
SH

∞

Seminar Report

Using R for High-Performance Data
Analytics

Christopher L. Luebbers

MatrNr: 20676955

Supervisor: Matthias Eulert

Georg-August-Universität Göttingen
Institute of Computer Science

March 25, 2024

Abstract
This report investigates the use of R in high-performance data analytics (HPDA). It gives
attention to the journey of the R programming language from the statistical analytical tool
of its genesis into a robust conduit for high-performance computing (HPC). In addition, as
data volumes increase and analyses become increasingly complex, it becomes compulsory
to carry out these analytic processes at scale efficiently.

These challenges include effectively managing large datasets, optimizing computational
speed, and negotiating the complexities of data analyses within R. The underlying issues
indicate that R needs to be improved to surpass others in performance and functionality
to meet HPDA’s requirements.

Existing solutions primarily rely on the R package ecosystem. Much is still desired
to make this solution an easy complement to the R statistical toolkit, particularly for
performance improvement over base R or existing alternatives like Python.

The following provides some insights into advanced features and optimization with R,
such as techniques on memory management, integration of GPU computing, and parallel
processing capabilities—strategically using C++ to boost R’s performance levels. Bench-
marking exercises and a practical case study in computational biology will illustrate how
these improvements are applied and performed in the HPDA tasks.

Evaluations indicate that R has become increasingly competitive in the HPC arena,
courtesy of strategic enhancements in memory management, GPU computing, and parallel
processing. For example, C++ integration in R has the potential to improve computa-
tionally demanding applications significantly. R is uniquely adapted to handling large
genomic datasets and performing sophisticated statistical analysis in computational biol-
ogy, work that general-purpose tools might not gracefully execute. Therefore, the results
uphold the task-specific approach of choosing between R and Python regarding the value
they bring to practice in HPDA.

i

Contents

1 Introduction 1

2 R Fundamentals in Data Analysis 2
2.1 Data Handling Efficiency . 2
2.2 Statistical Computing Capabilities . 2
2.3 Visualization for Large-Scale Data . 2
2.4 R integration with Diverse Data Ecosystems 4
2.5 Conclusion of Basic Applications . 4

3 Optimizing R for High-Performance Computing 4
3.1 Efficient Memory Utilization . 4
3.2 GPU Computing . 5
3.3 Parallel Processing . 6
3.4 Benchmarking . 7
3.5 Leveraging C++ to Enhance R Functions 8
3.6 Advancing R’s Computational Power . 9

4 Specialized Applications and Comparative Analysis 10
4.1 Case Study: R in Computational Biology 10
4.2 R vs. Python: A Comparative Performance Review 11

5 Conclusion and Future Directions 12

References 14

A Code with Output A1

B AI Usage Card A6

ii

Using R for High-Performance Data Analytics

1 Introduction
High-Performance Data Analytics (HPDA) refers to the critical junctures between data
science and HPC to make valuable inferences from massive datasets with speed and effi-
ciency. Nowadays, anything from health to finance, from environmental science to digital
marketing, needs the ability to process and analyze big bulks of data at an incredible
speed. The expected market size is growing accordingly [Mor24]. Some of the challenges
in carrying out such data-intensive tasks include the management of the sheer volume
of the data and the other intricacy in its analysis—all done and worked on in a timely,
effective, and accurate manner.

One of the challenges within this field of HPDA is the fact that there are numerous
tools. Still, none seem perfect—one that is relatively easy to utilize and has a critical
mass regarding community support yet is effective in performing complex analysis. The
web’s big data is broadly divided into several categories: time series and non-time series
data, large arrays, and tables, which together account for most of the data available.

R [The23] has been a subject of interest due to its origins and strengths in statistical
analysis. This is coupled with an all-encompassing package ecosystem [WA22], making
it a powerful tool for high-performance analytics. In contrast, R faces challenges, such
as memory management, speed, and scalability, when the datasets or computation tasks
involved are large and complex. Existing attempts to improve R performance offered a
workaround solution to some challenges: using packages for parallel computation and big
data technologies. Nevertheless, these solutions require users to navigate many packages
and integration complexities. This has led to debates over the suitability of R in high-
performance contexts, particularly when compared to Python.

This report critically reviews R’s performance capabilities in high-performance settings
in three specific areas: memory management, GPU computing, and parallel processing.
Therefore, this study seeks to demonstrate the potential of using R in HPDA by leveraging
R packages, including data.table, bigmemory, sparklyr, and tensorflow. A critical
assessment made through a series of benchmarks and case studies, especially in biology, is
where R’s statistical capabilities with the specific packages provide unmitigated benefits
over Python.

Contributions to this report include

• Identifying R’s functional capabilities in enabling and supporting HPDA, such as
parallelism and memory management functionality.

• Showcasing Practical Application: This is achieved through an example case study
approach that describes real-world use-case implementation of HPDA using R, with
a focus on areas where the strengths of R are unique and specific to the target.

After the introduction, this report examines R’s role in HPDA and considers its
strengths and weaknesses. Further discussion is centered on memory management and its
ability to cope with big data, focusing on how R extends such capabilities through some
packages. Afterward, this report explores GPU computing and parallel processing in R
compared to Python and demonstrates how R is used in biological case studies. Finally,
the report summarizes the findings and reflects on R’s future in the HPDA landscape.
The primary purpose of this report is to give an understanding of the capability of R to
handle the challenges of both complexity and largeness that datasets may present.

Section 2 Christopher L. Luebbers 1

Using R for High-Performance Data Analytics

2 R Fundamentals in Data Analysis
R is a powerful statistical tool for data manipulation, modeling, and graphical analysis.
This section will highlight R’s core aspects that make it a valuable tool for data analytics.

2.1 Data Handling Efficiency

R is powerful at data manipulation, with dozens of packages such as dplyr and data.table
providing powerful, quick, and handy tools for working with data. The features associ-
ated with R data preparation include replacing missing values, transforming data types,
and normalizing datasets. These methods ensure that the data is primed for accurate
analysis. R helps easily flow through data preparation—filtering rows, selecting columns,
and summarizing information—to reach the analytics steps easily. The latter maximizes
Exploratory Data Analysis (EDA) in R, which helps an analyst discover newly acquired
insights and guide them for further analysis.

See figure 4 for an example. It shows natality data, so data about birth in the United
States [Dri]. The columns about birth anomalies are of interest. Each row is a birth, and
those columns indicate whether there was a birth anomaly. We want a table to see how
many anomalies were found each month. The code in listing 4 could be used to import
this data using the packages readr and dplyr. These data manipulation tools enhance
exploratory Data Analysis (EDA) in R, enabling analysts to uncover insights and inform
subsequent analyses quickly. The resulting dataframe can be seen in table 3.

2.2 Statistical Computing Capabilities

R was designed with statistics at its core. It provides many functions for descriptive
statistics, inferential statistics, and statistical models. It provides a comprehensive envi-
ronment, from the simplest t-tests and chi-squared tests to the most complicated linear
and non-linear modeling. With its depth in analytical capabilities, this syntax simplic-
ity brings forward the appeal R has for statistical analysis. It is possible in R to create
statistical models and have several tools for interpretation and analysis. R provides com-
prehensive summaries and diagnostic plots that help understand model behavior and
accuracy. Data scientists can quickly build models to understand relationships between
variables; even a beginner can leverage this knowledge. For example, creating a linear
regression model in R is straightforward, as seen in listing 1. In this case, if applied to the
dataset, variables can be interpreted, the model’s validity can be tested, and predictions
can be made. This level of accessibility and depth in modeling makes R a powerful tool,
even for basic applications.

2.3 Visualization for Large-Scale Data

Effectively visualizing data is critical in communicating findings, and R excels in this do-
main. R truly shines in data visualization, turning complex data sets into compelling
visual stories. ggplot2 is a powerful and versatile package for creating high-quality
graphs and charts. Along with other visualization packages in R, it makes presenting
data more intuitive and impactful. Whether through histograms, scatter plots, or com-
plex multi-layered graphics, R enables the creation of visual narratives that make data
understandable and engaging.

Section 2 Christopher L. Luebbers 2

Using R for High-Performance Data Analytics

1 lm_example <- lm(Month ~ Ane + Men + Cya, data=data)
2 summary(lm_example)
3 #> Call:
4 #> lm(formula = Month ~ Ane + Men + Cya, data = data)
5 #>
6 #> Residuals:
7 #> Min 1Q Median 3Q Max
8 #> -4.3204 -2.8382 -0.6839 2.4580 5.1843
9 #>

10 #> Coefficients:
11 #> Estimate Std. Error t value Pr(>|t|)
12 #> (Intercept) -6.42556 23.22043 -0.277 0.789
13 #> Ane 0.01341 0.29111 0.046 0.964
14 #> Men -0.02629 0.26175 -0.100 0.922
15 #> Cya 0.07444 0.08687 0.857 0.416
16 #>
17 #> Residual standard error: 4.014 on 8 degrees of freedom
18 #> Multiple R-squared: 0.09846, Adjusted R-squared: -0.2396
19 #> F-statistic: 0.2913 on 3 and 8 DF, p-value: 0.8307

Listing 1: Creating a simple linear model from the data in table 3 with basic R.

The tidyr package is used in listing 5 to transform the dataframe from a wide one with
many columns to one with only three. All anomalies are together in one column, and all
case numbers in another. The ggplot2 package is used to specify the data and aesthetics
y and color, and add a geom. The + sign is remarkable. It makes visualizations easy to
use and reuse because ggplot2 objects can be stored, and another layer can be added
with +. More layers are added in listing 6 as ggplot2 uses the grammar of graphics. The
grammar of graphics requires a data layer and a geom function with mappings, as can
be seen in listing 5. Possible additional layers can be seen in listing 6 and are listed here:

• statistics and position, like linear regression models

• coordinate function, like polar coordinates

• facet function

• scale function, e.g. logarithmic

• theme function

The benefits and importance of using R in high-performance analytics are pointed
out in "Data Visualization Using R for Researchers Who Do Not Use R," an article by
Nordmann et al. [Nor+22]. This tutorial introduces practically how to visualize data
with R and insists on its benefits of reproducibility, transparency, and the possibility
of many fully customizable options. Further, it insists on the "grammar of graphics"
used as a basis for data visualizations for the ggplot2 package. It demonstrates how R
allows more intricate and informative visualizations than commonly used point-and-click

Section 2 Christopher L. Luebbers 3

Using R for High-Performance Data Analytics

software. The authors argued that these visualization options improved the look of data
displays and increased transparency about the data distributions underneath. The paper
has introduced R as a powerful tool for applications in the analysis and visualization of
data in a multiplicity of broad scientific fields to new researchers [Nor+22].

2.4 R integration with Diverse Data Ecosystems

A crucial aspect of R’s functionality is its ability to interface seamlessly with various data
sources. This includes traditional databases and diverse data formats. R’s packages like
DBI and odbc [Jim23] allow for direct database interaction, enabling data retrieval and
manipulation within the R environment. Moreover, R’s compatibility with various data
formats, e.g., CSV, Excel, JSON, and XML, demonstrates its adaptability. These features
make it flexible due to its integration into several workflows.

2.5 Conclusion of Basic Applications

We have seen how R is a foundational tool in data analytics. Beginning with essential
data manipulation, R simplifies cleaning and preparing data for analysis. Later, we looked
at R’s capabilities in statistical analysis and hypothesis testing, bringing up a colorful
highlight as a statistical giant applying to simple and complex problems. This showcased
the prowess of R in visualizing data to convert data into visual stories rich in insight using
ggplot2 and other packages. Lastly, R’s flexibility in interfacing with varied data sources
and formats underlines its ability to interface with various data analytic workflows.

3 Optimizing R for High-Performance
Computing

Now, we will transition from R’s basic applications to its role in HPC environments, ex-
ploring the advanced features that make R a viable option for HPDA tasks. This section
highlights these key areas: memory management, GPU, parallel computing, benchmark-
ing, and leveraging C++.

3.1 Efficient Memory Utilization

An essential aspect of high-performance settings is memory management. R inherently
stores objects in physical memory, which, while ensuring fast access, can be a challenge
with big data. R provides various tools and strategies to manage this effectively. For
instance, more efficient data structures, like data.table, can significantly reduce memory
overhead. There are techniques like memory mapping and databases for handling data
that are too large to fit into memory. These methods allow R to process larger datasets
than the physical memory would typically permit. It is also good practice to remove all
unnecessary objects from memory and use packages designed for memory efficiency. Tools
like the bigmemory [Mic13] package offer solutions for managing massive datasets in R.

When handling big data in R, a key player is sparklyr [Kal22]. sparklyr is a package
that allows R users to leverage the power of Apache Spark. With sparklyr, R users
can connect to a Spark cluster to leverage its ability to use the computation power of

Section 3 Christopher L. Luebbers 4

Using R for High-Performance Data Analytics

distributed computing to scale up data analysis and processing. sparklyr provides R users
an interface to work with Spark’s distributed data frames, much like dplyr, performing
many operations on filtering, summarizing, and querying big data sets. It also allows for
executing machine learning algorithms and other complex data operations. The idea is
to push as much work as possible to Spark and collect only what is needed. This is the
integration of R with Spark, so data scientists can solve their big data problems right
inside the R environment without leaving it.

3.2 GPU Computing

Another significant development is the integration of GPU computing. Unlike traditional
CPUs, GPUs can dramatically accelerate computational tasks, especially parallelizable
ones. Packages like gputools and the integration with TensorFlow through tensorflow
package allow R to leverage the parallel processing power of GPUs for high-speed com-
putations and machine learning tasks. This synergy between R and TensorFlow enables
users to tackle complex tasks quickly and efficiently.

Most packages focus on using NVIDIA CUDA for GPU computing. The new clrng
[Xu] package can use GPU technology independently of the vendor, which leads to sub-
stantial performance improvements when generating random numbers. We want to check
for a significant association between those variables using the previous data in table 3.
This is done using something called Fisher’s exact test. It does many Monte Carlo sim-
ulations, which need to generate much random data. This kind of simulation is used
in climate modeling, particle physics, pharmaceutical research, and everything else that
involves simulations with significant uncertainties. Listing 2 shows how it is done in basic
R by specifying the data and running a Monte Carlo simulation for 49 seconds.

1 time_cpu <- system.time(result_cpu <- stats::fisher.test(month,
2 simulate.p.value = T\textsf{R}UE,
3 B = 1015808))

Listing 2: Running a fisher test in basic R in 49 seconds [Xu].

To use the new clrng package, specify the stream of random numbers on the GPU,
move the data to the GPU as a matrix, and run the simulation (see listing 3). It runs for
2.2 seconds.

A remarkable difference in GPU computations is noticeable in table 1. The same cal-
culations are executed significantly faster thanks to GPUs’ parallel processing capabilities.

Table 1: Comparison of Fisher’s test simulation on different Devices [Xu].
Device runtime p-value

Intel 2.5 ghz 49.3 0.403804
AMD Radeon VIII 2.2 0.403507

Section 3 Christopher L. Luebbers 5

Using R for High-Performance Data Analytics

1 library(clrng)
2 streams <- createStreamsGpu(n = 256*64)
3 month_gpu <- vclMatrix(month, type = "integer")
4 time_gpu <- system.time(result_gpu <- clrng::fisher.sim(month_gpu, 1e6,
5 streams=streams,
6 type= "double",
7 returnStatistics=T\textsf{R}UE,
8 Nglobal = c(256,64)))

Listing 3: Running a fisher test with clrng in 2.2 seconds [Xu].

3.3 Parallel Processing

GPU computing showed the potential of parallelization. Now, we move to how R can
be used for parallel computing in general. Parallel computing, which involves processing
multiple computations simultaneously using multiple processors, is crucial in HPC for ef-
ficiently handling big data analysis and complex computational tasks. Parallel computing
techniques in the R programming environment are increasingly essential for accelerating
data analytics processes and scientific research. R is not naturally parallel; however, it has
grown to have robust parallel computing capabilities [MW11]. This allows for significant
performance improvements, especially when dealing with big data processing.

Parallel computing can be implemented in R in several ways [23]. The different par-
allelization schemas are visualized in figure 1. One common approach is to handle em-
barrassingly parallel tasks. Those tasks are independent. These tasks can be performed
independently without the need for communication between processors. Worker queues
distribute tasks across a set of worker processes. They have a primary process that coor-
dinates several R processes on different compute nodes using a shared file system. Shared
memory parallelization splits tasks across multiple cores of a single machine. Another
concept is message passing, which is used in distributed computing. It involves multiple
processors communicating with each other over a network, each handling a part of the
computation.

Figure 1: Parallelization Schemas in R [23].

R offers several packages for parallel computing. foreach [Fol23] and doParallel
are widely used for loop-like parallel executions. They allow for easy parallel processing
implementation without heavily modifying the code structure. The parallel package,
included in R, provides parallel versions of the apply functions, such as lapply and mapply.

Section 3 Christopher L. Luebbers 6

Using R for High-Performance Data Analytics

It is a straightforward way to start parallel processing, especially for those familiar with
these functions. Packages like future [Ben21] and promises are used for more advanced
parallelization.

Dirk Eddelbuettel’s review on parallel computing with R reviews different approaches
to parallelism that can be used in conjunction with R. These approaches range from
compiler-level solutions like OpenMP and Intel TBB to process-parallel and message-
passing parallelism and extend to leveraging big data technologies like Spark, Docker,
and Kubernetes. Eddelbuettel highlights the future package in R, which integrates many
of these parallel computing approaches, offering a versatile framework for parallel data
processing [Edd19].

3.4 Benchmarking

Benchmarking in R provides one of the most necessary aspects to study code performance,
especially in HPDA, since efficiency and speed are primary prerequisites. Benchmarking
is a set of metrics that shows how good a given piece of code is likely to perform if placed
in a production environment. Standard metrics used in HPDA performance evaluation
include:

• Execution time is the time it takes a code segment to run, often measured in
milliseconds or microseconds for high-performance tasks. It is the most direct per-
formance measure. Lower times have a better efficient translation.

• Memory Usage is the amount of memory allocated at runtime by the code. Ef-
fective memory use is needed in HPDA to avoid establishing bottlenecks when pro-
cessing large datasets.

• CPU Utilization shows the percentage of the CPU capacity used to execute a
given task. CPU resources should efficiently be utilized for optimal code without
undue strain or bottleneck.

• Iterations per Second indicates how often the execution of a given piece of code
can occur within one second. It measures the responsiveness of the code’s ability to
do the task with repeatability.

The book "Advanced R" has a separate section on benchmarking [Wic19]. The rprof
package provides a profiler that does stack sampling at regular intervals and gives you a
general overview of where time is up during execution. This resolution could be higher,
and vast amounts of profiling data can become unwieldy in complex code. For a more
user-friendly interface, profvis visually represents profiling data as shown in figure 2.

It renders an HTML document where users can interactively drill down the perfor-
mance metrics. It enables the developer to decompose visually the execution time among
different functions and point to bottlenecks more intuitively when profiling with profvis.
This generated flame graph represents the call stack with time spent in each function,
thus quickly showing the visual difference across code segments. Another sophisticated
R benchmarking tool is the bench package. It uses high-precision timers to measure the
execution time of code blocks with more precision than rprof. Executions are then car-
ried out to build the required total run time, which must be at least 0.5 seconds, to
reduce the variability introduced by shorter test runs. The bench output is displayed
with the corresponding minimum and median execution times, iterations per second, and

Section 3 Christopher L. Luebbers 7

Using R for High-Performance Data Analytics

Figure 2: Benchmarking with profvis [Wic19].

the allocated memory usage during execution. An example can be seen in listing 7. It
presents an invaluable treasure of granular data in R code optimization and the demanding
requirements of HPDA.

3.5 Leveraging C++ to Enhance R Functions

One great way is to use C++ to soup up R functions to improve performance for the highly
computationally intensive tasks typical of HPDA. This provides a seamless interface of
R to C++, allowing the developer to write high-performance code without giving away
the perks of a quick-and-dirty, interactive, highly readable prototyping environment. It
speeds up the execution of the most critical code segments. Critical deadlines in an HPDA
environment are often milliseconds long, so performance gains from C++ can be huge.
Rcpp makes this available by:

• Minimal Overhead: With Rcpp, the overhead of calling C++ from R is minimal,
and therefore, even small performance gains make C++ viable.

• Cleanly written code: Rcpp has a clean and expressive syntax that allows writing
C++ code that is simple and readable, reducing the learning curve for R users
already familiar with the concepts in C++.

• Memory Management: It automates data transfer between R and C++, handling
complex memory management tasks.

• Vectorization: Vectorized operations can naturally be performed within Rcpp
since, at the core, they are very efficiently supported in C++ the same way R
does.

With Rcpp, users write parts of the code that are performance-critical in C++ and
get it compiled and linked to R. The functions become callable, just like any other R

Section 3 Christopher L. Luebbers 8

Using R for High-Performance Data Analytics

function. This is most useful in those scenarios where R’s built-in functions inherently
limit execution speed or limit them due to memory usage. A typical use would be reim-
plementing a computationally expensive loop in C++ to take advantage of the higher
execution speed and more conscious memory management. This is often an excellent op-
portunity for significant performance improvements since C++ code may execute faster
than its R counterpart. Such enhancements may speed up computation during extensive
data processing or simulation runs with large iteration counts. This impact is performed
quantitatively by benchmarking the original R function and the new R/C++ hybrid func-
tion. Better performance is generally observable in most metrics, from execution time to
memory usage, making a compelling case for using Rcpp in performance-critical applica-
tions. Listing 7 shows an example of rewriting a loop with vector input and scalar output.
The benchmark shows the C loop is more than 10 times faster than the custom R code.
The highly optimized integrated sum function in R is on par with C++.

3.6 Advancing R’s Computational Power

This section emphasized features and approaches essential to strengthen further the use
of R for HPDA. The integration with Apache Spark allows R to work with datasets whose
size exceeds physical memory limits. R effectively manages large datasets with memory
management techniques. R with GPU computing offers an effortless, parallel processing
architecture for significant data processing in some of the most complex tasks in sim-
ulation and data analysis, with timely results. Parallel computing is an approach that
significantly enhances R’s capabilities in handling big data analytics. By distributing tasks
across multiple processors, greater efficiency and speed are achieved. Various paralleliza-
tion techniques were explored: embarrassingly parallel tasks for independent operations,
worker queues for task distribution, and message passing for distributed computing. Each
technique offers unique advantages depending on the nature of the data and computa-
tional tasks. Several packages enhance the power of R in parallel computing. foreach and
doParallel simplify loop-like operations, while the parallel package provides parallel
versions of common apply functions. For more complex asynchronous tasks, future and
promises offer greater flexibility. Benchmarking ensures that performance improvements
are not claimed but are empirically evident. Embedding C++ code into the R environ-
ment gives both a prime role in hiking R as a tool for HPDA, combining flexibility and
performance. This confluence of memory efficiency, GPU computing, parallel processing,
benchmarking rigor, and C++ integration cement R as a statistical programming language
and a robust tool for HPDA.

We are moving from enhancements in R for HPC to their practical application. The
exploration now delves into specialized domains in which R’s capabilities are helpful and
critical.

Section 4 Christopher L. Luebbers 9

Using R for High-Performance Data Analytics

4 Specialized Applications and Compar-
ative Analysis

4.1 Case Study: R in Computational Biology

R’s statistical strengths and comprehensive package ecosystem make it particularly well-
suited for fields like biology, where data analysis and statistical modeling are critical.
High-performance R packages enable biologists and bioinformaticians to process large
genomic datasets, perform complex simulations, and conduct advanced statistical analy-
ses previously unfeasible due to computational constraints. These capabilities allow for
more sophisticated research methodologies and the potential for discoveries in genetics,
evolutionary biology, and ecosystem modeling. R is often used in bioinformatics, pharma-
ceuticals, and genetic data.

In the following example [Met23], fruit flies have around 20.000 annotated genes.
The question is if there is a correlation between those genes and a genetic disorder of
the eyes that causes vision loss. doParallel and the foreach package are used. The
benchmark is shown in figure 3. The y-axis shows the execution time in seconds. The
calculations are benchmarked for the subsample, with the x-axis values 18, 20, and 22
representing the study’s complexity levels. The number of processes was initiated and
systematically increased until the perfect count was found, in which computation efficiency
attained peak value. The optimal process count is arising for computation with higher
complexity. Communication increases by the number of processes. With an increase in the
number of processes, performance may stay the same. This is to say that computational
optimization has to involve customization simultaneously with understanding the context
and the environment in the software and hardware being used.

Figure 3: Benchmark of subsamples [Met23]. There is an optimal minium in execution
time for 32 processes.

Ioannis Charalampopoulos presented the paper "The R Language as a Tool for Biome-
teorological Research" [Cha20], which discusses using R in biometeorology, an interdisci-
plinary area between biology and meteorology. As one of the open-source programming
languages, the profile of R has become central to geosciences and related research fields for
the last twenty years in research involving diverse datasets encompassing atmospheric con-
ditions and biological agents like plants, animals, and man. The flexibility and capacity of

Section 4 Christopher L. Luebbers 10

Using R for High-Performance Data Analytics

automation in the analysis processes, from big data takeover to supporting reproducibil-
ity, have made R the leading choice in academia. Charalampopoulos elaborates on the
structure of the R workflow in the context of the special needs related to biometeorologi-
cal research. He thoroughly describes some of the most valuable and popular R software
packages and treats the field’s particular requirements. This paper attempts to introduce
R to biometeorologists, who propose, based on R’s capacities, a roadmap of how scientific
work may be collaboratively undertaken [Cha20].

4.2 R vs. Python: A Comparative Performance Review

In the context of HPDA, R is always compared with Python since it has long been reputed
to be capable of handling computationally intensive operations. Performance depends
mainly on the nature of the workloads executed in each language and the libraries in use.

With its rich and immense ecosystem and support for parallel and GPU computing,
this is where Python most often becomes the best candidate for such general-purpose
tasks. In contrast, its high-end specialized packages, such as Rcpp and data.table, and
parallel computing suites tools like parallel, foreach, doParallel, and Rmpi have done
much to close the gap in HPC contexts [Cha19]. These packages increase R’s capabil-
ity to carry out data-intensive tasks and hence widely improve its popularity in HPC
applications.

Recent studies have comprehensively reviewed performing tasks such as data process-
ing using R, Python, and Rust [Bei+23]. The results of this study show that although
every other language can perform those tasks, the difference is significant. The tests show
that Python and Rust are just about the best, while the execution time to complete the
same task is much longer in the R language, see table 2. This fact underlines the benefit
of Python’s versatility and places it between the most powerful languages for GPU tasks,
entering it into competition in many HPDA applications [Bei+23].

Table 2: Processing 65 GB in 586 JSON files in different setups. R is significantly slower
in this specific use case [Bei+23]. Note that neither code was optimized.

Variant Runtime[HH:mm:ss.SS]

pypy3_7 00 : 11 : 55.14
pypy3_8 00 : 11 : 13.73
pypy3_9 00 : 10 : 32.92
python3_7 00 : 18 : 55.79
python3_8 00 : 19 : 10.60
python3_9 00 : 19 : 54.83
python3_10 00 : 17 : 02.74
python3_11 00 : 16 : 00.72
r_rjson 03 : 00 : 56.25
rust_serde 00 : 04 : 30.78
rust_serde_rayon_2thread 00 : 02 : 48.65
rust_serde_rayon_3thread 00 : 02 : 04.94
rust_serde_rayon_4thread 00 : 01 : 45.59

R’s significant statistical computation and bioinformatics make it the best tool for do-
mains that require complex statistical analysis. That debate continues—not over a clear

Section 4 Christopher L. Luebbers 11

Using R for High-Performance Data Analytics

leader being declared but over exactly which context each language excels in. Compara-
tive studies have often highlighted scenarios where one language may outstrip the other
regarding efficiency. Ultimately, the job requirement against which HPDA is deployed is
considered: the complexity of calculations made and available hardware resources. By its
very nature, this should ensure that the language chosen is commensurate with the goals
and constraints of the given HPDA project.

5 Conclusion and Future Directions
Conclusion As we conclude, let us reflect on the journey through HPDA using R. Us-
ing R was evidenced to show a variety of flexibility in data analysis and visualization
of the language and capabilities of performing some basic statistical methods. This was
followed by packages that helped transit to the advanced level of applications that encom-
pass GPU computations, including application packages like clrng and tensorflow. This
demonstrated how R could be adapted for high-performance tasks, significantly enhancing
computational speed. Further insight into the depth of R’s capabilities in parallel com-
puting was achieved by investigating the variety of techniques and packages of foreach,
doParallel, and future that enabled R to control the parallelism of big data more ef-
ficiently. This, coupled with its high-end memory management, GPU computing, big
data processing capabilities, and robust statistical analysis features, is a forceful tool in
the HPDA landscape. It refers to a setting dealing with software for big data analysis,
including value provision in many research and industry applications. While Python is
still prevalent in data analytics because of its general-purpose ability and many libraries,
R is preferred for a few specific cases requiring solid statistical analysis and graphical
representations. These have ensured the dominance of both R and Python for HPDA.
However, the choice will largely be dictated by the task’s exact requirements in terms of
the type of data, nature of computational resources, and desired analysis outcomes.

Key Takeaways

• Memory Management: Advances in memory management within R, such as
data.table and bigmemory, address scalability issues

• GPU Computing: The integration of GPU computing into the R ecosystem offers
substantial performance gains for suitable tasks

• Parallel Processing: R’s capabilities for parallel computing have expanded, with
packages like parallel, foreach, and future facilitating more efficient data pro-
cessing across multiple cores and nodes.

• Applications in Biology: R’s application in biological research underscores its
versatility, enabling intricate analyses across biometeorology, genetics, and biodi-
versity conservation.

R’s Evolving Role in HPDA and Beyond Future developments in R and its package
ecosystem will likely enhance its utility in HPDA. Several challenges and considerations
remain. Addressing these is crucial for R’s continued growth and effectiveness in HPC
environments. Looking ahead, several avenues for further research and development could
enhance R’s utility in HPDA:

Section 5 Christopher L. Luebbers 12

Using R for High-Performance Data Analytics

• Improving Scalability: Continued efforts to enhance R’s ability to handle large
datasets efficiently, particularly in distributed computing environments.

• GPU Computing Enhancements: Expansion of R’s GPU computing capabili-
ties, including broader support for different GPU architectures and more intuitive
data science interfaces.

• Interoperability with Other Tools: Further development of interoperability
features between R and other data analytics tools and platforms to leverage the
strengths of each in a complementary manner.

• Educational Resources: Increased availability of educational materials and re-
sources focused on using R in HPDA to lower the entry barrier for new users and
facilitate sharing best practices within the community.

In conclusion, R remains a powerful tool for HPDA capable of addressing complex
data analysis challenges across various domains. As computational technologies evolve,
so will R and its ecosystem, further solidifying its role in the data science and analytics
landscape.

Section 5 Christopher L. Luebbers 13

Using R for High-Performance Data Analytics

References
[23] AI Training Series: High Performance Data Analytics. Leibniz Supercomput-

ing Centre, May 2023. (Visited on 01/11/2024).

[Bei+23] Lukas Beierlieb et al. “Efficient Data Processing: Assessing the Performance of
Different Programming Languages”. In: Companion of the 2023 ACM/SPEC
International Conference on Performance Engineering (2023). doi: 10.1145/
3578245.3584691.

[Ben21] Henrik Bengtsson. “A Unifying Framework for Parallel and Distributed Pro-
cessing in R using Futures”. In: The R Journal 13.2 (2021), pp. 208–227. doi:
10.32614/RJ-2021-048. url: https://doi.org/10.32614/RJ-2021-048.

[Cha19] Rahim K. Charania. “Exploring and Benchmarking High Performance & Scien-
tific Computing using R R HPC Packages and Lower level compiled languages
A Comparative Study”. In: ArXiv abs/1904.03343 (2019). doi: 10.13140/RG.
2.2.16143.43680.

[Cha20] Ioannis Charalampopoulos. “The R Language as a Tool for Biometeorological
Research”. In: Atmosphere (2020). doi: 10.3390/atmos11070682.

[Dri] Anne (CDC/OPHSS/NCHS) Driscoll. “User Guide to the 2018 Natality Pub-
lic Use File”. In: (). url: http : / / www . cdc . gov / nchs / data _ access /
VitalStatsOnline.htm.

[Edd19] Dirk Eddelbuettel. “Parallel computing with R: A brief review”. In: Wiley
Interdisciplinary Reviews: Computational Statistics 13 (2019). doi: 10.1002/
wics.1515.

[Fol23] Steve Weston Folashade Daniel. foreach: Provides Foreach Looping Construct.
2023. url: https://github.com/RevolutionAnalytics/foreach (visited
on 01/15/2024).

[Jim23] Hadley Wickham Jim Hester. odbc: Connect to ODBC Compatible Databases
(using the DBI Interface). 2023. url: https://github.com/r-dbi/odbc
(visited on 01/15/2024).

[Kal22] Tomasz Kalinowski. Posit AI Blog: Deep Learning with R, 2nd Edition. 2022.
url: https://blogs.rstudio.com/tensorflow/posts/2022-05-31-deep-
learning-with-R-2e/.

[Met23] Chawin Metah. “A Parallel Computing Approach for Identifying Retinitis Pig-
mentosa Modifiers in Drosophila Using Eye Size and Gene Expression Data”.
PhD thesis. Purdue University, 2023.

[Mic13] Stephen Weston Michael J. Kane John W. Emerson. “Scalable Strategies
for Computing with Massive Data”. In: Journal of Statistical Software 55.14
(2013), pp. 1–19. url: https : / / www . jstatsoft . org / article / view /
v055i14.

[Mor24] Mordor Intelligence Research and Advisory. High Performance Data Ana-
lytics Market Size. 2024. url: https://www.mordorintelligence.com/
industry-reports/high-performance-data-analytics-market (visited
on 01/15/2024).

Section 5 Christopher L. Luebbers 14

https://doi.org/10.1145/3578245.3584691
https://doi.org/10.1145/3578245.3584691
https://doi.org/10.32614/RJ-2021-048
https://doi.org/10.32614/RJ-2021-048
https://doi.org/10.13140/RG.2.2.16143.43680
https://doi.org/10.13140/RG.2.2.16143.43680
https://doi.org/10.3390/atmos11070682
http://www.cdc.gov/nchs/data_access/VitalStatsOnline.htm
http://www.cdc.gov/nchs/data_access/VitalStatsOnline.htm
https://doi.org/10.1002/wics.1515
https://doi.org/10.1002/wics.1515
https://github.com/RevolutionAnalytics/foreach
https://github.com/r-dbi/odbc
https://blogs.rstudio.com/tensorflow/posts/2022-05-31-deep-learning-with-R-2e/
https://blogs.rstudio.com/tensorflow/posts/2022-05-31-deep-learning-with-R-2e/
https://www.jstatsoft.org/article/view/v055i14
https://www.jstatsoft.org/article/view/v055i14
https://www.mordorintelligence.com/industry-reports/high-performance-data-analytics-market
https://www.mordorintelligence.com/industry-reports/high-performance-data-analytics-market

Using R for High-Performance Data Analytics

[MW11] Ethan McCallum and Stephen Weston. Parallel R. " O’Reilly Media, Inc.",
2011.

[Nor+22] Emily Nordmann et al. “Data Visualization Using R for Researchers Who Do
Not Use R”. In: Advances in Methods and Practices in Psychological Science
5.2 (2022), p. 25152459221074654. doi: 10.1177/25152459221074654. eprint:
https://doi.org/10.1177/25152459221074654. url: https://doi.org/
10.1177/25152459221074654.

[The23] The R Foundation. R-Project. 2023. url: https://www.r-project.org/
about.html (visited on 01/15/2024).

[WA22] Caroline J Wendt and G. Brooke Anderson. “Ten simple rules for finding
and selecting R packages”. In: PLoS Computational Biology 18 (2022). url:
https://api.semanticscholar.org/CorpusID:247675731.

[Wic19] H. Wickham. Advanced R, Second Edition. Chapman & Hall/CRC the R Se-
ries. CRC Press, 2019. isbn: 978-1-351-20130-8.

[Xu] Ruoyong Xu. “Statistical Computing With Graphics Processing Units”. In: ().

Section Christopher L. Luebbers 15

https://doi.org/10.1177/25152459221074654
https://doi.org/10.1177/25152459221074654
https://doi.org/10.1177/25152459221074654
https://doi.org/10.1177/25152459221074654
https://www.r-project.org/about.html
https://www.r-project.org/about.html
https://api.semanticscholar.org/CorpusID:247675731

Using R for High-Performance Data Analytics

A Code with Output

Figure 4: Picture of raw data. All columns have different spacing and data types; no
header or separator exists. About 50 columns and millions of rows. It is a 5 GB text
file[Dri].

Section A Christopher L. Luebbers A1

Using R for High-Performance Data Analytics

1 library(readr) # import data
2 library(dplyr) # transform data
3 data <- read_fwf("Nat2018PublicUS.c20190509.r20190717.txt",
4 # specify column names and locations in the source
5 col_positions = fwf_cols(Month = c(13,14),
6 Ane = c(537,537), Men = c(538,538),
7 Cya = c(539,539), Her = c(540,540),
8 Omp = c(541,541), Gas = c(542,542),
9 Lim = c(549,549), Cle = c(550,550),

10 Pal = c(551,551), Dow = c(552,552),
11 Chr = c(553,553), Hyp = c(554,554)),
12 # specify the data type
13 col_types = "iffffffffffff") %>%
14 # group by month
15 group_by(Month) %>%
16 # count occurrences
17 summarise(Ane = sum(Ane == "Y"), Men = sum(Men == "Y"),
18 Cya = sum(Cya == "Y"), Her = sum(Her == "Y"),
19 Omp = sum(Omp == "Y"), Gas = sum(Gas == "Y"),
20 Lim = sum(Lim == "Y"), Cle = sum(Cle == "Y"),
21 Pal = sum(Pal == "Y"), Dow = sum(Dow == "P"),
22 Chr = sum(Chr == "P"), Hyp = sum(Hyp == "Y"))

Listing 4: Reading data from figure 4 with readr and manipulating it with dplyr. Note
that data frames are already part of basic R. The functionalities of Python pandas and
numpy are included.

Table 3: Dataframe after importing file from figure 4 with code from listing 4.
Month Ane Men Cya Her Omp Gas Lim Cle Pal Dow Chr Hyp

1 29 55 172 46 39 73 48 183 77 103 102 174
2 25 45 175 35 31 55 34 142 81 115 100 180
3 31 48 182 41 47 72 40 200 86 90 96 180
4 34 45 186 36 32 75 42 173 56 87 90 193
5 33 40 187 46 24 80 35 180 75 91 100 197
6 34 48 189 35 33 75 45 154 74 102 100 182
7 26 43 198 34 21 74 36 179 79 86 92 193
8 24 41 189 44 43 62 48 183 88 109 94 194
9 34 44 147 40 37 66 36 158 73 112 103 196

10 25 43 207 45 31 65 49 181 77 108 115 220
11 36 55 188 39 39 62 43 144 68 98 79 173
12 23 48 196 31 31 71 31 177 86 86 73 156

Section A Christopher L. Luebbers A2

Using R for High-Performance Data Analytics

1 library(tidyr)
2 data_vis <- data %>%
3 # make the table longer to visualize every birth anomaly
4 pivot_longer(cols = 2:13, names_to="anomalies", values_to = "cases")
5

6 # plotting
7 library(ggplot2)
8 ggplot(data_vis, aes(y = cases, color = anomalies)) +
9 geom_boxplot()

Listing 5: Rearranging data with tidyr and creating a simple visualization with ggplot2.

Figure 5: Visualization created with code from listing 5.

1 data_vis %>%
2 filter(anomalies %in% c("Dow", "Chr")) %>%
3 ggplot(aes(x = Month, y = cases, color = anomalies)) +
4 geom_point() +
5 geom_smooth(method = "lm", se=FALSE) +
6 coord_polar() +
7 facet_grid(.~anomalies) +
8 scale_x_continuous("Month", breaks = c(1,2,3,4,5,6,7,8,9,10,11,12)) +
9 theme_minimal()

Listing 6: Creating a more complex visualization with ggplot2.

Section A Christopher L. Luebbers A3

Using R for High-Performance Data Analytics

Figure 6: Visualization created with code from listing 6.

Section A Christopher L. Luebbers A4

Using R for High-Performance Data Analytics

1 # Custom R sum
2 sumR <- function(x) {
3 total <- 0
4 for (i in seq_along(x)) {
5 total <- total + x[i]
6 }
7 total
8 }
9

10 # C sum
11 cppFunction('double sumC(NumericVector x) {
12 int n = x.size();
13 double total = 0;
14 for(int i = 0; i < n; ++i) {
15 total += x[i];
16 }
17 return total;
18 }')
19

20 # benchmark
21 x <- runif(1e3)
22 bench::mark(
23 sum(x),
24 sumC(x),
25 sumR(x)
26)[1:6]
27 #> # A tibble: 3 x 6
28 #> expression min median `itr/sec` mem_alloc `gc/sec`
29 #> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
30 #> 1 sum(x) 2.51µs 2.81µs 336848. 0B 0
31 #> 2 sumC(x) 3.59µs 5.24µs 177706. 2.49KB 17.8
32 #> 3 sumR(x) 27.14µs 29.11µs 32752. 182.59KB 0

Listing 7: Rewrting a loop and benchmarking it[Wic19]. The rewritten C++code is much
faster than the custom R implementation.

Section A Christopher L. Luebbers A5

Using R for High-Performance Data Analytics

B AI Usage Card
AI Usage Card for Using R for High-Performance Data Analytics

CORRESPONDENCE
Christopher L. Lübbers

CONTACT(S)
c.luebbers@stud.uni-goettingen.de

AFFILIATION(S)
Institute of Computer Science

PROJECT NAME
Using R for High-Performance Data
Analytics

KEY APPLICATION(S)
The tasks and applications the project.

MODEL(S)
ChatGPT
Grammarly

DATE(S) USED
2024-03-20
2024-03-20

VERSION(S)
GPT-4
2024-03-20

IDEATION
ChatGPT

IMPROVING EXISTING IDEAS
I let ChatGPT improve my outline for
the presentation. A similar outline was
used in this report.

LITERATURE RE-
VIEW
ChatGPT

FINDING LITERATURE
I searched for literature supporting my
section topics.

ADDING ADDITIONAL LITERA-
TURE FOR EXISTING STATEMENTS
AND FACTS
I read something on websites and
let it search for scientific literature
investigating these statements.

WRITING
ChatGPT
Grammarly

GENERATING NEW TEXT BASED
ON INSTRUCTIONS
Bullet points for conclusions for sec-
tions were generated by ChatGPT.

ASSISTING IN IMPROVING OWN
CONTENT
My text was improved for correctness,
clarity, engagement, and delivery by
Grammarly.

PARAPHRASING RELATED WORK
Found literature was summarized in
bullet points.

ETHICS WHAT ARE THE IMPLICATIONS OF
USING AI FOR THIS PROJECT?
Literature search was immensely sim-
plified. The language was optimized to
make it suitable in an academic con-
text.

WHAT STEPS ARE WE TAKING TO
MITIGATE ERRORS OF AI FOR THIS
PROJECT?
Content was checked for correctness.

AI Usage Card v1.0 https://ai-cards.org PDF | BibTeX | XML | JSON | CSV

Section B Christopher L. Luebbers A6

https://ai-cards.org/
https://ai-cards.org
https://ai-cards.org/whitepaper.pdf
https://ai-cards.org/whitepaper.bib
https://ai-cards.org/whitepaper.xml
https://ai-cards.org/whitepaper.json
https://ai-cards.org/whitepaper.csv

Verification of examination registration in FlexNow

Name: Mr Christopher Lee Lübbers
Matriculation No.: 20676955

Semester: WS23/24
Degree Course: Angewandte Data Science (Master of Science)
Module: M.Inf.1237: Seminar Neueste Trends in High-Performance Data Analytics
Exam: M.Inf.1237.Mp: Seminar Newest Trends in High-Performance Data Analytics
(Presentation (approx. 35 min.) and report (max. 15 pages))
LV-Titel: Seminar: Newest Trends in High-Performance Data Analytics
Exam Date: 25.03.2024
Lecturer: Prof. Dr. Julian Kunkel

Declaration

I hereby declare that I have produced this work independently and without outside
assistance, and have used only the sources and tools stated.

I have clearly identified the sources of any sections from other works that I have quoted
or given in essence.

I have complied with the guidelines on good academic practice at the University of
Göttingen.

If a digital version has been submitted, it is identical to the written one.

I am aware that failure to comply with these principles will result in the examination
being graded “nicht bestanden”, i.e. failed.

Göttingen, 4th March 2024 Christopher Lee Lübbers

This verification was created in FlexNow.

	Contents
	Introduction
	R Fundamentals in Data Analysis
	Data Handling Efficiency
	Statistical Computing Capabilities
	Visualization for Large-Scale Data
	R integration with Diverse Data Ecosystems
	Conclusion of Basic Applications

	Optimizing R for High-Performance Computing
	Efficient Memory Utilization
	GPU Computing
	Parallel Processing
	Benchmarking
	Leveraging C++ to Enhance R Functions
	Advancing R's Computational Power

	Specialized Applications and Comparative Analysis
	Case Study: R in Computational Biology
	R vs. Python: A Comparative Performance Review

	Conclusion and Future Directions
	References
	Code with Output
	AI Usage Card

