management and Why Is It Important?,"

 $\bigcirc \bigcirc \bigcirc \bigcirc$

Conclusion

Al in Data Management (How?)

Edge Computing

Metadata Description^[25]

- "Data about data"
- Describes data
- Makes it easier to manage and use data

Emerging Trends

What is metadata management?^[26]

- Data labelling
- Data classification
- Time consuming task when done manually

[25] J. Park and S. Jeoung, "Raison d'être of the benchmark dataset: A Survey of Current Practices of Benchmark Dataset Sharing Platforms,"
 [26] Expert.ai, "What Is Metadata Management and Why Is It Important?,"

Name	Age	Gender	

Al in Data Management

Sustainability in Cloud

 Introduction
 Emerging Trends
 Edge Computing
 Sustainability in Cloud
 AI in Data Management
 Conclusion

Al in Data Management (How?)

How can AI support metadata management?^{[26] [27]}

- Al can extract details from data sources
- Natural language processing can be used for keyword recongnition
- Metadata creation can be automated

[28] O. Naseem, "Enhancing metadata-driven data warehousing through AI."

^[26] Expert.ai, "What Is Metadata Management and Why Is It Important?,"

^[27] G. Bock, "How does AI aid in metadata tagging?"

Al in Data Management (How?)

How can AI support metadata management?^{[26] [27]}

- Al can extract details from data sources
- Natural language processing can be used for keyword recongnition
- Metadata creation can be automated

Example ^[27]

AI can transcribe speech in video data, then tag it with metadata.

Increases data quality ^[28]

Inconsistencies can be automatically detected if wrongly assigned to metadata

^[27] G. Bock, "How does AI aid in metadata tagging?"

^[28] O. Naseem, "Enhancing metadata-driven data warehousing through AI."

Conclusion

and stored \rightarrow more difficult to manage.

Introduction	Emerging Trends	Edge Computing	Sustainability in Cloud	Al in Data Management	Conclusion
Discuss	sion				

- POV influences importance of a trend (government vs. business vs. science)
- Companies with goals/agendas can push certain trends
 - Same goes for regulations/governments
- Some emerging trends might not have any impact at all (e.g. personal clouds, 3D TV, ...)
- Also consider societal impact of trends (e.g., negative impact of social media)
- Maturity of trends to be adopted may take time (maybe something new gets established before)
 - E.g., HD DVD / Blu-Ray vs streaming
- New industries might emerge from trends
 - E.g., large scale cloud adoption \rightarrow cloud security solution industry

References

[1] P. Mell, T. Grance, and National Institute of Standards and Technology, "The NIST Definition of Cloud Computing." [Online]. Available: https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-145.pdf

- [2] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou, "Privacy-Preserving Public Auditing for Secure Cloud Storage," IEEE Trans. Comput., vol. 62, no. 2, pp. 362–375, Feb. 2013, doi: 10.1109/TC.2011.245.
- [3] D. Kirsch and J. Hurwitz, Cloud computing for dummies, 2nd ed. Indianapolis: John Wiley and Sons, 2020.
- [4] Statista, "Public Cloud: market data & analysis," 2023. [Online]. Available: https://www.statista.com/study/85676/public-cloud-report/
- [5] IEEE, "Real-Life Use Cases for Edge Computing," IEEE Innovation at work. Accessed: Feb. 01, 2024. [Online]. Available: https://innovationatwork.ieee.org/real-life-edge-computing-use-cases/

[6] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, "Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing," Proc. IEEE, vol. 107, no. 8, pp. 1738–1762, Aug. 2019, doi: 10.1109/JPROC.2019.2918951.

[7] M. Simic, I. Prokic, J. Dedeic, G. Sladic, and B. Milosavljevic, "Towards Edge Computing as a Service: Dynamic Formation of the Micro Data-Centers," IEEE Access, vol. 9, pp. 114468–114484, 2021, doi: 10.1109/ACCESS.2021.3104475.

- [8] Red Hat, "What is edge architecture?," redhat.com. Accessed: Jul. 12, 2023. [Online]. Available: https://www.redhat.com/en/topics/edge-computing/what-is-edge-architecture
- [9] Statista, "Internet of Things: market data & analysis," 2023. [Online]. Available: https://www.statista.com/study/109197/internet-of-things-market-outlook-report/

[10] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, "A Survey on Mobile Edge Computing: The Communication Perspective," IEEE Commun. Surv. Tutor., vol. 19, no. 4, pp. 2322–2358, 2017, doi: 10.1109/COMST.2017.2745201.

References

[11] F. Sepulveda, J. S. Thangraj, and J. Pulliam, "The Edge of Exploration: An Edge Storage and Computing Framework for Ambient Noise Seismic Interferometry Using Internet of Things Based Sensor Networks," Sensors, vol. 22, no. 10, p. 3615, May 2022, doi: 10.3390/s22103615.

[12] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, "Edge Computing: Vision and Challenges," IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016, doi: 10.1109/JIOT.2016.2579198.

[13] Y. Zhao, W. Wang, Y. Li, C. Colman Meixner, M. Tornatore, and J. Zhang, "Edge Computing and Networking: A Survey on Infrastructures and Applications," IEEE Access, vol. 7, pp. 101213–101230, 2019, doi: 10.1109/ACCESS.2019.2927538.

[14] K. Bilal and A. Erbad, "Edge computing for interactive media and video streaming," in 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC), Valencia, Spain: IEEE, May 2017, pp. 68–73. doi: 10.1109/FMEC.2017.7946410.

[15] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, "Edge Computing for Autonomous Driving: Opportunities and Challenges," Proc. IEEE, vol. 107, no. 8, pp. 1697–1716, Aug. 2019, doi: 10.1109/JPROC.2019.2915983.

[16] J. Baliga, R. W. A. Ayre, K. Hinton, and R. S. Tucker, "Green Cloud Computing: Balancing Energy in Processing, Storage, and Transport," Proc. IEEE, vol. 99, no. 1, pp. 149–167, Jan. 2011, doi: 10.1109/JPROC.2010.2060451.

[17] K. L. Pendergrass, W. Sampson, T. Walsh, and L. Alagna, "Toward Environmentally Sustainable Digital Preservation," Am. Arch., vol. 82, no. 1, pp. 165–206, Mar. 2019, doi: 10.17723/0360-9081-82.1.165.

[18] M. Roe and Facebook, "Facebook Reaches 100% Renewable Energy," 2021. [Online]. Available: https://sustainability.fb.com/wp-content/uploads/2021/04/Facebook_RenewableEnergy_April2021.pdf

[19] R. Evans and J. Gao, "DeepMind AI Reduces Google Data Centre Cooling Bill by 40%." [Online]. Available: https://deepmind.google/discover/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-by-40/

[20] Statista, "Value of the green data center market in Europe from 2020 to 2023, with a forecast until 2030," 2023. [Online]. Available: https://www.statista.com/statistics/1398530/europe-green-data-center-market/

References

[20] Statista, "Value of the green data center market in Europe from 2020 to 2023, with a forecast until 2030," 2023. [Online]. Available: https://www.statista.com/statistics/1398530/europe-green-data-center-market/

[21] S. S. Gill and R. Buyya, "A Taxonomy and Future Directions for Sustainable Cloud Computing: 360 Degree View," ACM Comput. Surv., vol. 51, no. 5, pp. 1–33, Sep. 2019, doi: 10.1145/3241038.

[22] R. Ghosh, F. Longo, R. Xia, V. K. Naik, and K. S. Trivedi, "Stochastic Model Driven Capacity Planning for an Infrastructure-as-a-Service Cloud," IEEE Trans. Serv. Comput., vol. 7, no. 4, pp. 667–680, Oct. 2014, doi: 10.1109/TSC.2013.44.

[23] D. S and N. G. Cholli, "Green Cloud Computing: Redefining the future of Cloud Computing," Int. Res. J. Adv. Sci. Hub, vol. 3, no. Special Issue 7S, pp. 12–19, Jul. 2021, doi: 10.47392/irjash.2021.203.

[24] tableau, "Data Management: What It Is, Importance, And Challenges." [Online]. Available: https://www.tableau.com/learn/articles/what-is-data-management

[25] J. Park and S. Jeoung, "Raison d'être of the benchmark dataset: A Survey of Current Practices of Benchmark Dataset Sharing Platforms," in Proceedings of NLP Power! The First Workshop on Efficient Benchmarking in NLP, Dublin, Ireland: Association for Computational Linguistics, 2022, pp. 1–10. doi: 10.18653/v1/2022.nlppower-1.1.

[26] Expert.ai, "What Is Metadata Management and Why Is It Important?," 2022. [Online]. Available: https://www.expert.ai/blog/what-is-metadata-management-and-why-is-it-important/

[27] G. Bock, "How does AI aid in metadata tagging?" [Online]. Available: https://www.techtarget.com/searchcontentmanagement/answer/How-does-AI-aid-in-metadata-tagging

[28] O. Naseem, "Enhancing metadata-driven data warehousing through AI." [Online]. Available: https://www.datasciencecentral.com/enhancing-metadata-driven-data-warehousing-through-ai/

What do you think is an important trend in the cloud?