
SH

∞

Seminar Report

Using High-Performance Networks

Tim Dettmar

MatrNr: 26327113

Supervisor: Sebastian Krey

Georg-August-Universität Göttingen
Institute of Computer Science

April 15, 2024



Abstract
High-Performance Computing (HPC) clusters rely heavily on fast networking to achieve
good performance: fast communication to networked storage reduces the amount of time
spent waiting for data, and fast inter-node communication allows for more effective hori-
zontal scalability of parallel computing tasks. To that end, several network adapters used
in HPC are equipped with custom hardware offload technologies to accelerate communica-
tion and reduce overhead. In order to take advantage of these offloads, networking libraries
separate from those of traditional sockets are required. To determine the performance up-
lift and usage complexity, Libfabric, a commonly used high-performance communication
library, is evaluated.
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Using High-Performance Networks

1 Introduction
Many networked applications use protocols such as Transmission Control Protocol (TCP)
and User Datagram Protocol (UDP), as well as any higher-level protocols that may be
layered on top of these. In day-to-day workloads, these protocols perform adequately:
no significant effort currently exists to replace them. The HTTP protocol used on the
Internet, for instance, runs on TCP and UDP [Intc; Intd]. However, the landscape is dif-
ferent in HPC. Networking performance is often an important factor for many workloads
in this field: the fastest supercomputing clusters have fast networking in the hundreds
of gigabits of per-node throughput [TOP]. However, many of these networks also have
another capability not available on regular consumer network adapters: full-stack data
transfer offload, or Remote Direct Memory Access (RDMA).

Such offloads exist on network adapters marketed for use in HPC, and claim to re-
duce the burden of data transfer on the system’s processor, while lowering latency and
increasing throughput significantly. With traditional socket (TCP, UDP or similar) com-
munications, system calls are made to the kernel socket interfaces [Ker10, ch. 59]. These
interfaces handle buffering, packet assembly, loss recovery (if applicable to the protocol),
firewalling, and other lower-level tasks abstracted away from the user’s view. These tasks
are complex, especially in the case of TCP [Ros14, p. 90, 269, 318–326]. With full-stack
offloads, the theoretical benefit is the increase in processing time available for the actual
workload due to the lack of involvement by the kernel. These new networking technolo-
gies have emerged over time in the HPC sector: among them are InfiniBand, RDMA over
Converged Ethernet (RoCE), Omni-Path, as well as other custom designs.

While the theoretical benefits are clearly defined, this report aims to evaluate the
usability and performance aspects of using the RDMA stack over the more commonly
used socket interfaces.

2 HPC Network Programming
2.1 Introduction

The understanding of how high-performance networking libraries are implemented is use-
ful for optimizing system performance to users’ requirements, as well as for developing
high-performance applications. For instance, system administrators may use the under-
standing of the network capabilities to set default network or job configuration options
that work well for the majority of use cases. Middleware developers, such as those de-
veloping OpenMPI, can also design their communication backends to take advantage of
such high-performance networks [The].

There are a few commonly used RDMA libraries: the InfiniBand Verbs Library (ib-
verbs), Unified Communication X (UCX), as well as Libfabric [Lin; UCF; Opel]. As
the name suggests, the design of ibverbs is closely tied to that of InfiniBand, while the
other libraries were specifically designed to address the modern HPC landscape, providing
more generic, transport-independent abstractions for multiple high-performance network-
ing technologies. They also provide for some higher-level functionality used by developers
of HPC middlewares such as Message Passing Interface (MPI): an example can be found
in Libfabric’s implementation of collective communication functionalities [Opef]. From an
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end-user perspective, these libraries are rather low-level. However, users of HPC systems
do not necessarily need to interact with the libraries directly, in the same way as they
might not be expected to write a socket application from scratch. Instead, domain-specific
applications (e.g., OpenFOAM [Opem]) and abstraction layers such as MPI can be used,
which often have support for the aforementioned high-performance networking libraries
either directly or indirectly. An example of how these layers interact is shown in Figure
1.

MPI Library

User
Application

Sockets Verbs

UCX Libfabric

Omni-Path Others

N
at

iv
e

Su
pp

or
t

Support via middleware

Abstractions

Figure 1: Data transfer abstraction layers

In this report, the focus will be on the Libfabric library, as it has the largest number
of transports and operating systems supported. Theoretically speaking, Libfabric can
be thought of as a write-once, run-anywhere HPC communication library. Its architec-
ture abstracts many transport-technology-specific implementation details into a unified
interface, which supports regular TCP and UDP sockets, InfiniBand- and Ethernet-based
RDMA technologies, Omni-Path, and other proprietary transports [Opel].

2.2 Transport Selection

Libfabric is designed to present as similar of an interface as possible for various transport
types, in order to improve the portability of applications written with it. The first call
into Libfabric that a programmer would normally make is one to fi_getinfo(). This
call can be used to list all fabric providers 1 (transports) on the system, or only those
matching specific criteria. Typically, the application calls this function indicating the
features required by it, which destination is desired, and capabilities the application is
prepared to support, among others [Opeg]. An example is shown in Listing 1.

1 struct fi_info * hints = fi_allocinfo();
2 if (!hints)
3 return -ENOMEM;
4
5 // Specify the transport capabilities we want
6 // Reliable datagram with messaging and remote memory access capabilities
7 hints->ep_attr->type = FI_EP_RDM;
8 hints->caps = FI_MSG | FI_RMA;
9

10 // Get available transports matching criteria, API support level 1.10
11 struct fi_info * infoList = NULL;
12 ret = fi_getinfo(FI_VERSION(1, 10), 0, 0, 0, hints, &infoList);
13 fi_freeinfo(hints);
14 if (ret < 0)
15 return ret;

Listing 1: Available transport request
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Figure 2: Transport selection

Once this call is made, Libfabric returns a list of transports that satisfy the criteria
to the user. In the example shown in Figure 2, only the PSM2 transport is returned,
as it is the only transport supporting the RDM (reliable datagram) endpoint type 2. If
the application instead did not support the context requirement and requested tagged
functionality over datagram endpoints, then only the UDP transport would have been
returned. In theory, the application itself would then be able to support new networking
technologies when they become available in Libfabric, as long as the technology supports
the features requested by the application, without significant changes to the codebase. If
the application were instead using the underlying transport interfaces directly rather than
going through the Libfabric abstraction layer, completely separate implementations would
have to be written for each transport. Such applications are likely to have larger codebases
and thus could be more bug-prone and difficult to maintain. For instance, the GWDG
SCC [Ges] contains nodes with regular network adapters, InfiniBand adapters, and Omni-
Path adapters. Therefore, to write an application that works well on all compute nodes, a
programmer could either write three separate network backend implementations or write
a single implementation based on Libfabric.

2.3 Resource Abstraction Layers

The Libfabric Application Programming Interface (API) is based on an object model,
with defined roles and interactions between these objects [Opeb]. These objects are then
implemented using transport-specific APIs, such as those in the underlying TCP socket
or Verbs interfaces—the implementation details are not relevant to the user. It does not
matter, for instance, that TCP is a stream protocol: Libfabric can emulate message-
oriented communication over it.

In Figure 3, how resources from a native transport interface could be mapped into
Libfabric is shown. In this case, the Verbs and RDMA Connection Manager APIs [Mela]
are mapped to Libfabric resources. The list of resources exported by the libraries in
the figure is not exhaustive, and the solid arrows refer to rough equivalents in terms of
functionality rather than a direct mapping.
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Figure 3: Libfabric abstraction layers

The resource abstractions have the following functionality:

• Fabric: Represents a group of mutually reachable resources. For instance, if two
network adapters connected to the same subnet are installed in a node, these network
adapters are considered part of the same fabric.

• Domain: Consists of a single transport on a single physical or virtual interface. On
an InfiniBand NIC, for instance, the RDMA and TCP communication modes are
presented as part of separate domains as they cannot communicate with each other.
Several additional resources used in communication depend on the domain object.

• Passive Endpoint (PEP): Like a passive socket, passive endpoints are used on
connection-oriented endpoint types to accept incoming connections.

• Event Queue (EQ): Used to report events, such as incoming connections, asyn-
chronously to the user.

• Completion Queue (CQ): Used to report completed data transfer operations.

• Active Endpoint (EP): Represents an endpoint usable for communication with
other peers.

• Address Vector (AV): Stores mappings from Libfabric’s abstract address handle
to the native address of the transport in use, for connectionless endpoints.
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• Memory Region (MR): Block of memory made available for direct access by
network hardware.

• Poll/Wait Set: Used for efficient polling/waiting across multiple completion queues.

2.4 Resource Initialization

Resources must be allocated or deallocated in an order allowed by the dependency chain,
as shown in Figure 3. Therefore, the fabric object must always be allocated first, usually
followed by the domain. Once these core resources are initialized, the application may
choose which other resources are to be initialized based on its requirements. In the
simplified example shown in this report, event queues and poll/wait sets will not be used.
In all further examples, the following structure is used to group all required resources
together for simplicity.

1 struct TestFabric {
2 struct fid_fabric * fabric;
3 struct fid_domain * domain;
4 struct fid_av * av; // Address vector
5 struct fid_ep * ep; // Endpoint
6 struct fid_cq * cq; // Completion queue
7 fi_addr_t peer; // Target peer
8 void * mem; // Memory buffer
9 struct fid_mr * mr; // Memory region (from above buffer)

10 };
11
12 // Variable used in data transfer operations
13 struct TestFabric * f;

Listing 2: Communication resources

2.4.1 Completion Queue

For many data transfer tasks, a CQ is necessary. CQs contain information regarding
completed data transfer operations, which is especially useful when reliable delivery of
messages is required, or multiple messages are intended to be simultaneously in-flight 3.
The granularity of reported data can also be tuned by modifying the CQ format from a
selection of available formats, as shown in Figure 4.
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struct fi_cq_err_entry {

  void      * op_context;

  uint64_t    flags;

  size_t      len;

  void      * buf;

  uint64_t    data;

  uint64_t    tag;

  size_t      olen;

  int         err;

  int         prov_errno;

  void      * err_data;

  size_t      err_data_size;

  fi_addr_t   src_addr;

}

fi_cq_entry

fi_cq_msg_entry

fi_cq_data_entry

fi_cq_tagged_entry

Figure 4: CQ entry types

The item “op_context” is particularly useful. This value can be provided by the user
alongside any data transfer operation - and the completion associated with this operation
always includes the user-defined value. As it is large enough to store a pointer, this
could be any value from a simple integer to a complex user-allocated region of memory
containing instructions on the further processing of the message. Upon creation, the CQ
may be configured by the user, using the structure fi_cq_attr.

1 struct fi_cq_attr {
2 size_t size; // Number of entries
3 uint64_t flags; // Control flags
4 enum fi_cq_format format; // Entry format (see fi_cq_*_entry)
5 enum fi_wait_obj wait_obj; // Blocking wait object type
6 int signaling_vector; // Interrupt vector
7 enum fi_cq_wait_cond wait_cond; // Blocking wait condition variable
8 struct fid_wait * wait_set; // Existing wait set to bind the CQ to
9 };

Listing 3: CQ attributes

The larger the CQ size, the more transfers can safely be posted simultaneously. Having
multiple pending transfers can occur when communicating with multiple peers simulta-
neously, or sending small amounts of data at high speeds. For instance, when sending
high-frequency sensor data for immediate processing, waiting until the peer has processed
the previous data point before sending the next could lead to additional latency. The
pending transfer count should be less than the CQ size, to prevent the CQ from being full
or over-running, which can lead to data transfer stalls and undefined behaviour. Listing
4 demonstrates how a CQ may be created.

1 struct fi_cq_attr cq_attr;
2 memset(&cq_attr, 0, sizeof(cq_attr));
3 cq_attr.wait_obj = FI_WAIT_UNSPEC; // This allows us to use fi_cq_sread()
4 cq_attr.format = FI_CQ_FORMAT_DATA; // See 'CQ entry types'
5 cq_attr.size = 64; // Maximum number of elements
6 ret = fi_cq_open(f->domain, &cq_attr, &f->cq, 0);
7 if (ret < 0)
8 return ret;

Listing 4: CQ creation
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2.4.2 Memory Registration

In socket interfaces, users may specify arbitrary buffers to be used for data transfers
[IEE]. The kernel drivers and other subsystems implicitly abstract and handle the nec-
essary steps to send the bytes contained within the buffer over the network. However, in
RDMA-enabled communication, the network adapter should be able to read and write di-
rectly to user-space memory buffers. This presents several issues which need to be solved
before such accesses are possible [Ros14, p. 381] [Oped]. Primarily, the RDMA subsystem
operates on physical pages from the memory of the host Central Processing Unit (CPU)
4. However, pages associated with user memory buffers may be swapped to disk as part
of normal memory management operations. At this point, the network adapter would
not be able to access paged-out memory regions via Direct Memory Access (DMA) unless
they are paged back into system memory. In addition, because modern computers have a
Memory Management Unit (MMU), the addresses used by the user’s application do not
correspond to the physical addresses accessible by the network adapter over the expansion
bus.

The memory registration process involves kernel support in fixing these issues. Reg-
istered memory pages are locked (never paged out), and the kernel performs a lookup of
virtual-to-physical memory mappings to ensure that the network adapter uses the correct
address when accessing the memory region 5. Once this is complete, the buffer provided
by the user may be used in data transfer tasks. The example in Listing 5 demonstrates
how a user-defined buffer may be registered.

1 // Since the RDMA subsystem operates on pages, we also want to
2 // page-align our memory allocation (1MB) for optimal access.
3 int ret = posix_memalign(&f->mem, sysconf(_SC_PAGESIZE), 1048576);
4 if (ret != 0)
5 return ret;
6
7 // FI_READ/_WRITE = Local NIC read/write
8 // FI_REMOTE_READ/_WRITE = Remote NIC read/write (one-sided ops)
9 ret = fi_mr_reg(f->domain, f->mem, 1048576,

10 FI_READ | FI_WRITE | FI_REMOTE_READ | FI_REMOTE_WRITE,
11 0, 0, 0, &f->mr, 0);
12 if (ret < 0)
13 free(f->mem);
14
15 return ret;

Listing 5: Memory registration

2.4.3 Address Vector

An AV is used in connectionless endpoints - datagram (dgram) and reliable datagram
(rdm) - in order to store peer addressing information. Data fabrics are diverse: Ether-
net, InfiniBand, and Omni-Path may all have different, incompatible addressing formats.
Despite this, Libfabric is designed to present a unified interface for all of them, which
presents challenges when performing data transfer operations. Instead, Libfabric uses its
own address format in data transfer functions [Opee].

1 ssize_t fi_recv(struct fid_ep *ep, void * buf, size_t len, void *desc,
2 fi_addr_t src_addr, void *context);
3 ssize_t fi_send(struct fid_ep *ep, const void *buf, size_t len, void *desc,
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4 fi_addr_t dest_addr, void *context);

Listing 6: Libfabric send/receive functions

In order to support the translation of Libfabric’s abstracted address format (fi_addr_t)
into a native transport address, the AV is used. An AV contains a mapping from
fi_addr_t addresses into native addresses, which are the actual addresses used inter-
nally for data transfers. The code snippet in Listing 7 demonstrates how one could use a
socket address in a data transfer.

1 ssize_t ret;
2 struct fi_av_attr attr;
3 memset(&attr, 0, sizeof(attr));
4 attr.type = FI_AV_UNSPEC; // Address vector type (unspec = auto-select)
5 attr.count = 16; // Capacity of the address vector
6
7 struct fid_av * av;
8 ret = fi_av_open(f->domain, &attr, &f->av, NULL);
9 if (ret < 0)

10 return ret;
11
12 // We have a peer 10.0.0.10:12345 that we want to communicate with
13 struct sockaddr_in addr;
14 memset(&addr, 0, sizeof(addr));
15 addr.sin_family = AF_INET;
16 addr.sin_addr.s_addr = inet_addr("10.0.0.10");
17 addr.sin_port = htons(12345);
18
19 int ret2;
20 ret = fi_av_insert(f->av, &addr, 1, &f->peer, FI_SYNC_ERR, &ret2);
21 if (ret != 1)
22 return ret2;

Listing 7: Transport-specific address conversion

The address stored in f->peer is then suitable for all data transfer operations, such
as those shown in Listing 6, and corresponds to the peer at 10.0.0.10:12345. However,
any providers that do not use socket addresses natively must construct and exchange
addresses in some other fashion, possibly out-of-band.

2.4.4 Endpoint

An endpoint can be compared to a file descriptor in regular sockets: it represents a channel
on which data can be sent. The initialized fabric information and domain structures are
used to derive transport type and addressing information. Once this endpoint is created,
it must be enabled and bound to other created resources. It can then be used for data
transfer operations. An example is shown in Listing 8.

1 // struct fi_info * info -> the structure received from a call to fi_getinfo()
2 // This structure is used to determine the endpoint type (e.g. TCP or RDMA)
3 // and source address, among many other parameters
4 ssize_t ret = fi_endpoint(f->domain, info, &f->ep, 0);
5 if (ret < 0)
6 return ret;
7
8 // The endpoint is bound to the CQ, such that data transfer operations of
9 // this endpoint are reported to the specified CQ

10 ret = fi_ep_bind(f->ep, &f->cq->fid, FI_TRANSMIT | FI_RECV);
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11 if (ret < 0)
12 return ret;
13
14 // For connectionless endpoints, it is also necessary to bind the address vector
15 // to the endpoint
16 if (f->av) {
17 ret = fi_ep_bind(f->ep, &f->av->fid, 0);
18 if (ret < 0)
19 return ret;
20 }
21
22 return fi_enable(f->ep);

Listing 8: Endpoint creation

2.5 Data Transfer

Once the previously mentioned resources have been initialized, the program can begin
sending data across the network. However, programmers must be more careful in their
data transfer tasks in comparison to regular socket programming. RDMA data transfer
operations are mostly asynchronous without implicit temporary buffers where messages
can be stored before processing. Therefore, in order to perform a successful send operation,
a corresponding receive operation must also be posted on the receiving peer. Buffers must
also be sized appropriately to receive the entire contents of a message [Opeh].

TCP Transfer

Peer A Peer B

"a"

send()

"a"

User Buffer

Kernel Buffer
when applicable

"a"

RDMA Transfer

Peer A Peer B

Work
Request

"a"

Request

NICNIC NIC
Negative ACK

NICNetwork

Figure 5: Unexpected data transfers with TCP/RDMA

Unexpected, in the case shown in Figure 5, refers to a connection which has already
been established between two peers, but where a send has been called without a cor-
responding receive on the receiving side. In practice, a posted send without a receive
might actually submit successfully without a negative acknowledgement, but never gen-
erate a completion notification on the sending side—this is the behaviour exhibited in the
benchmark program that was written for this report.

Data transfer operation types in Libfabric (and Verbs) can be broken down into the
following: Send, Receive, Read, Write, and Atomic. Send and receive operations are
the RDMA equivalents of the same socket operations with some semantic differences—
notably the lack of intermediate buffering as demonstrated in Figure 5. Read, write, and
atomic operations are known as one-sided operations. These still involve communication
between two peers, but they are named so because the target peer is not informed when
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the operation occurs [Opei]. The initiator of a read operation copies the contents of a
remote memory region into local memory, while write operations perform the opposite
task. Atomic operations allow the network adapter to perform atomic fetch-add and
compare-and-swap (CAS) operations on remote memory. This atomicity is only defined
at the library level; accessing a region of memory directly through a pointer could result in
non-atomic updates being observed [Opec]. Like regular atomics, one could use Libfabric
atomics to build higher-level constructs such as locks, mutexes, and semaphores. Unlike
the operating-system-provided counterparts, however, these atomics function over the
network. As such, they can be used for synchronization across multiple nodes. This makes
it suitable for writing code that maintains thread-safety even over distributed memory.

Submitting a data transfer request always returns immediately (when the system is
working normally, and if there are enough resources available). The previously mentioned
CQ in Section 2.4.1 is what informs the application once the transfer has been completed.
To optimize for message rates and latency, one could request data from the CQ in a busy-
wait loop. However, most applications have useful work which needs to be performed on
received data in any case. Instead of using resources to poll for completions, one could
only poll for data when computation is completed, leaving more processing time for useful
work. This is significant for RDMA transports because the data transfer is offloaded to
hardware; with TCP, the kernel still performs data transfer tasks with the CPU in the
background.

2.5.1 Parallelism

Multiple requests may be posted simultaneously to increase aggregate throughput. This
may be useful, for instance, when communicating with multiple peers simultaneously, or
when sending high-frequency streaming data. The former is often the case in distributed
parallel computing. In such cases the context parameter, an arbitrary 64-bit value, is
useful; when the completion queue is read, each send and receive can contain a different
context parameter to determine which transfers have completed from all of the previously
posted tasks.

Figure 6 demonstrates one method for how multiple messages may be sent and received
simultaneously using only the context parameter for directing completions to the correct
messages. In this example, a large memory region is sliced into several logical sub-regions
in which messages can be placed. Separately, a memory block is used to store context
information for each slice. Some additional context information is defined in the figure,
such as the intended target of the message. When a message send or receive request
is posted, the corresponding context is filled by the user with information relevant to
the user’s application, and provided as the context parameter in data transfer calls. For
instance, if the application intends to send data to 10 peers, the parameter targetAddr
may be set to the target address of each peer. When the provided context is then returned
in a completion, the application has information on which peer the transfer was completed
for.
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Logical Slot 0 1 n
Memory Region

Context 0 1 1
Context Storage Array

struct Context {
  bool inUse; bool direction; fi_addr_t target;
  size_t slotNumber; int referenceNum;
};

contains

fi_send(f->ep, f->mem, 16, fi_mr_desc(f->mem),
        f->peer, &contexts[0]);

used in

fi_cq_read(f->cq, cqe, 1);

returned by

((Context *) cqe)->slotNumber;

re
fe

rs
 to

refers to

"hello from peer"

Figure 6: Context parameter message tracking

3 Evaluation
3.1 Configuration

To evaluate Libfabric, a benchmark application was written, where two endpoints com-
municate with each other over various transports. A client sends arbitrary data to the
server, which receives it. Then, performance was evaluated based on the message size with
and without parallelism enabled. For serial runs, the application waits until each message
has been sent before sending the next message. In parallel runs, the application allows for
multiple messages to be sent simultaneously. For native InfiniBand, the parallelism level
is 64. For Omni-Path, it was set to 16. The number of messages sent per message size in
the benchmark varies from 200 to 2000, and the second half of the collected results are
used in the performance calculation. All of the different benchmark configurations and
operating modes may be found in the appendix in Section A.1.

A lower number of parallel transfers were required in Omni-Path due to the unreliable
data transfer behaviour above 16 transfers. This is likely due to the limited Omni-Path
acceleration capabilities relative to InfiniBand. The 16 parallel transfers correspond to the
16 SDMA engines on the network card, checked using the steps described in the manual
[Inta, p. 80-81]—this configuration reliably completed all benchmark runs.

3.2 Performance

The data transfer throughput results are shown with the benchmark application optimized
for throughput (i.e., asynchronous mode busy-wait polling). This uses 100% of at least a
single core when polling for data completions.

Detailed results for both systems can be found in the appendix in Section B. The
performance results for InfiniBand are shown in Figure 7. The categories on the X-
axis represent the message payload size in bytes, while the Y-axis represents the average
throughput in gigabits per second. The labels represent the transport, test type, and
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parallelism level, in that order. The peak network throughput is 100Gbps; further in-
formation regarding the system configuration may be found in the appendix in Section
A.2.
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Figure 7: Data transfer throughput (InfiniBand)

The performance results for Omni-Path with 100 Gbps networking are shown in Figure
8. Note that the throughput results are not directly 1:1 comparable between InfiniBand
and Omni-Path due to the different system configuration 6. The system configuration may
be found in Section A.3. There are three main methods to interact with the Omni-Path
fabric: via the native Libfabric PSM2 and OPX providers, or via Verbs. At the time of
this report, the OPX provider was missing a connection management system used by the
benchmarking application. Therefore, only the PSM2, Verbs, and TCP providers were
tested.

1 16 64 256 1K 4K 16K 128K 1M 8M 128M
0

10

20

30

40

50

60

70

80

90

100
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Figure 8: Data transfer throughput (Omni-Path)

Overall throughput with accelerated transports (Verbs, PSM2) was significantly higher
than that of regular TCP across the majority of test configurations. An exception to this
is when Verbs on Omni-Path is compared to TCP at small message sizes, which could
be due to the overhead of running a non-native transport combined with the background
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optimization performed by the Libfabric TCP layer, as well as the kernel itself. The
InfiniBand system has significantly more consistent performance relative to the Omni-
Path system. Above 1MB, the performance of Verbs over Omni-Path varies significantly
(cf. Table 1). This could be due to the translation overhead causing CPU resource
contention at larger parallelism levels and message sizes. There is little documentation
on this topic, however, one recommendation from a server vendor mentions this issue
[Len]. This theory also explains the drop in parallel performance before the drop in serial
performance, as there are more transfers for the CPU and network adapter to manage in
parallel mode.

Higher throughput at the same message size implies higher message rates, which is
shown in Figure 9. Message rates are calculated by dividing the number of messages sent
by the total runtime at each stage of the benchmark. The smallest message size, 1 byte,
is used to ensure that link bandwidth is not the limiting factor.
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TCP/Parallel 64x
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(b) Omni-Path

Figure 9: Message rates

The performance of Omni-Path on any transport other than PSM2 was relatively low.
While 126,000 messages per second might still be acceptably fast for many use cases, the
discrepancy in performance is significant compared to InfiniBand, which performs rela-
tively well regardless of the transport in use. However, it is possible that the newer kernel
version on the InfiniBand equipped system has received more performance enhancements
in the kernel network stack and associated drivers.

Another important factor to consider is CPU usage. In Figure 10, the serial data
transfer results from both message-rate optimized (Async) and CPU-usage optimized
(Sync) tests are compared with each other. The bars in the chart are stacked and represent
the amount of CPU-seconds the benchmark spent in each state. User represents time
spent in userspace, System represents time in the kernel, and Idle represents the time the
program was waiting without involving the CPU (e.g., waiting for data to arrive). The
sum of the stacked charts represents the total runtime of the program in seconds.
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Figure 10: CPU time results

Using an accelerated transport on both systems significantly improved runtimes rel-
ative to TCP. This was already apparent given the higher throughput. Instead, when
considering the actual amount of consumed CPU time (user + system), both InfiniBand
and Omni-Path consumed less actual processor time with accelerated transports relative
to regular TCP. The difference is significant: On the InfiniBand system, the synchronous
Verbs implementation consumed only 9.84% of the CPU time of the synchronous TCP
implementation. Likewise, on the Omni-Path system, it was 3.43%. The PSM2 transport
in Libfabric did not work reliably in sync mode. Surprisingly, there is only a very small
runtime benefit when using Verbs in async mode, with a significant increase in CPU us-
age. Therefore, users may want to use sync mode for large messages and async mode
for small messages, or when latency between receiving and processing a message must be
minimized.

This significant CPU time reduction could be useful in two main ways: more computing
power would be available for the user to take advantage of, which increases the amount
of work that can be done in the same amount of time. Otherwise, if the application is not
compute-bound (in user-space), more users are able to share the CPU time that would
previously be consumed by networking, increasing density and possibly reducing the total
number of servers required.

When all results are considered, Libfabric fulfils its claims of being high-performance
and demonstrates the reason why such libraries exist. As modern HPC networks continue
to improve in throughput, the use of an accelerated networking library will likely only be-
come more important over time. However, these results also show that although Libfabric
provides a unified interface for all of them, not all HPC transports are equal in terms of
capabilities. Very compute-heavy applications, which also require large amounts of data,
might benefit more from the use of InfiniBand over Omni-Path due to the lower CPU
overhead, and such decisions may have to be considered from a use-case, purchasing, and
return-on-investment perspective as well, rather than simply raw performance results.

3.3 Usability

For users that use MPI or scientific applications directly, changing the transport type
can be as straightforward as changing a runtime argument [The, § 11-12]. OpenMPI, for
instance, has integrated support for several high-performance transports via Libfabric, as
well as other libraries. At a higher level, an application such as GROMACS uses MPI
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[GRO], and can thus implicitly benefit from the faster transport when the underlying
MPI library is built with RDMA capabilities. Based on the performance results, users
can expect higher throughput for applications with very high message rates or bandwidth,
which could lead to a reduction in runtime if these were the limiting factors.

System administrators can also benefit from the performance advantages in the back-
end, such as with faster storage and reduced overhead, enabling higher compute efficiency.
However, support is often highly dependent on the application in use. Experimental sup-
port for such transports in Ceph would likely be ill-suited for a production HPC storage
cluster if reliability is of importance. In addition, due to the lack of available documen-
tation and limited support, debugging performance issues that could have cluster-wide
impacts is likely to be more complex and could result in longer maintenance downtimes.
This could present an unacceptably high risk for time-sensitive applications: the weather
forecast for tomorrow may not be particularly interesting when delivered next week, and
significant operational impacts could occur to a business with non-functional storage.
However, middleware such as MPI, used by users directly or by higher-level applications
in which the intended targets are HPC users, often support libraries such as Libfabric in
the backend, and could be a more maintainable solution. As these libraries and end-user
applications often have multiple transports that can be switched by the user, a failed
transport type due to incomplete support or mismatched software versions can be mit-
igated by switching the transport type in use (e.g. from native InfiniBand to TCP/IP
over the same InfiniBand network). Although this would result in degraded performance,
this could be preferable to complete downtime while the issue is being addressed.

Viewing the interfaces from a developer’s perspective—those developing middleware
such as MPI, as well as standalone applications such as Ceph that cannot rely on MPI
and have previously implemented RDMA support from scratch using the Verbs interface
[Cepa]—is where usability issues with Libfabric, Verbs, and similar interfaces are the
most apparent. Getting good performance from an accelerated transport does not only
consist of using these libraries without consideration. Rather, the tight coupling of the
application’s functionality with the networking library, as well as an understanding of
the limitations of individual transports, are required for the best results. The proof
of concept program written in this report is significantly longer, with large amounts
of boilerplate code, relative to an equivalent program written with regular sockets. In
particular, the quirks of each transport must be managed by the programmer: different
addressing formats, transport requirements, environment variables, and required resources
must be handled on a transport-by-transport basis. In the case of the program written
for this report, independent code paths were added specifically to enable partial support
for the PSM2 transport. Thus, some of the benefits of using a unified library such as
Libfabric relative to a transport-specific library such as Verbs might be limited by the
difficulty in actually working with these additional transports. These issues are known,
however, and are slated to be addressed in a future Libfabric release [Sea].

Making use of RDMA effectively is also made more difficult by the lack of available
documentation, both in terms of interface documentation and code samples. While the
Libfabric documentation contains descriptions of its functions, information on how to
combine these functions into a usable program is sparse. This is especially the case when
using less common transports such as Omni-Path. While this situation is somewhat bet-
ter with Verbs, as the documentation provided by Mellanox is more extensive [Melb], the
level of support available from public resources and community support falls short relative
to regular socket programs. Socket-based programs also have a more diverse ecosystem of
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software unrelated to HPC. One can easily find TCP and UDP networking code used in
smart devices, games, and web browsers; the software landscape for Libfabric or Verbs-
powered software is comparatively small. Thus, the barrier to entry for developers is
relatively high. As demonstrated in the performance results in Figure 7, supported hard-
ware in combination with high-performance networking software is required for optimal
performance, and significant additions or changes are required to existing codebases—
additions that may not be maintainable in the long term. The GlusterFS file system
dropped support for RDMA transports as a result [Glu], while Ceph documentation for
using its InfiniBand Verbs support is sparse due to its experimental nature [Cepb]. File
systems such as Lustre with a specific focus on HPC, however, have official support for
fully-offloaded transports [Lus].

Therefore, the limitation of support to mostly HPC applications suggests that it could
only make sense from a cost and developer resource allocation standpoint to program
codepaths for high-performance networks when the software is expected to run primarily
on HPC clusters. Based on the gathered results, a file transfer program used by regular
users on slower networks (i.e., under 10 Gbit/s) might see little to no benefit: with
messages 16K or higher in size, the TCP/UDP stack is not a bottleneck at such speeds.

Regardless, these libraries are still powerful tools for high-performance communication
in and outside of the HPC space that can be taken advantage of by developers. It provides
clear performance benefits when used correctly, especially with modern high-performance
datacenter networks reaching as high as 400Gbps of throughput. In such cases, the use
of accelerated networking protocols that these libraries enable is necessary for taking full
advantage of the network’s capabilities and justifying the hardware costs.

4 Conclusion
From a raw performance standpoint, libraries such as Libfabric and Verbs that allow for
direct access to supported networking hardware are extremely powerful and can be useful
in applications limited by communication performance. Especially at high throughput,
message rates, or both, the use of offloaded transports showed clear performance advan-
tages over TCP, as well as an over ten-fold decrease in CPU utilization.

However, these libraries fall short in terms of usability. Documentation is especially
limited, which exacerbates the usability issues of an already complex and relatively niche
library. Middleware designed with HPC in mind, such as OpenMPI, have integrated
support for Libfabric transports, which, if the application can take advantage of it, mostly
abstracts the usability problem away from end-users. However, applications that cannot
rely on such layers, such as storage applications, are left to interface with the lower-level
libraries directly. Therefore, the high level of expertise required in combination with
the lack of documentation likely limits the potential benefit of these libraries. Several
applications exist that do not use Libfabric or a similar library, despite the performance
benefits and use cases, and the examples demonstrated in this report have shown that
complexity and maintainability are contributing factors to this issue.

It is possible that if new libraries emerge, or if existing libraries become more straight-
forward to use, more widespread adoption of the technologies detailed in this report would
be enabled.
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A Benchmark Configuration
A.1 Run Configurations

There are 5 different parameters tuned between different benchmark runs: parallelism
level, synchronous mode, and long test mode. The parameters have the following mean-
ings:

• Parallelism level: The maximum number of in-flight, unconfirmed messages

• Synchronous mode: Whether the application polls in a loop for data completion or
blocks until one is received

• Long test mode: Send large (128MB) blocks of data only. Otherwise, various mes-
sage sizes are tried, from 1 byte to 128MB.

Certain providers (transports) are limited in terms of functionality, so certain features
and parallelism levels were disabled. All combinations of enabled functionality were tried.

• PSM2: Parallelism levels 1+16, sync mode off 7, long test mode on+off

• Verbs on Omni-Path: Parallelism levels 1+16, sync mode on+off, long test mode
on+off

• Verbs on InfiniBand: Parallelism levels 1+16+64, sync mode on+off, long test mode
on+off

• TCP on Omni-Path: Parallelism levels 1+16+64, sync mode on+off, long test mode
on+off

• TCP on InfiniBand: Parallelism levels 1+16+64, sync mode on+off, long test mode
on+off

The average of 3–4 benchmark runs (depending on result consistency) were taken to
produce the results shown in the evaluation benchmark section. The benchmarks were
conducted on two separate nodes: one as the client, one as the server, with the following
configurations.

The number of messages sent during the test for message sizes of 1 byte–1 MB is 2000,
8MB is 1000, and 128MB is 200. For the long test mode, 1000 128MB messages were
sent, but the latest 90% of results are considered rather than 50%.

A.2 InfiniBand Benchmark Node Configuration

Results were gathered on the HAICGU cluster of the University of Frankfurt [Opea] on
the ARM nodes with exclusive access.

Processor Kunpeng 920, 64 cores x 2 sockets, no SMT
Operating System Rocky Linux 8.8
Kernel Version 4.18.0-477.27.1.el8_lustre.aarch64
Libfabric Version 1.20.0 (compiled from source)
Compile Options Verbs, TCP, RXM
Network Adapter Mellanox ConnectX-5
Network Configuration 100Gbps InfiniBand
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A.3 Omni-Path Benchmark Node Configuration

Results were gathered on the GWDG SCC [Ges] on the “amp” nodes with exclusive access.

Processor Intel Xeon Platinum 9242, 48 cores x 2 sockets, no SMT
Operating System Scientific Linux 7.9
Kernel Version 3.10.0-1160.95.1.el7.x86_64
Libfabric Version 1.20.0 (compiled from source)
Enabled Transports PSM2, Verbs, TCP, RXM
Network Adapter Intel Omni-Path HFI100
Network Configuration 100Gbps Omni-Path

B Results
The following tables contain a subset of the gathered performance data from both clusters.
The raw dataset is provided with the supplementary materials included with this report.
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Throughput Message Rate Std. Deviation
Parameters mbit/sec x1000 msg/sec Relative SD %

Parallelism Size PSM2 Verbs TCP PSM2 Verbs TCP PSM2 Verbs TCP

1

1 21.49 1.01 1.51 2686.57 126.44 188.87 0.40 8.16 35.92
16 37.08 16.18 24.79 289.71 126.37 193.63 0.78 8.33 46.23
64 148.17 64.18 91.82 289.39 125.36 179.35 0.43 7.93 41.38

256 571.32 224.56 336.79 278.96 109.65 164.45 1.54 8.89 36.73
1024 2160.95 852.39 1011.73 263.79 104.05 123.50 0.14 8.61 18.21
4096 7301.00 2908.30 3671.95 222.81 88.75 112.06 0.10 7.18 1.55

16384 16315.10 6852.23 8440.31 124.47 52.28 64.39 0.77 8.12 7.62
131072 45104.09 18044.73 7925.56 43.01 17.21 7.56 1.86 8.64 1.63

1048576 85687.27 65592.73 14712.07 10.21 7.82 1.75 0.79 1.50 1.31
8388608 95646.36 82628.44 18246.00 1.43 1.23 0.27 0.06 1.43 2.38

134217728 98273.86 36223.65 16291.09 0.09 0.03 0.02 0.12 0.53 1.20

16

1 33.06 2.88 3.06 4132.57 359.44 382.06 0.13 15.45 88.41
16 392.69 46.34 31.38 3067.87 362.05 245.12 0.62 15.00 28.25
64 1632.21 181.66 199.72 3187.92 354.80 390.08 1.00 14.77 86.72

256 6113.15 754.25 477.82 2984.94 368.29 233.31 1.61 11.18 36.45
1024 20401.04 2983.14 2380.67 2490.36 364.15 290.61 3.31 10.77 38.74
4096 52913.52 11348.85 4787.17 1614.79 346.34 146.09 0.35 10.88 17.56

16384 49704.76 20142.44 9982.30 379.22 153.67 76.16 0.16 4.08 2.45
131072 95590.27 21866.03 13756.34 91.16 20.85 13.12 0.69 6.73 9.28

1048576 99033.03 81578.92 17103.14 11.81 9.72 2.04 0.15 3.34 17.80
8388608 96260.99 59878.69 17597.89 1.43 0.89 0.26 3.86 31.09 18.60

134217728 98175.08 36386.25 16295.96 0.09 0.03 0.02 0.28 0.21 1.30

64

1 6.80 850.35 8.97
16 62.21 486.04 62.46
64 131.72 257.26 21.54

256 726.73 354.85 76.95
1024 2177.56 265.82 10.52
4096 5449.44 166.30 1.94

16384 10421.15 79.51 2.22
131072 14512.02 13.84 1.36

1048576 19163.31 2.28 1.41
8388608 19393.98 0.29 2.77

134217728 16627.83 0.02 2.03

Table 1: Omni-Path message rate benchmarks
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Throughput Message Rate Std. Deviation
Parameters mbit/sec x1000 msg/sec Relative SD %

Parallelism Size Verbs TCP Verbs TCP Verbs TCP

1

1 3.90 6.38 487.94 797.79 0.46 8.08
16 61.66 116.31 481.73 908.68 3.23 3.89
64 250.72 455.79 489.69 890.21 0.78 4.30

256 858.44 1630.90 419.16 796.34 0.17 3.24
1024 3074.93 5687.94 375.36 694.33 7.12 2.54
4096 9748.05 15227.70 297.49 464.71 1.95 29.06

16384 22605.80 21518.23 172.47 164.17 0.24 9.36
131072 43975.58 31009.95 41.94 29.57 1.69 6.30

1048576 90636.79 28458.38 10.80 3.39 0.02 9.73
8388608 97982.20 26517.61 1.46 0.40 <0.01 5.57

134217728 99065.15 21276.38 0.09 0.02 <0.01 3.47

16

1 12.89 7.87 1610.64 983.84 2.23 6.61
16 208.92 154.05 1632.19 1203.51 2.14 1.80
64 813.19 637.81 1588.26 1245.71 0.43 1.26

256 3346.21 1976.36 1633.89 965.02 0.45 3.75
1024 4039.31 7342.31 493.08 896.28 0.61 4.75
4096 15731.27 22099.77 480.08 674.43 0.79 6.32

16384 47310.2 23668.91 360.95 180.58 0.55 7.86
131072 46405.65 29516.79 44.26 28.15 3.31 30.90

1048576 98379.76 29178.87 11.73 3.48 0.12 4.54
8388608 99053.74 28009.94 1.48 0.42 <0.01 0.24

134217728 99134.13 21154.73 0.09 0.02 <0.01 3.31

64

1 13.11 9.75 1639.37 1218.56 0.93 10.52
16 215.40 159.55 1682.79 1246.49 0.29 6.30
64 839.99 690.88 1640.60 1349.38 1.35 3.28

256 3208.22 2065.83 1566.51 1008.70 0.78 4.89
1024 10037.24 7654.52 1225.25 934.39 4.86 3.33
4096 26636.63 23518.47 812.89 717.73 3.01 8.80

16384 46248.73 21070.44 352.85 160.75 0.54 18.19
131072 46149.34 26763.02 44.01 25.52 0.45 25.70

1048576 98789.72 23493.17 11.78 2.80 0.01 29.12
8388608 99097.11 27912.66 1.48 0.42 <0.01 7.22

134217728 99137.27 21005.58 0.09 0.02 <0.01 3.53

Table 2: InfiniBand message rate benchmarks
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Transport
Parameters PSM2 Verbs TCP

Mode Parallelism User Sys Idle Time CPU User Sys Idle Time CPU User Sys Idle Time CPU

Async
1 1.97 1.46 0.31 3.74 91.72% 7.24 0.30 0.37 7.92 95.33% 4.03 14.67 0.34 19.05 98.20%

16 1.31 2.02 0.31 3.64 91.48% 6.63 1.81 0.35 8.80 95.96% 4.24 14.93 0.35 19.51 98.22%
64 4.54 15.37 0.35 20.25 98.27%

Sync
1 0.16 0.49 7.84 8.49 7.67% 0.20 7.83 9.13 17.15 46.79%

16 0.26 1.20 7.07 8.52 17.05% 0.42 8.01 9.04 17.46 48.27%
64 1.15 8.72 9.23 19.11 51.66%

Table 3: Omni-Path runtime benchmarks

Transport
Parameters Verbs TCP

Mode Parallelism User Sys Idle Time CPU User Sys Idle Time CPU

Async
1 3.14 0.10 0.05 3.29 98.58% 6.04 7.22 0.02 13.28 99.85%

16 3.10 0.18 0.04 3.33 98.70% 6.22 6.86 0.02 13.09 99.87%
64 3.09 0.42 0.06 3.57 98.41% 5.92 7.56 0.02 13.50 99.85%

Sync
1 0.10 0.18 3.11 3.39 8.26% 0.06 2.78 12.66 15.51 18.38%

16 0.10 0.21 3.02 3.33 9.30% 0.06 2.67 12.50 15.23 17.92%
64 0.10 0.42 3.04 3.57 14.75% 0.04 4.09 9.23 13.36 30.55%

Table 4: InfiniBand runtime benchmarks

Definitions
User Seconds spent in userspace
Sys Seconds spent in kernel space
Idle Seconds waiting for data without CPU involvement
Time Total wall-clock runtime
CPU The percentage of time the CPU was active during the test
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C Endnotes
1. The term “fabric” can often be seen when describing computer networks in general. In the context of this

report, however, it is mostly used to refer to high-performance computer networks.

2. The example is simplified. If built with this capability, Libfabric supports emulation of RDM endpoints
for DGRAM (datagram) and MSG (connection-oriented) endpoints using the RXD [Opej] and RXM
[Opek] utility providers; often these are also returned as layered providers, e.g “verbs;ofi_rxm”.

3. It is possible to use a counter instead of a CQ, which only provides the number of completed transfers,
not which transfers have completed. The reasons to choose a CQ over a counter object or vice versa are
complex and out of the scope of this report.

4. Operating on graphics memory or the memory of other devices in the system is also possible, but outside
of the scope of this report. See GPUDirect RDMA [NVIb] for details.

5. Modern RDMA-capable network adapters have a feature known as On-Demand-Paging, where explicit
memory registration is not required. However, there are certain limitations and issues to consider before
the use of this feature. Details of this feature are outside of the scope of this report. See [NVIa] for
details.

6. In particular, the architectures (x86 vs. ARM) as well as the specifics of each system’s design makes
direct comparison beyond rough trends difficult. Factors such as system memory bandwidth limitations,
slower interconnect bandwidths, CPU performance, and varied inter-core/inter-chip latency can affect
gathered results. Therefore, systematic errors will manifest differently on each system.

7. In testing, the Libfabric PSM2 transport does support synchronous operation to some extent, even though
this is not a recommended configuration. However, the latency can be extremely unreliable and tests
have spuriously failed to complete during benchmark runs. According to the Libfabric documentation
[Intb], “The psm2 provider requires manual progress. The application is expected to call fi_cq_read or
fi_cntr_read function from time to time when no other libfabric function is called to ensure progress is
made in a timely manner. The provider does support auto progress mode. However, the performance
can be significantly impacted if the application purely depends on the provider to make auto progress.”.
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