
SH

∞

Seminar Report: Newest Trends in High-Performance
Data Analytics

Computational Performance
Characterization of GPU-accelerated

Image Analysis

Ayan Gupta

Supervisor: Michael Bidollahkhani

Georg-August-Universität Göttingen
Institute of Computer Science

March 31, 2024

Contents

List of Figures 2

List of Listings 2

1 Introduction 1
1.1 Image Analysis . 1
1.2 CPUs vs GPUs: Architectures Tailored for Different Needs 3
1.3 GPU Acceleration: Parallelism and High Memory Bandwidth 4

2 Literature Review 7

3 Experiments 8
3.1 U-Net based Brain tumor segmentation from 2D MRI scans 8
3.2 Real time video analysis for object detection and tracking using YOLOv7 . 9

4 Tools and Technologies 10

5 Results and Discussion 11

6 Conclusion 14

References 15

1

List of Figures
1 Image Formation . 2
2 What the human eye sees . 2
3 What computers see . 2
4 CPU Fetching data from system memory 4
5 GPU Fetching data from system memory 5
6 Parallelism in GPU . 5
7 Working of SIMD . 6
8 Block multiplication . 7
9 U-Net architecture [RFB15] . 9
10 Working of YOLO model . 10
11 Training and validation execution times by processing unit 11
12 Train and validation throughputs of CPU and GPU 11
13 Training and Validation losses for CPU . 12
14 Training and Validation losses for GPU . 12
15 Training and validation IOUs for CPU . 12
16 Training and validation IOUs for GPU . 12
17 CPU and GPU execution times for YOLOv7 13
18 CPU and GPU processing FPS for YOLOv7 13
19 Visual results from U-Net brain tumor segmentation task 14
20 Visual results from YOLOv7 object detection and tracking task 14

List of Listings
1 Scalar and big matrix operation on CPU 3
2 Scalar and big matrix operation on GPU 3

2

Computational Performance Characterization of GPU-accelerated Image Analysis

1 Introduction
In the era of big data, the ability to extract meaningful information from vast amounts
of unstructured data, particularly images, has become increasingly crucial across various
domains, ranging from healthcare and scientific research to surveillance and autonomous
systems. Image analysis, the process of extracting valuable insights from digital im-
ages through automated techniques, has emerged as a powerful tool for addressing this
challenge. However, manual analysis of large-scale image datasets is often error-prone,
labor-intensive, and time-consuming, necessitating the development of efficient and accu-
rate computational approaches. One such approach that has emerged as a transformative
force in recent years is GPU (Graphics Processing Unit) acceleration. Unlike traditional
CPUs (Central Processing Units), which are designed for general-purpose computing,
GPUs are specialized hardware architectures optimized for parallel processing and high-
throughput computations. The massively parallel nature of GPUs, coupled with their
high memory bandwidth and fast memory access, makes them particularly well-suited for
image analysis tasks that involve extensive matrix operations and data-parallel computa-
tions. The primary objective of this research is to evaluate the computational performance
characterization of GPU-accelerated image analysis techniques and compare them with
their CPU-based counterparts. By conducting experiments and analyzing the results, we
aim to demonstrate the superiority of GPUs in accelerating image analysis algorithms,
leading to significant performance gains in terms of execution time, throughput, and
overall efficiency. In this report, we will first provide an overview of image analysis and
GPU acceleration, establishing the context and significance of our research. We will
then review relevant literature, highlighting the state-of-the-art techniques and findings
in GPU-accelerated image analysis. Subsequently, we will describe the experiments con-
ducted, detailing the algorithms and methodologies employed, as well as the tools and
technologies used. The results obtained from our experiments will be presented and ana-
lyzed, with a focus on key performance metrics such as execution time, throughput, and
resource utilization, as well as task-oriented metrics. These findings will be used to sub-
stantiate our argument for the superior computational performance of GPU-accelerated
image analysis approaches compared to CPU-based methods. Finally, we will conclude by
summarizing our key findings, discussing the implications of our research, and outlining
potential future directions for further exploration in this field.

1.1 Image Analysis

To grasp the essence of image analysis, one must first comprehend the intricate nature of
images themselves. An image is a two-dimensional representation of a three-dimensional
scene, capturing and encapsulating it into a digital format through a process known as
image formation. This process involves the acquisition of a 3D scene by an imaging device,
such as a camera or a scanner, which then converts the captured information into a 2D
array of pixels. Each pixel in this array contains numerical values that define various
properties of the scene, such as color, brightness, and depth or distance from the imaging
device. Interestingly, the perception and interpretation of images can vary vastly between
humans and computers.

To the human eye, an image can reveal a wealth of information – colors, actions, ob-
jects, segments, and even emotions like happiness, freshness, or positivity. For instance,
an image of a lush green meadow on a sunny day might evoke feelings of serenity and

Section 1 Ayan Gupta 1

Computational Performance Characterization of GPU-accelerated Image Analysis

Figure 1: Image Formation

tranquility, while an image of a bustling city street might convey a sense of energy and
vibrancy. However, to a computer, an image is initially perceived as nothing more than a
non-informative collection of sparse pixels – a grid of numerical values devoid of inherent
meaning or context. This stark contrast between human and computer perception high-
lights the fundamental challenge of image analysis: enabling computers to interpret and
derive meaningful information from images, akin to the way humans effortlessly perceive
and understand visual data. It is this challenge that underscores the significance of image
analysis and the pursuit of developing sophisticated computational techniques to mimic
and augment human visual capabilities.

Figure 2: What the human eye sees Figure 3: What computers see

Images are not merely collections of pixels; they are rich vessels of information that
can convey complex concepts, emotions, and narratives fundamental to human communi-
cation. Each pixel contains values defining properties like color, brightness, and distance,
collectively forming a visually dense tapestry of data. While humans effortlessly per-
ceive and interpret images through the intricate workings of the visual cortex, recognizing
edges, patterns, objects, and colors, computers initially see only non-informative sparse
pixels. This is because human visual perception is a highly complex and nuanced process,
involving the integration of various cognitive and neurological processes that enable us to
make sense of visual stimuli. To bridge this gap, we must ask: What is the significance of

Section 1 Ayan Gupta 2

Computational Performance Characterization of GPU-accelerated Image Analysis

enabling computers to analyze images akin to human perception? The answer lies in the
exponential growth of unstructured image data and images’ ability to convey information
more efficiently than text. However, manual analysis is error-prone, slow for complex
scenes, and struggles to scale. Computers can interpret images as arrays of pixels defining
properties which can be analyzed to detect patterns mimicking our visual capabilities.
Automating this process through image analysis algorithms provides key benefits - accel-
erating labor-intensive tasks, reducing errors, and enabling scalability. Consequently, the
field of image analysis aims to develop techniques that leverage modern hardware and
software to empower computers to analyze and comprehend images on par with human
perception. This powerful synthesis unlocks myriad opportunities across domains reliant
on extracting insights from visual data.

1.2 CPUs vs GPUs: Architectures Tailored for Different Needs

Central Processing Units (CPUs) are designed as general-purpose processors, excelling at
sequential operations and scalar computations. They typically consist of a few cores (usu-
ally between 2 and 16) optimized for executing a wide range of tasks efficiently. However,
CPUs are not well-suited for data-parallel workloads that involve performing the same
operation on large datasets simultaneously. On the other hand, Graphics Processing Units
(GPUs) are specialized hardware architectures designed specifically for parallel processing
and high-throughput computations. GPUs are composed of thousands of smaller, more
efficient cores (often in the range of tens of thousands) optimized for executing the same
instruction on multiple data elements simultaneously, a computing paradigm known as
Single Instruction, Multiple Data (SIMD). This massive parallelism, combined with a
high memory bandwidth and faster memory access, makes GPUs exceptionally efficient
at handling data-parallel tasks that involve extensive matrix and vector operations. Such
operations are prevalent in various domains, including image analysis, scientific simula-
tions, and deep learning, where the same computation needs to be performed on large
datasets concurrently.

1 %%timeit
2 x = torch.randn(1,1)
3 out = torch.matmul(x,x)
4 # Output: 7.22 µs ± 302 ns

1 %%timeit
2 x = torch.randn(10000,10000)
3 out = torch.matmul(x,x)
4 # Output: 34 s ± 676 ms

Listing 1: Scalar and big matrix operation on CPU

1 %%timeit
2 x = torch.randn(1,1).to('cuda')
3 out = torch.matmul(x,x)
4 # Output: 74.7 µs ± 53.4 µs

1 %%timeit
2 x = torch.randn(10000,10000).to('cuda')
3 out = torch.matmul(x,x)
4 # Output: 1.22 s ± 215 ms

Listing 2: Scalar and big matrix operation on GPU

The code snippets above illustrate this fundamental difference in performance be-
tween CPUs and GPUs. For a scalar operation, which is a simple computation on a
single value, the CPU outperforms the GPU, as visible in Listing 1. However, when the

Section 1 Ayan Gupta 3

Computational Performance Characterization of GPU-accelerated Image Analysis

operation involves larger matrices or tensors, the GPU’s parallel processing capabilities
result in significantly faster execution times compared to the CPU, as shown in Listing
2. GPUs achieve this performance advantage through their highly parallel architecture,
where thousands of cores can work simultaneously on different portions of the data. Ad-
ditionally, GPUs have a higher memory bandwidth, allowing them to fetch and process
data from memory more efficiently, which is crucial for data-intensive tasks like image
analysis. While CPUs are designed to handle a wide range of general-purpose tasks ef-
ficiently, GPUs are specialized for specific types of workloads that can take advantage
of their parallel processing capabilities. This specialization enables GPUs to outperform
CPUs in domains like image analysis, where the same operations need to be applied to
large datasets concurrently. It’s important to note that GPUs and CPUs are not mu-
tually exclusive; they are often used in tandem, with CPUs handling the sequential and
control-flow tasks, while offloading the computationally intensive data-parallel workloads
to GPUs.

1.3 GPU Acceleration: Parallelism and High Memory Bandwidth

As mentioned earlier, many image analysis algorithms involve extensive matrix and vector
operations, such as edge detection, feature extraction, image segmentation, denoising, and
deep learning. These operations are computationally intensive and benefit greatly from
both hardware and software advantages offered by GPUs. To understand how GPUs
accelerate these algorithms, let’s consider the analogy of a CPU as a high-performance
Ferrari and a GPU as a massive dump truck. The task at hand is to fetch data from
the system memory, load it into their respective memories, and perform the necessary
operations. In the first case, we perform scalar multiplication.

Figure 4: CPU Fetching data from system memory

Here, the CPU swiftly retrieves data via a fetch operation to memory. Although the
amount of data fetched at a time is relatively small, it’s sufficient for fetching floating-point
numbers within a couple of trips, akin to the speed of a Ferrari. Conversely, GPUs possess
a broader data transmission capability. However, their efficiency isn’t optimized for swift
operations. Consequently, while they can handle larger volumes of data, their processing
of smaller data chunks can be comparatively slower. Thus, for scalar multiplications,
GPUs may sometimes lag behind CPUs in terms of performance. In the second case,
we’re looking at multiplying two large matrices. The CPU can fetch data really quickly,
but it can only grab a tiny bit of data each time it goes back and forth to memory.
Consequently, it may require thousands of trips to fetch all the necessary data. While it’s
doing this, the CPU’s memory gets processed and ready for the next set of data. With
their superior memory bandwidth, GPUs can efficiently fetch significantly larger amounts

Section 1 Ayan Gupta 4

Computational Performance Characterization of GPU-accelerated Image Analysis

Figure 5: GPU Fetching data from system memory

of data from RAM into their memory. As a result, the GPU circumvents the need for as
many trips, enabling expedited matrix multiplication operations.

Bandwidth refers to the amount of data that can be moved to and from memory in a
single trip, and it’s a key reason why GPUs outperform CPUs in handling large matrix
multiplication tasks. However, even with a high bandwidth, GPU processors sometimes
end up waiting for data. To address this, GPUs employ parallelization, which is like
having a fleet of trucks instead of a single one. While the GPU is processing the current
matrix chunks, it is fetching more chunks from the system memory ensuring that the
GPU is never idle. This ensures that GPU processors are continuously fed with data to
work on, reducing idle time.

Figure 6: Parallelism in GPU

Additionally, GPUs boast a larger number of registers compared to CPUs, which
further enhances computational speed. GPUs also employ SIMD (Single Instruction,
Multiple Data) techniques, which allow them to perform the same operation on multiple
data elements simultaneously. For instance, in image analysis tasks like filtering or color

Section 1 Ayan Gupta 5

Computational Performance Characterization of GPU-accelerated Image Analysis

space conversion, the same operation needs to be applied to each pixel. With SIMD,
a GPU can process multiple pixels in parallel using the same instruction, significantly
accelerating these types of operations compared to traditional scalar processing on CPUs.
The combination of these factors—high memory bandwidth, parallelization, and faster
memory access, enables GPUs to outperform CPUs for many image analysis algorithms
that involve extensive matrix and vector operations on large datasets. A GPU has a few
streamlined multiprocessors, which constitute the processing part of the GPU. It has a
global memory that is shared by these multi processors. They also have local memory
that is specific to the multi processors but cannot be shared with other streamlined mul-
tiprocessors. This hardware can only be utilized to its highest potential if the algorithms
are designed to exploit this hardware well. Here, we will take the example of matrix
multiplication, which is an important part of Image Analysis along with other matrix
operations. The brute force approach to solve matrix multiplication is by multiplying
every pair of numbers one at a time and summing it up. The issue here is the time com-
plexity of this approach. Now, leveraging the capabilities of GPUs would be ideal in this
situation, however, simply throwing more processing power and faster data transfer at the
problem isn’t the whole story. To truly unlock the potential of GPUs, a technique called
"block multiplication" comes into play. Here, the large matrices are strategically divided
into smaller sub-blocks that fit comfortably within the shared memory of individual GPU
cores. This shared memory acts like a smaller, high-speed workspace readily accessible to
the core, reducing the need to constantly fetch data from the main memory. This strategy
not only accelerates processing but also optimizes resource utilization, making efficient
use of the GPU’s computational power.

Figure 7: Working of SIMD

In summary, the evolution of GPU technology has significantly enhanced computa-
tional efficiency, enabling the swift execution of complex algorithms previously constrained
by CPU limitations. This breakthrough empowers fields like medical and satellite image
analysis to tackle large-scale data challenges with unprecedented speed and accuracy. By
leveraging high memory bandwidth, parallelization, and innovative hardware utilization
strategies like block multiplication, GPUs have become indispensable tools for real-time
processing in applications such as surveillance and autonomous driving. This transforma-

Section 1 Ayan Gupta 6

Computational Performance Characterization of GPU-accelerated Image Analysis

Figure 8: Block multiplication

tive capability marks a paradigm shift, driving advancements in diverse domains reliant
on intensive data analysis and computation.

2 Literature Review
In the evolving field of image analysis, the transition from CPU-based to GPU-accelerated
computation has marked a significant leap towards addressing the challenges of processing
large-scale image datasets efficiently. The study by Chang and Sheu [CS20] on GPU accel-
eration for patient-specific airway image segmentation exemplifies this transition. Their
work demonstrates a groundbreaking speedup of 61.8 times over CPU-based methods by
leveraging GPU parallelism and optimization techniques, such as memory arrangement
and block settings adjustment. This not only underscores the computational benefits of
GPUs but also highlights the importance of algorithmic adjustments to harness these
benefits fully. Stefaniga’s [Seb21] contribution to medical image analysis through CUDA-
based acceleration of feature extraction algorithms, specifically Canny Edge Detection
and Hough Transform, further reinforces the GPU’s prowess. By focusing on lung tu-
mor detection in radiographic images, Stefaniga showcases reductions in computation
times by 75% to 99%, emphasizing the synergy between algorithmic innovation and GPU
computing capabilities. In a comparative study by Mounir et al.[Arn+98] across multiple
platforms, including CPU, GPU, Raspberry Pi, and FPGA, for standard image processing
algorithms, FPGA emerged as the superior platform, with performance ten times higher
than its counterparts. This research, centered around a mobile explorer robot, signifies
the importance of selecting the appropriate hardware platform based on the computa-
tional demands of specific image processing tasks, thereby optimizing robotic navigation
and obstacle avoidance capabilities. Hitchcock et al.[Hit+21] introduce PyTorchDIA in
their study, a GPU-accelerated method for Differential Item Functioning analysis within
the PyTorch framework. By leveraging GPU computing, the approach significantly re-
duces computation times, enhancing the efficiency of statistical analyses in educational
testing. This development underscores the potential of GPU acceleration in the domain
of large-scale data analysis, offering a scalable and efficient solution for educational re-
searchers and practitioners. The study by Barreiros Jr. et al. [Bar+22] introduces a
cost-aware data partitioning strategy for microscopy image analysis on CPU-GPU sys-
tems, addressing the challenge of efficiently processing irregularly distributed data. By
achieving significant improvements in computational efficiency, the study highlights the

Section 2 Ayan Gupta 7

Computational Performance Characterization of GPU-accelerated Image Analysis

potential of integrating advanced data partitioning techniques with GPU acceleration to
enhance the performance of image analysis tasks. This approach opens new avenues for
the development of high-throughput imaging technologies, facilitating faster and more
accurate scientific discoveries. Won Jo et al.[JG22] present a novel GPU-accelerated ap-
proach for Riemannian metric optimization crucial for surface analysis in medical images.
The study demonstrates how GPU computing can improve the speed and efficiency of
geometric operations, critical for accurate image analysis. This methodological advance-
ment highlights the expanding role of GPU acceleration in medical imaging, offering new
perspectives on disease diagnosis and monitoring through enhanced image processing ca-
pabilities. In summary, the shift to GPU-accelerated computation has proven to be a
cornerstone in image analysis, significantly enhancing precision and efficiency, and setting
a new benchmark for future advancements in the field.

3 Experiments
Since we have established theoretical suppositions that GPUs are better than CPUs per-
forming operations which are heavily used in Image Analysis, Now, we shall conduct ex-
periments that involve extensive datasets including images and videos. The main objective
of all experiments will be to evaluate the Computational Performance Characterization
by conducting algorithms that can take advantage of GPU acceleration and comparing
them with CPU performance. Two algorithms are evaluated in this experiment:

3.1 U-Net based Brain tumor segmentation from 2D MRI scans

In the field of medical imaging, efficient and high-accuracy segmentation results is particu-
larly important in scenarios where precise delineation of lesions or abnormalities is critical
for proper diagnosis and treatment planning. One algorithm that has gained widespread
recognition for its effectiveness in medical image segmentation is the U-Net[RFB15], a fully
convolutional encoder-decoder network architecture designed specifically for this task. In
the context of brain tumor segmentation from MRI scans, the U-Net’s performance is
invaluable, as it can accurately identify and segment tumor regions, enabling radiolo-
gists and clinicians to make informed decisions about diagnosis and treatment strategies.
The U-Net’s architecture is characterized by its unique structure, which consists of a
contracting path (encoder) that captures contextual information and an expanding path
(decoder) that enables precise localization. Additionally, skip connections between the
encoder and decoder paths allow the network to preserve fine-grained details and merge
semantic features from high-resolution features, resulting in accurate segmentation results.
U-Net’s powerful architecture faces challenges with large medical datasets and real-time
applications due to its computational intensity. This is where GPU acceleration offers a
transformative solution, leveraging parallel processing in modern GPUs. Since the U-Net
is a fully convolutional network, its layered processing benefits significantly from GPU
acceleration. The convolution operations, which are at the core of the network’s function-
ality, can be parallelized across the thousands of cores available in modern GPUs. This
parallelization allows for simultaneous processing of multiple image regions, skip connec-
tions and the concatenation operations involved in merging feature maps from different
levels of the network, significantly reducing the overall computation time compared to
traditional CPU-based approaches. By accelerating the U-Net algorithm on GPUs, ra-

Section 3 Ayan Gupta 8

Computational Performance Characterization of GPU-accelerated Image Analysis

diologists and clinicians can analyze large volumes of medical imaging data in a timely
manner, enabling faster diagnosis and treatment planning. Additionally, the high accu-
racy of the U-Net’s segmentation results ensures that critical details are not overlooked,
potentially preventing misdiagnosis or suboptimal treatment strategies.

Figure 9: U-Net architecture [RFB15]

3.2 Real time video analysis for object detection and tracking
using YOLOv7

The rise of cameras and video sources across domains has heightened the need for rapid
and accurate data processing, making real-time video analysis essential for swift decision-
making in today’s data-driven world. Applications such as autonomous vehicles, security
monitoring, and retail analytics require the ability to detect and track objects in real-time,
enabling timely actions and informed decision-making. YOLOv7 [WBL23] addresses this
need by providing a highly efficient and accurate solution for real-time video analysis.
YOLOv7 (You Only Look Once) is a state-of-the-art model that is designed to perform
object detection and tracking in real-time on video streams, making it an invaluable tool
for a wide range of applications. Deep learning models, such as those used in object
detection and tracking, are computationally intensive and require a significant amount of
processing power. GPUs, with their thousands of parallel cores, are well-suited for these
types of tasks, allowing for faster processing times and higher throughput compared to
traditional CPUs. YOLOv7 is designed to take advantage of GPU acceleration, enabling
it to process video frames at extremely high rates. By offloading the computationally
intensive tasks to the GPU, YOLOv7 can process multiple frames simultaneously, en-
suring smooth and consistent real-time performance. This GPU acceleration capability
is crucial for applications that demand real-time analysis, such as autonomous driving,
where split-second decisions can mean the difference between safety and potential acci-
dents. On a modern CPU, processing a single frame for object detection and tracking
using YOLOv7 could take several hundred milliseconds, depending on the complexity of
the scene and the CPU’s capabilities, resulting in significant lag for a video stream at 30
frames per second (FPS); however, GPU acceleration can reduce processing time to just

Section 3 Ayan Gupta 9

Computational Performance Characterization of GPU-accelerated Image Analysis

a few milliseconds, enabling real-time performance at high frame rates, with YOLOv7
processing video streams at over 100 FPS on a modern GPU like the NVIDIA RTX 3080,
ensuring smooth and responsive real-time analysis. YOLOv7 employs a single neural net-
work to perform object detection and tracking simultaneously, eliminating the need for
separate models for each task. The YOLO algorithm takes an input image and divides it
into a grid of cells. The image is passed through a convolutional neural network (CNN)
backbone, such as Darknet or ResNet, to extract features at multiple scales. For each
grid cell, YOLO predicts bounding boxes, confidence scores, and class probabilities. Each
bounding box is represented by its center coordinates, width, height, and confidence score
indicating the likelihood that the bounding box contains an object. Class probabilities
represent the likelihood of each detected object belonging to different predefined classes.
After predictions are made for all grid cells, YOLO applies post-processing techniques
such as non-maximum suppression (NMS) to remove redundant bounding boxes and keep
only the most confident detections. The final output consists of bounding boxes along
with their associated class labels and confidence scores, indicating the presence of ob-
jects and their types in the image. YOLOv7 uses a novel architecture called CSPNet
(Cross-Stage Partial Network), which combines features from different layers of the net-
work to enhance the model’s accuracy and performance. One of the key innovations in
YOLOv7 is the introduction of new techniques, such as Auxiliary Classifiers, to improve
the model’s ability to detect small objects, a common challenge in object detection tasks.
Additionally, YOLOv7 incorporates advanced techniques like Mosaic data augmentation
and Self-Adversarial Training (SAT) to enhance the model’s robustness and generalization
capabilities. In the context of real-time video analysis, YOLOv7 processes each frame of
the video stream independently, detecting and tracking objects within each frame.

Figure 10: Working of YOLO model

4 Tools and Technologies
In the programming environment, Python serves as the primary language, supported by
essential libraries such as PyTorch, NumPy, Subprocess, SciPy, and Scikit-learn, along-

Section 4 Ayan Gupta 10

Computational Performance Characterization of GPU-accelerated Image Analysis

side specialized frameworks like segmentation-pytorch-models and YOLOv7. The pro-
cessing units environment encompasses GPUs like the NVIDIA Tesla P100 on Kaggle
and NVIDIA Tesla T4 on both Colab and Kaggle, along with CPUs including the Intel
Core i9-10900X CPU running at 3.70GHz and the Intel Xeon CPU operating at 2.20GHz
on Colab. Key concepts involve Convolutional Neural Networks (CNNs), Single Shot
Detectors (SSDs), Encoder-Decoder segmentation, Floating Point Operations (FLOPs),
and Parallelization techniques, all integral to the implementation and optimization of the
above mentioned tasks. The data used for the task of brain tumor segmentation contains
brain MR images together with manual FLAIR abnormality segmentation masks. These
images were obtained from The Cancer Imaging Archive (TCIA). They correspond to 110
patients included in The Cancer Genome Atlas (TCGA) lower-grade glioma collection.
For the task of object detection and tracking, sample videos of 10-15 seconds, including
pedestrians and cars in open areas, were taken from the internet on which inference was
carried out using the YOLOv7 model.

5 Results and Discussion
This section explores the results obtained from the experiments. The results will include
task specific metrics such as qualitative results, loss curves and IOU scores, as well as
computational performance metrics such as execution time, throughput, processing FPS
curves.

Figure 11: Training and validation execu-
tion times by processing unit

Figure 12: Train and validation through-
puts of CPU and GPU

Figure 11 visually confirms the expected benefit of GPU acceleration for U-Net brain
tumor segmentation, with the GPU execution time being approximately 6.8 times faster
than the CPU. This finding aligns with the strengths of GPUs in parallel processing
for computationally intensive tasks. However, the validation execution times might not
show a substantial difference due to the potentially less demanding nature of validation
calculations, data transfer overheads, or a small validation dataset size. As per Figure 12,
the GPU exhibits considerably higher throughput compared to the CPU for both training
and validation stages. The higher throughput of the GPU translates to processing image

Section 5 Ayan Gupta 11

Computational Performance Characterization of GPU-accelerated Image Analysis

data at a faster rate, leading to potentially faster training times and improved efficiency
during task execution. Now for the task-specific metrics, the GPU’s training loss curve
starts converging from a very low value compared to the CPU, as visible in Figure 13 and
14. This is also evident in the curves for IOU score in Figure 15 and 16, where the GPU
starts achieving higher values for these metrics from the beginning, and gradually both
the CPU and GPU converge to the same values for all metrics. This suggests the model
trained on the GPU begins learning effectively much quicker during the initial epochs.
This aligns with the expected advantages of GPUs in parallel processing, allowing them
to grasp patterns in the training data faster.

Figure 13: Training and Validation losses
for CPU

Figure 14: Training and Validation losses
for GPU

Figure 15: Training and validation IOUs
for CPU

Figure 16: Training and validation IOUs
for GPU

For the task of object detection with YOLOv7, it is again evident from Figure 17
that the CPU execution time is several times greater than the GPU execution time. This
translates to a substantial speedup factor in favor of the GPU for this task. processing
individual image regions and tracking objects likely benefit significantly from the parallel
processing architecture of GPUs.

As visible in Figure 18, The GPU processing FPS is several times greater than the
CPU processing FPS. The higher processing FPS on the GPU translates to a faster rate
of processing video frames, which is crucial for real-time object detection tasks. This
improved frame rate allows for smoother detection and tracking of people and objects
within the defined Region of Interest. However, the GPU’s FPS curve shows noticeable

Section 5 Ayan Gupta 12

Computational Performance Characterization of GPU-accelerated Image Analysis

jaggedness, likely due to variations in scene complexity and data transfer overhead between
CPU and GPU memories. These fluctuations can disrupt the smooth processing pipeline
and lead to inconsistencies in frame processing time.

Figure 17: CPU and GPU execution times
for YOLOv7

Figure 18: CPU and GPU processing FPS
for YOLOv7

The task-specific qualitative results from both the tasks performed on the GPU have
also yielded accurate results. Analyzing the qualitative results from the U-Net model’s
brain tumor segmentation, as visible in Figure 19, it’s evident that the model achieves
varying degrees of alignment with the ground truth. In some instances, the tumor bound-
aries are predicted with remarkable accuracy, capturing the curves and locality of the
tumor with a high degree of precision, although with occasional slight jaggedness suggest-
ing potential overfitting. However, in other cases, the model exhibits minor deviations,
such as underfitting that leads to less detailed perimeters, or over-segmentation where
false positives appear due to the model’s sensitivity to textures resembling tumor tis-
sues. The model also shows a tendency to miss subtleties in the tumor’s perimeter in
certain cases, and in one instance, introduces an internal pore not present in the ground
truth, likely due to over-sensitivity to intratumoral variations. Overall, the predictions
demonstrate the GPU-accelerated model’s capability to learn complex patterns effectively,
yet they also highlight areas for further refinement, particularly in enhancing boundary
smoothness and reducing false positives for irregularly shaped tumors.

The resultant video frame, as shown in Figure 20, from the inference process offers a
qualitative assessment of YOLOv7’s object detection and SORT’s tracking capabilities on
a GPU. The system has successfully detected and tracked multiple individuals represented
by rectangular bounding boxes with unique ID numbers assigned to each person. The
output demonstrates the capabilities of modern object detection and tracking algorithms
in handling complex scenarios involving multiple moving objects. It highlights the poten-
tial applications of such systems in crowd monitoring, surveillance, or pedestrian analytics
which frequently involve densely packed artifacts within images and videos. To do such
analytics in real-time, it is necessary to employ GPU acceleration for higher efficiency.

Section 6 Ayan Gupta 13

Computational Performance Characterization of GPU-accelerated Image Analysis

Figure 19: Visual results from U-Net brain
tumor segmentation task

Figure 20: Visual results from YOLOv7
object detection and tracking task

6 Conclusion
Our experiments explored the computational performance of GPUs for image analysis
tasks. The results clearly demonstrate the significant advantages of GPUs compared to
CPUs in terms of speed and efficiency. This was evident in both brain tumor segmentation
and real-time object detection with tracking using YOLOv7 and SORT algorithms. Faster
execution times, higher throughputs, and overall improved performance were achieved
with GPU acceleration. This highlights the importance of GPUs in processing the vast
amount of image data available. They offer a powerful and efficient alternative to manual
analysis, particularly for tasks that involve complex calculations. Looking forward, ad-
vancements in deep learning algorithms like Transformers are expected to further enhance
the capabilities of GPU-accelerated image analysis, leading to wider applications and im-
proved accuracy. Additionally, the development of energy-efficient GPUs aligns with
the push for greener AI solutions, addressing current limitations in energy consumption.
Furthermore, neuromorphic computing, inspired by the human brain’s efficiency, holds
promise for a future revolution in computing power and image analysis capabilities. In
conclusion, this exploration of GPU-accelerated image analysis showcases the significant
progress made in this field and paves the way for exciting future developments. Continu-
ous improvements in algorithms and hardware will undoubtedly unlock new possibilities
in image analysis, allowing us to better understand the visual world around us.

Section 6 Ayan Gupta 14

Computational Performance Characterization of GPU-accelerated Image Analysis

References
[Arn+98] A. S. Arnold et al. “A Simple Extended-Cavity Diode Laser”. In: Review of

Scientific Instruments 69.3 (Mar. 1998), pp. 1236–1239. url: http://link.
aip.org/link/?RSI/69/1236/1.

[Bar+22] Willian Barreiros et al. “Efficient microscopy image analysis on CPU-GPU
systems with cost-aware irregular data partitioning”. In: Journal of Paral-
lel and Distributed Computing 164 (2022), pp. 40–54. issn: 0743-7315. doi:
https://doi.org/10.1016/j.jpdc.2022.02.004. url: https://www.
sciencedirect.com/science/article/pii/S0743731522000466.

[CS20] Yu-Wei Chang and Tony Sheu. “GPU acceleration of a patient-specific airway
image segmentation and its assessment”. In: (Dec. 2020).

[Hit+21] James A Hitchcock et al. “PyTorchDIA: a flexible, GPU-accelerated numeri-
cal approach to Difference Image Analysis”. In: Monthly Notices of the Royal
Astronomical Society 504.3 (2021), pp. 3561–3579. doi: 10.1093/mnras/
stab1114.

[JG22] Jeong Won Jo and Jin Kyu Gahm. “G-RMOS: GPU-accelerated Riemannian
Metric Optimization on Surfaces”. In: Computers in Biology and Medicine
150 (2022), p. 106167. issn: 0010-4825. doi: https://doi.org/10.1016/
j.compbiomed.2022.106167. url: https://www.sciencedirect.com/
science/article/pii/S0010482522008757.

[RFB15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional
Networks for Biomedical Image Segmentation”. In: Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2015. Ed. by Nassir Navab
et al. Cham: Springer International Publishing, 2015, pp. 234–241. isbn: 978-
3-319-24574-4.

[Seb21] Stefaniga Sebastian-Aurelian. “Methods of acceleration for feature extrac-
tions in medical imaging using GPU processing”. In: 2021 23rd International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC). 2021, pp. 234–241. doi: 10.1109/SYNASC54541.2021.00047.

[WBL23] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. “YOLOv7:
Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object
Detectors”. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 2023, pp. 7464–7475. doi: 10.1109/CVPR52729.2023.
00721.

Section 6 Ayan Gupta 15

http://link.aip.org/link/?RSI/69/1236/1
http://link.aip.org/link/?RSI/69/1236/1
https://doi.org/https://doi.org/10.1016/j.jpdc.2022.02.004
https://www.sciencedirect.com/science/article/pii/S0743731522000466
https://www.sciencedirect.com/science/article/pii/S0743731522000466
https://doi.org/10.1093/mnras/stab1114
https://doi.org/10.1093/mnras/stab1114
https://doi.org/https://doi.org/10.1016/j.compbiomed.2022.106167
https://doi.org/https://doi.org/10.1016/j.compbiomed.2022.106167
https://www.sciencedirect.com/science/article/pii/S0010482522008757
https://www.sciencedirect.com/science/article/pii/S0010482522008757
https://doi.org/10.1109/SYNASC54541.2021.00047
https://doi.org/10.1109/CVPR52729.2023.00721
https://doi.org/10.1109/CVPR52729.2023.00721

	Contents
	List of Figures
	List of Listings
	Introduction
	Image Analysis
	CPUs vs GPUs: Architectures Tailored for Different Needs
	GPU Acceleration: Parallelism and High Memory Bandwidth

	Literature Review
	Experiments
	U-Net based Brain tumor segmentation from 2D MRI scans
	Real time video analysis for object detection and tracking using YOLOv7

	Tools and Technologies
	Results and Discussion
	Conclusion
	References

