
SH

∞

Seminar Report

Performance Evaluation of BeeGFS
Under Node Failure Condition

Surendhar Muthukumar

MatrNr: 28131609

Supervisor: Dr. Freja Nordsiek

Georg-August-Universität Göttingen
Institute of Computer Science

March 31, 2024

Abstract
BeeGFS is a leading softwware-based parallel file system that is mostly developed with
concentration on high performance computing. Fundamentally, beegfs combines multiple
storage nodes to create a highly scalable file system that can be mounted and used by
the clients in a parallel access manner. Striping of file contents, distribution of file system
metadata over multiple nodes (typically servers), data mirroring, flexibility over kernel
distribution, automatic switching mechanism between RDMA and TCP/IP network con-
nections are some of the key features of BeeGFS that makes it more efficient and fault
tolerant. Since BeeGFS was designed in considerations for performance and parallel file
access, the following work is concentrated towards testing the performance of a simple
Beegfs setup under node failure conditions to analyse the degradation of the performance
in this situation. Distinctive to other performance evaluations on file systems under per-
fect working/ stable condition, this study concentrates on the performance of system under
node failure conditions. Artificially induced node failure is used here on the experimental
setup to simulate node crash. The performance tests run by open-source benchmarking
software elbencho reveal the extent of performance degradation under study scenario. The
experimental setup, tuning conditions, benchmarking analysis will be explained in detail
in this report.

i

Declaration on the use of ChatGPT and comparable tools
in the context of examinations

In this work I have used ChatGPT or another AI as follows:

□ Not at all

□ During brainstorming

✓□ When creating the outline

□ To write individual passages, altogether to the extent of 0% of the entire text

□ For the development of software source texts

✓□ For optimizing or restructuring software source texts

□ For proofreading or optimizing

□ Further, namely: -

I hereby declare that I have stated all uses completely.
Missing or incorrect information will be considered as an attempt to cheat.

ii

Contents

List of Tables iv

List of Figures iv

List of Abbreviations v

1 Introduction 1
1.1 Scalability, Availability and Performance 1
1.2 Study Goal . 2

2 Architecture 2
2.1 BeeGFS services . 2

2.1.1 Management service . 3
2.1.2 Metadata service . 3
2.1.3 Storage service . 3
2.1.4 Client service . 4

2.2 Tuning and configuration features . 4
2.2.1 File striping . 5
2.2.2 Buddy mirroring . 5

3 Performance analysis system setup 5
3.1 System Architecture . 5
3.2 Host SSH setup . 6
3.3 Node setup . 7

3.3.1 Management node setup . 7
3.3.2 Metadata service setup . 8
3.3.3 Storage service setup . 8
3.3.4 Client service setup . 8
3.3.5 Configuring buddy mirrorgroups . 9
3.3.6 Directory stripe pattern configuration 9
3.3.7 System connectivity check . 10

4 Benchmarking the Filesystem 11
4.1 Node failure simulation . 11
4.2 Elbencho benchmarking . 11
4.3 Benchmarking parameters . 12
4.4 Performance evaluation . 12

4.4.1 Performance difference on mirroring 12
4.4.2 Performance difference during node failure 13
4.4.3 Performance during node re-synchronization 14

5 Conclusion 15

References 16

A Elbencho scripts 17

iii

List of Tables
1 Benchmarking statistics on mirroring . 13
2 Benchmarking statistics on mirroring . 14
3 Benchmarking statistics on node re-synchronization 14

List of Figures
1 BeeGFS Architecture Overview [10] . 3
2 Custom BeeGFS system architecture for Benchmark study 6
3 Openstack port security rules for Instances 7
4 Storage targets buddy group details . 9
5 Server connectivity status of the BeeGFS file system used for performance

study . 10
6 Storage targets and Mount directory statistics 10
7 State and availability of storage targets . 14
8 Performance comparison chart of the file system under different system state 15

iv

List of Abbreviations
PFS Parallel File System

IO Input Output

HPC High-Performance Computing

VM Virtual Machine

RDMA Remote Direct Memory Access

POSIX Portable Operating System Interface

TCP/IP Transmission Control Protocol / Internet Protocol

GWDG Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen

RHEL Red-Hat Enterprise Linux

v

Performance Evaluation of BeeGFS Under Node Failure Condition

1 Introduction
Parallel file system enables simultaneous access to the underlying storage nodes by mul-
tiple clients at the same time. Clients can store and access data across the network con-
nected storage nodes by using parallel IO paths [6] [12]. High Performance Computing
utilizes PFS’s parallel data processing property to store and retrieve data for processing.
Unlike supercomputers, HPC facilities rely on distributed storage and resources for pro-
cessing. Latency and uninterrupted data access from the storage to compute resources are
crucial. The underlying simultaneous multiple access property of PFS correlates to HPC
storage needs and hence PFS are most popular to be used for HPC. Multiple software
based PFS are available with enhanced features in addition to above mentioned basic
functionality.

BeeGFS is a leading open-source software based parallel cluster file system developed
initially for High Performance Computing (HPC) [7]. Due to its benefits of scalability,
flexibility and availability it is used in almost many fields.. BeeGFS notably distributes the
data across multiple configured servers, enabling capacity and performance aggregation.
Data being read and written to the servers are split into stripes to reduce the network load,
reducing the possibility of network bottlenecks and bandwidth issues in general. BeeGFS
supports in-built mirroring to create buddy groups of the storage target to enable data
replication across selected targets of the servers for preventing data loss during node
crashes, also enabling load balancing across the servers. User data spread across multiple
servers and disks are aggregated into a single namespace for shared access.

BeeGFS can be applied on any commodity off the shelf hardware to create paral-
lel file system as it is POSIX compliant. Generally HPC facilities use high bandwidth
RDMA-based interconnects between the servers/nodes for faster inter node communica-
tions. RDMA-based and TCP/IP based client server communications are available to be
used through BeeGFS. Separation of metadata and the user data enables faster look up
of data while enabling storage level abstraction of metadata and the actual chunks of user
data.

1.1 Scalability, Availability and Performance

BeeGFS is developed with the main focus on providing highly available, scalable and
performance centric PFS. While users generally face bottlenecks on performance and
availability due to single server-single interconnect based file access, BeeGFS allows com-
bining multiple storage servers to configure and provide a better file system. In BeeGFS,
actual user data and metadata are separately stored in different nodes and managed by
different services. Data chunks are stored as stripes of specific size that shall be defined
by the system administrator according to the available interconnect capacities or left to
be the default 512KB. Striping of data allows for easy distribution of the data throughout
the available servers while reducing the network traffic.

While accessing the stored data, BeeGFS clients directly contact the storage servers
without any intermediate routing service reducing the network demands. Information on
which server to be contacted is stored separately in the metadata servers, once the meta-
data server provides the client with the information on storage server to be contacted,
the communication between the metadata server and client is disabled. Further commu-
nications are done between the storage and the client. Performance is enhanced as the
clients can jump between the servers containing the data of interest, reducing the network

Section 1 Surendhar Muthukumar 1

Performance Evaluation of BeeGFS Under Node Failure Condition

traffic to single storage server, enabling the load balance. Data striping allows for creating
data packets of desired size, enabling control over the size of data transmitted over the
network which can aid the performance. Additionally, buddy groups of target data, serve
as backup servers under node failure conditions and also aid for parallel file access.

1.2 Study Goal

Previously performed studies on the IO performance of the BeeGFS based file systems
were concentrated on testing out performance factor of the same for specific application,
specific resources and use cases. The studies were highly problem and product oriented
[2] [5] [3]. There is a lack of studies that discuss about the performance of the system
under node failure condition where promises on high availability are made. Hence this
study is primarily designed to analyse the performance of the system under node failure
conditions through simulation of node failure on a study setup.

2 Architecture
BeeGFS architecture is composed of services. Tuning of the provided services offers cus-
tom benefits during deployment..Understanding the individual services and tuning options
is essential to setup an efficient user space file system to satisfy the desired needs. Choice
of mapping underlying storage hardwares, resources to BeeGFS services can have varied
effect on availability and performance. Tuning and configurational features available for
different services provide an additional layer of flexibility on optimization of performance,
scalability, availability, latency on top of the preferred mapping.

2.1 BeeGFS services

BeeGFS based parallel file system has 4 main architectural services that help to run,
maintain and keep system function, they are:

• Management service -Registry and manager of other running beegfs services

• Metadata service - Stores access permission and striping information

• Storage service - Stores the user file contents

• Client service - Mount the file system to access the data [7]

In addition to the above key components, there is additional beegfs-helperd service
and beegfs-utils, which are additional packages that provide command line tools, helpers.
Beegfs-helperd service is run on the client nodes for providing logging and DNS lookup
functionality. Beegfs-utils provides the command line tools that reports the statistics and
perform administrative tasks [1].

Figure.1 depicts a simple file system where the services are running on individual
servers. Different services communicate internally to keep the system running and satisfy
the client requests. Architectural configuration of a custom BeeGFS file system is highly
flexible, usually according to the underlying need. Services shall be configured to run on
dedicated nodes or combined to run on same node.

Section 2 Surendhar Muthukumar 2

Performance Evaluation of BeeGFS Under Node Failure Condition

Figure 1: BeeGFS Architecture Overview [10]

2.1.1 Management service

Management service orchestrates the BeeGFS based file system. Management service can
communicate with all other running services and check their individual state. In addition
to orchestration, management service acts as the registry that stores the configured ser-
vices along with their state. It is a gateway point where all the services meet. Being light
weight management service does not need dedicated hardware to be instantiated, but the
choice of dedicated resource is use case and user dependent. Since this service holds track
of the other services, in a file system the management service has to be configured first.

2.1.2 Metadata service

Metadata service holds information about the data strips of the files. Important data
information includes directory information, file and directory ownership and location of
the file in underlying physical storage. Information about the location of a file is provided
to the client through the metadata service when the client tries to access any file. After
receiving the information, client connects to respective storage target and further com-
munication to metadata service is done only while the client wants to access another file
or data. Metadata distribution can be enabled by setting up multiple metadata service
nodes.

Each configured service shall hold their exclusive part of the namespace. Metadata
services have individually atmost one metadata storage target to store the file information.
For efficiency and performance consideration, each user file will have one metadata file
of ext4 file format in the target. Unlike a single metadata database, BeeGFS metadata
service holds metadata in ext4 file system which is based on RAID1 or RAID10.

2.1.3 Storage service

Actual user file chunks are stored in the storage targets governed by storage services.
Storage services are expandable like the metadata services. Unlike metadata service,

Section 2 Surendhar Muthukumar 3

Performance Evaluation of BeeGFS Under Node Failure Condition

storage service can have multiple storage targets. Storage node tuning provides options
to optimize the traffic on storage targets. BeeGFS storage services are cache enabled and
by default BeeGFS uses all the available RAM of the storage node for caching, except
those used for active process. Cache also enables aggregation of multiple small IO requests
to a bulk process before performing the read/write operation on the disks. Cache enabled
storage nodes benefit from better interconnects used for network. Cache benefit can be
utilized with a network interface with higher or equal data transfer speeds than RAM
architecture.

BeeGFS picks storage targets in a random manner. This method has been observed to
perform well in multi-user environment where the file system would handle a mix of large
and small files from different clients concurrently. But this can give rise to a problem
of depleting particular storage target space soon when by random most of the time a
single disk is being chosen. To prevent this, BeeGFS has 3 different labels for the free
storage capacity on the targets: normal, low and emergency. The target chooser program
running on the metadata service chooses the target with the label normal. The low and
emergency labels are assigned for the nodes with very less free space, these free space
threshold can also be custom defined in configuration. Target chooser would avoid these
critical capacity labelled services until all other services have also entered the critical label
state. Additional changes to storage service can be done by modifying the configuration
file : beegfs-storage.conf.

2.1.4 Client service

BeeGFS client service must be implemented on the client nodes in order to mount and
utilize the shared file system directory. Client service must run on all the client nodes
that wish to access the shared file system. BeeGFS client service comes with linux kernel
module, that provides interface between BeeGFS client software and the client node op-
erating system’s native file system. This module handles file system operations and the
communication between client and the user space. Additional userspace helper daemon
called beegfs-helperd service is utilized by client for DNS lookups and log file maintenance.
This helper service is not incorporated into the client service by default, hence this has
to be additionally configured in the client nodes.

When the client node is booted and the service is running on the respective node, it
mounts the file system directory defined in the mount configuration file beegfs-mounts.conf.
When client wants to read/write to a file, it communicates with the metadata service first,
orchestrated by the management service. After receiving the file specific metadata infor-
mation, the client directly communicates to the storage service to access the data stored in
the disks. Pipe-lining of service through many intermediate systems is resolved in BeeGFS
based user spaces. Further changes on behaviour of client service and customization can
be done through modifying the configuration file : beegfs-client.conf.

2.2 Tuning and configuration features

Being a high performance file system, BeeGFS provides features for optimization of per-
formance and availability. Multiple tuning and configuration features offer customization
over default service definitions, that aid in performance and resource usage optimization.
Users generally fine tune the services and configure the services with provided feature
enhancements like file striping, mirroring, quota allocation, metadata distribution, stor-
age pool configurations [1]. In this study, custom decisions have been performed on file

Section 2 Surendhar Muthukumar 4

Performance Evaluation of BeeGFS Under Node Failure Condition

striping and mirroring to customize performance, availability.

2.2.1 File striping

Parallel file system utilize the file striping functionality to strip the user file into multiple
chunks and store it in different servers than putting one file in one server. Distribution
of the file chunks enable higher bandwidth, as more users could access the file chunks
from different storage servers. Aiding to the bandwidth, the network load sent to a
server could also be reduced when a certain file of interest is fetched by multiple users
simultaneously, hence the load balancing is partly achieved through striping. In BeeGFS,
custom stripe pattern can be set to individual directories and even individual files such
that the chunk size can be customized and this might allow to adapt to the network
resources available. Stripe pattern combined with buddy mirroring (explained in section
2.2.2) enables enhanced replication of user data with improved availability.

2.2.2 Buddy mirroring

Mirroring is the replication of logical disk volumes into separate configured storage devices
for better data availability and reduce loss of storage data under node failure [11]. In
BeeGFS mirroring is not equivalent to backup, as the data replication is generally not
time stamped snapshots of data. The data is simply replicated between the configured
nodes, hence if data on one server node is modified , it is automatically reciprocated into
the other. Mirror buddy groups should be defined in BeeGFS to use mirroring, this can
be done either manually or automatically. In manual method individual storage target
IDs are mentioned to create a group. In the automatic method, BeeGFS assign random
targets to a group. Mirror buddy groups are identified through numeric IDs. The buddy
group consists of a primary and a secondary target, where primary target is used for data
IO operations by default. Data modifications are replicated into the secondary target.
When the primary target enters into failure mode, the management service identifies the
failure and makes the secondary target as primary until the actual primary target state
is restored. After the failed node is restored, re-synchronization of data happens between
the nodes.

3 Performance analysis system setup
This study involves setting up a small scale BeeGFS based file system to perform bench-
marking under artificially simulated node failure condition. Virtual machines instantiated
through OpenStack cloud computing platform through GWDG Academic service is used
as nodes for setting up and running the individual beegfs-services.

3.1 System Architecture

The small scale system used for this study involves 1 management service, 2 metadata
services (where one of the metadata service run on the same node as management), 4
storage services with 1 target each, 3 client services. One of the client service is run
on the management service node to facilitate visualization of the system statistics and
connections through the client features. The OpenStack virtual machines are used as

Section 3 Surendhar Muthukumar 5

Performance Evaluation of BeeGFS Under Node Failure Condition

hosts for the services, which run CentOS 8. All the VMs are set to have 2 GB of RAM
and 20 GB SSD storage. Hence as a whole 8 VMs were used to setup the file system.

Figure 2: Custom BeeGFS system architecture for Benchmark study

Figure 2 shows the underlying system architecture used for performance analysis.
Individual hosts are instantiated as VMs. The VM: Masterbgfs is the central manager
host that runs the management service, along with the first metadata service and a client
service. A second metadata service is setup in different host named Meta2. Likewise the
rest 2 client service and 4 storage services are setup in individual VM. Storage, metadata
and client services shall communicate to the management service through underlying
ethernet network. Additionally, management service can communicate to the internet,
which acts as gateway for all other nodes to access internet.

3.2 Host SSH setup

Individual nodes must be able to communicate with other nodes that run the services to
start booting and perform tasks. Hence an internal network must to configured. This
internal network setup and the communication is orchestrated by the management service
in BeeGFS service level, but the node level communication should be handled manually
so that management host can reach other hosts without any interruption and vice versa.
Individual service nodes can be reached from the management node through ssh. For
facilitating ssh connection, a ssh-config file is created in the management host. The
config file with IP addresses of the other service node with their respective key is created,
such that when ssh-ed into the other host of interest, this config file is read and the system
knows which key shall be used for the mentioned host [8]. Additionally, each service host
is assigned a name by modifying the \etc\hosts file to skip the use of entering the IP
address during every ssh attempt.

Management host in our study system is connected to the internet for external com-
munication purposes. By default openstack instances have port security enabled, hence
incoming communication requests from external network is blocked for security reasons.

Section 3 Surendhar Muthukumar 6

Performance Evaluation of BeeGFS Under Node Failure Condition

This port security blocks all the communication requests from other service hosts to the
management. Hence the port security in the management node must be configured in a
way that the system only communicates to specified external IP addresses (in our case the
IP addresses of service hosts). Since the service hosts belong to a subnet, the subnet shall
be mentioned as trusted external hosts to be allowed by the management host’s port secu-
rity for incoming communications. Defined rules for the management host can be seen in
figure 3, where the incoming requests are allowed only from a trusted subnet with address
belonging to 10.254.1.0/24. Since the other service nodes are not connected to internet,
the port security is disabled and by default only management host can communicate.

Figure 3: Openstack port security rules for Instances

3.3 Node setup

As the first step after the physical host instance setup, BeeGFS services are installed in
every individual host to start respective services. The hosts use RHEL 8 based distribu-
tion. Individual nodes are accessed through SSH. BeeGFS package for the respective linux
distribution is downloaded from the official BeeGFS package repository. For RHEL based
system below command is used in the command line interface to download the package.

\$ wget -O /etc/yum.repos.d/beegfs_rhel8.repo
https://www.beegfs.io/release/beegfs_7.4.2/dists/beegfs-rhel8.repo

3.3.1 Management node setup

Management service is installed in the management node using the standard yum in-
stallation command yum install beegfs-mgmtd. The management service obtains the
local host name masterbgfs and the Ip_Address of the management host is added to
the \etc\hosts list of all other nodes. Since our management node also hosts one meta-
data and a client service, these services are also installed in the same way as before yum
install beegfs-meta beegfs-client. beegfs-helperd and beegfs-utils service are installed
for assistance on viewing system statistics. When individual services are started using the
command systemctl start, the system reads the respective .conf file to perform service
specific configuration tasks that are predefined by BeeGFS based on the parameter values
in the configuration file. Customization of service startup is done through configuration
file modification. Before staring the management service, the storage location for node
information should be defined using below command:

\$ /opt/beegfs/sbin/beegfs-setup-mgmtd -p /data/beegfs/beegfs_mgmtd

Section 3 Surendhar Muthukumar 7

Performance Evaluation of BeeGFS Under Node Failure Condition

Management service needs to be setup and started first as it is the primary reg-
istry service. Once the service is successfully started, a connection authentication file is
generated through the following command.

\$ dd if=/dev/random of=/etc/beegfs/connauthfile bs=128 count=1

This connection authentication file: connauthfile is used like a shared secret between
the nodes/hosts that run the services to authenticate itself to other nodes in the internal
BeeGFS network. Connection authentication file can be shared between the nodes using
scp, secure copying command. All other nodes are instantiated and configured in a way
that they are accessible through ssh from the management node for easy maintenance and
data transfer between the nodes. The metadata and client service in the management host
is setup as explained in the sessions below.

3.3.2 Metadata service setup

Metadata service is installed in the node. Storage target must be defined to store metadata
in this node. After service installation, storage target is setup using below command:

\$ /opt/beegfs/sbin/beegfs-setup-meta -p /data/beegfs_meta -s 2 -m
masterbgfs

Once the target is successfully created and the connAuthFile in the .conf file has been
updated same as the management node, the service shall be started through systemctl
start beegfs-meta.

3.3.3 Storage service setup

Like metadata node storage service needs storage target to store user file chunks. More
than one storage target shall be configured in a storage host. Here only one such storage
target is used. After service installation, storage target is setup using below command:

\$ /opt/beegfs/sbin/beegfs-setup-storage -p /mnt/myraid1/beegfs_storage
-s Node_Id -i Storage_target_Id -m masterbgfs

Node_Id and Storage_target_Id can be any unique numerical value for later refer-
ence. After target creation, connAuthFile is defined as same as management node and
the service is started through systemctl start beegfs-storage

3.3.4 Client service setup

In addition to client service, client hosts also need helperd service, hence both are installed
in the host. Since BeeGFS-client is implemented as linux kernel module, linux-headers and
linux development tools are installed in the client host based on RHEL8. After installing
the dependencies, client service is informed about the management service host through
below command:

Section 3 Surendhar Muthukumar 8

Performance Evaluation of BeeGFS Under Node Failure Condition

$ /opt/beegfs/sbin/beegfs-setup-client -m masterbgfs

The connAuthFile in the beegfs-client.conf file is updated. Client mount directory is
defined in separate configuration file for mounts beegfs-mounts.conf. This mount con-
figuration file will be used by client during service startup. By default, the mount directory
is /mnt/beegfs and it remains the same in our study. After updating the configuration
files, helperd and client services are started using systemctl start beegfs-helperd and
systemctl start beegfs-client.

3.3.5 Configuring buddy mirrorgroups

General use case of BeeGFS is HPC and other large scale data processing engines. Hence
there is a need for uninterrupted data access with less risk of loosing data due to hardware
and network failures. Risk on loss of user data chunks is reduced already through the
underlying RAID6 based file system architecture. Now, risk on accessibility issues of data
due to any failures can also be reduced further using mirroring. Storage and metadata
buddy mirror groups are configured such that when one of the targets belonging to the
buddy groups enters into a node failure, the other target is used for data input/output
operations.

Figure 4: Storage targets buddy group details

Buddy groups are configured manually in our study using the node IDs. Data IO
operations are performed on primary target in normal situations. Figure 4 shows that
there are 2 buddy groups with buddy groupIDs 1000 and 1001 configured with 2 storage
targets each. Reachability field value being online states that the target nodes are reach-
able and are in active state. Setting up buddy mirroring is import for multi server data
access with data availability at node failure conditions for high performance.

\$ beegfs-ctl --addmirrorgroup --nodetype=storage --primary=1
--secondary=2 --groupid=100

3.3.6 Directory stripe pattern configuration

Striping configures the individual file chunk size stored in the storage targets. To utilize
the buddy mirroring feature in specific directory, striping pattern of the directory must
be set to buddymirror. The default stripe pattern is RAID0, where the data written
to the server is not replicated to the secondary target. When the buddymirror pattern is
set, the data and operations are replicated between the buddy targets.

Section 3 Surendhar Muthukumar 9

Performance Evaluation of BeeGFS Under Node Failure Condition

3.3.7 System connectivity check

BeeGFS services configured on different physical servers/nodes use network interconnects
to communicate with each other. This network can either be general ethernet hardware
connection or RDMA based network hardwares (like Infiniband, Omnipath, RoCE) for
faster inter server communication. Servers in industrial level file systems are connected
using RDMA-capable network hardwares. It is essential to verify if the servers that are
connected using these network hardwares use respective transfer protocol to ensure the
internal connectivity between servers. However in this study, no RDMA based transfer
is used, the network between the service hosts is established through ethernet. But the
setup connection check can provide important information on the routes to the servers,
node reachability and service configuration stats. Possible connectivity to the servers
involved in the file system can be verified using the command : beegfs-check-servers.

Figure 5: Server connectivity status of the BeeGFS file system used for performance study

Figure 5 states the connectivity details of the servers involved in the system used for
the study. The storage, metadata and management hosts are connected through ethernet
and hence they follow TCP protocol, which was the desired for our network connection.
Hence this states that the system communication if stable and usable.

Figure 6: Storage targets and Mount directory statistics

Following the network connection check, the beegfs shared mount directory details
can be obtained through the beegfs-df command. Figure 6 shows the aggregated storage
target and metadata target statistics. Since 4 storage targets of 20GB each are used for our
system, the aggregated shared directory has storage space of around 79GB, the difference

Section 3 Surendhar Muthukumar 10

Performance Evaluation of BeeGFS Under Node Failure Condition

disk space is used for service related scripts and log function. In the figure it can be
seen obvious that the command is ran on the client host instead of the management node.
These statistics check commands can be run on any configured client host belonging to the
system. The filesystem named beegfs_nodev represents the shared file system mounted
on the mount directory : /mnt/beegfs.

4 Benchmarking the Filesystem
As the main goal of the study was to analyse the performance of BeeGFS based user space
file system under node failure conditions, benchmarking is done to obtain the statistics on
system performance and availability through IO benchmarking. An open source bench-
marking software : elbencho is used here. Elbencho is designed to benchmark PFS and
AI engines. The custom created filesystem is artificially induced with a node failure and
followed by benchmarking to achieve the study goal.

4.1 Node failure simulation

Node failure can be simulated in multiple ways, through turning off the node physically or
degrading the server through dumping huge volumes of data than the node could handle
or by software induced failure. In our study, the node failure is induced by physically
shutting down the node/service. The host instance can be shutdown using the openstack
instance management dashboard, which is equivalent to turning off a server. Or the
service running in the host shall be stopped, so that the management/client/metadata
service cannot communicate to this storage service and hence marks this storage target
as degraded.

4.2 Elbencho benchmarking

Elbencho is a open source, filesystem agnostic benchmarking tool for distributed storage in
PFS and AI engines. This tool is used in the study because of its filesystem agnostic nature
with ability to perform benchmarking on directory level [4]. Directory level benchmarking
is an advantage for our study as 2 directories with and without mirroring enabled is used
to distinguish the performance of parallel access under non-mirrored conditions as well.

Elbencho needs C++ compatible local compiler to compile and execute the tool in the
local machine without any need for external communication to internet. The dependencies
can be installed in RHEL based system using the below command mentioned in the
README section of elbencho git repository.

sudo yum install boost-devel gcc-c++ git libaio-devel make ncurses-devel
numactl-devel rpm-build

With the dependencies installed, the tool could directly be cloned into the host system
from the respective git repository git clone https://github.com/breuner/elbencho.git.
Program files shall be copied into the /̃elbencho directory, and compiled using the make
command, that compiles and executes the tool installation. Benchmarking can be now
performed on desired directory using the bin/elbencho command, which indicates the
system that the benchmarking should be performed with required parameters passed.

Section 4 Surendhar Muthukumar 11

Performance Evaluation of BeeGFS Under Node Failure Condition

4.3 Benchmarking parameters

Elbencho can perform different benchmarking like IO throughput, network benchmark-
ing, multi host/client involved distributed system benchmarking. For this study, multi
client IO benchmarking is used for analysing the distributed storage access. All available
benchmarking test parameters can be obtained by analysing the output of the elbencho
help command bin/elbencho –help-all. The parameters for the test can be passed
to the underlying benchmarking program in 2 different ways. Parameters can either be
passed as command line arguments or through custom configuration file. 2 configuration
files, writetest.elbencho and readtest.elbencho is used in this study. The important
test parameters are:

• threads - number of parallel threads used for read/write operation

• hosts - comma separated list of hosts/clients in multi-host file systems

• dirs - number of directories to be used

• files - number of files per directories

• read - perform data read operation

• write - perform data write operation

• rand - write/read at random offsets [4] [9]

4.4 Performance evaluation

File system performance is measure under 3 different system behaviour as follows:

• IO performance difference between mirrored and non-mirrored directory

• IO performance under simulated node failure condition

• IO performance during node re-synchronization

4.4.1 Performance difference on mirroring

/mnt/beegfs is the distributed file system directory mount by clients to access the PFS
user space. As mentioned in section 2.2.2, introducing mirroring enhances the availability
of the data which gives performance benefits under node failure conditions. In our exper-
imental setup two sub-directories to this mount directory are created to understand and
analyse the performance difference under mirroring and non mirroring condition. The key
point to note is mirroring combined with file pattern set to mirroring is the key aspect
that keeps the system available under node failure condition, hence for our main study
on failure condition performance, configuring mirroring is essential. /mnt/beegfs/mir-
rordir and /mnt/beegfs/nomirrordir are the 2 sub-directories created. The former
directory is configured to use mirroring through stripe pattern configuration. Creating
buddy mirror groups of storage targets alone doesn’t trigger mirroring, it should be en-
abled through stripe pattern. Mirroring can be enabled for a directory using the below
beegfs-ctl command.

beegfs-ctl --setpattern --numtargets=2 --chunksize=1M
--pattern=buddymirror /mnt/beegfs/mirrordir

Section 4 Surendhar Muthukumar 12

Performance Evaluation of BeeGFS Under Node Failure Condition

The above command sets the stripe pattern for the mirroring enabled directory to
buddy mirror, which informs the management service that this directory is mirroring
enabled and hence are the files and sub-directories that shall be created inside it. For any
operations on this directory, 2 storage targets among the available 4 shall be used with
file chunks being stored into the buddy targets instead of being stored into a single target
(this doesn’t mean all the chunks of a single file will be stored in same target, the chunks
are distributed but there won’t be any replica of the chunks created in another directory).
For the nomirrordir the –pattern is set to RAID0, so that mirroring is not enabled. To
analyse the I/O performance, write and read benchmarks are executed on the 2 defined
directories through benchmark configuration files mentioned in Section 4.3

Mirroring
status

Operation
Type

File size
(MiB)

Throughput
(MiB/s)

Avg. Time
(seconds)

Avg.
Latency
(seconds)

Mirroring
enabled

Write 3720 22 160.58 4.94

Mirroring
disabled

Write 3720 33 106.64 3.32

Mirroring
enabled

Read 3000 43 70.69 2.49

Mirroring
disabled

Read 3000 44 68.8 2.45

Table 1: Benchmarking statistics on mirroring

The benchmarking statistics of the mirroring comparison is provided in table 1. Read
and write benchmarking has been performed on the 2 defined directories : mirrordir and
nomirrordir. The underlying test involves 3 parallel clients with 10 threads to simulate
real world parallel access. Multiple clients can be involved by starting elbencho in re-
spective client using elbencho --service. Performance difference between mirrored and
non-mirrored directory can be obtained by comparing the average time taken and aver-
age latency statistics. Mirroring disabled directory has better write performance than
mirroring enabled directory. This behaviour is expected due to data replication at the
buddy mirrored targets. Comparatively read performance does not get affected by huge
margins between the directories, but are slightly better in non-mirrored directory for the
same reason. For the upcoming performance comparisons, the statistics from table 1 are
considered as control to evaluate the performance difference.

4.4.2 Performance difference during node failure

To study the performance difference under node failure/ node crash conditions, one of
the storage node is simulated to behave as a failed node as explained in section 4.1.
IO performance benchmarking is performed during this node failure condition of the
file system and compared with the control benchmarking test performed in the previous
section. Node failure state can be confirmed through the --listtarget command as shown
in Figure 7.

Figure 7 shows that storage target with NodeID 2 is offline, which in-turn means that
the specific storage target is not reachable for any operations. Consistency of the system
is still good, because after node failure, there hasn’t been any read or write operations
done, hence the consistency state. Benchmarking under node failure can be performed
only under mirrored condition as the IO operation fails due to node un-reachability in

Section 4 Surendhar Muthukumar 13

Performance Evaluation of BeeGFS Under Node Failure Condition

Figure 7: State and availability of storage targets

non-mirrored condition. From table 2, write performance under node failure condition is
maintained same or slightly better than normal stable condition, because the secondary
node replication is not performed. The read performance of the system is highly degraded
by a factor of 81.9% in terms of time taken and the latency is increased twice as normal
condition.

System
status

Operation
Type

File size
(MiB)

Throughput
(MiB/s)

Avg. Time
(s)

Avg.
Latency (s)

Normal Write 3720 22 160.58 4.94
Node failure Write 3720 23 156.25 4.71

Normal Read 3000 23 70.69 2.49
Node failure Read 3000 22 128.58 4.74

Table 2: Benchmarking statistics on mirroring

4.4.3 Performance during node re-synchronization

During the above test, the system was fresh and had very less data written to the under-
lying physical storage targets. This system condition is not always similar to real world
scenarios, where the file systems have huge volumes of data already residing in the tar-
gets. To replicate this general use case condition, huge volume of data is written to the
system under node failure condition and the failed node is restarted which initiates node
re-synchronization. Benchmarking test is performed under this new state to study the
extent of further performance degradation.

System
status

Operation
Type

File size
(MiB)

Throughput
(MiB/s)

Avg. Time
(s)

Avg.
Latency (s)

Node resyn-
chronization

Write 3720 7 474.83 7.44

Node resyn-
chronization

Read 3000 15 197.92 7.30

Table 3: Benchmarking statistics on node re-synchronization

Analysing the results from table 3, the write and read performance of the system has
been reduced by a factor of 195.5% and 179.5% respectively. Node re-synchronization has
affected the IO performance of the system by huge factor than usual.

Section 5 Surendhar Muthukumar 14

Performance Evaluation of BeeGFS Under Node Failure Condition

5 Conclusion
BeeGFS is an efficient high performance PFS that supports high availability and scalabil-
ity. Performance and availability enhancements in BeeGFS are achieved through feature
tuning. Multi-server parallel access for I/O operations enhance performance in general
PFS. BeeGFS additionally enables tuning of file striping and mirroring functionality to
enhance performance and availability according to underlying physical hardware resource.
Through mirroring enabled storage, availability of the system can be increased.

Figure 8: Performance comparison chart of the file system under different system state

Our study conducted on the performance through benchmarking reveal that there
is a degradation of performance under node failure condition. Though this behaviour is
expected as reduced servers shall be involved in I/O operations, the scale of performance
degradation is huge that it shall hinder the efficiency of application operations that use
this file system. Further reduction of performance is observed when IO operations are
performed under node re-synchronization condition, which is likely to happen in real
world use cases. Although there is severe performance drops while maintaining high
availability, this does not make the system unusable. Without this mirroring, the system
shall be completely unreachable leading to service outages. So, BeeGFS can still be better
software based PFS option depending upon use case. It can be used for high performance
engines or time dependent data streaming applications with prior measures to tackle the
performance reduction under node crashes.

Section 5 Surendhar Muthukumar 15

Performance Evaluation of BeeGFS Under Node Failure Condition

References
[1] BeeGFS. Beegfs- documentation. https://doc.beegfs.io/latest/index.html.

[2] Francieli Boito, Guillaume Pallez, and Luan Teylo. The role of storage target al-
location in applications’ i/o performance with beegfs. In 2022 IEEE International
Conference on Cluster Computing (CLUSTER), pages 267–277. IEEE, 2022.

[3] Fahim Chowdhury, Yue Zhu, Todd Heer, Saul Paredes, Adam Moody, Robin Gold-
stone, Kathryn Mohror, and Weikuan Yu. I/o characterization and performance
evaluation of beegfs for deep learning. In Proceedings of the 48th International Con-
ference on Parallel Processing, pages 1–10, 2019.

[4] elbencho. Elbencho - documentation. https://github.com/breuner/elbencho.

[5] Yuri Goncharuk, Yuri Grishichkin, Alexander Semenov, Vladimir Stegailov, and
Vasiliy Umrihin. Evaluation of the angara interconnect prototype tcp/ip software
stack: Implementation, basic tests and beegfs benchmarks. In Russian Supercomput-
ing Days, pages 423–435. Springer, 2022.

[6] Google. Parallel file systems for hpc workloads. https://cloud.google.
com/architecture/parallel-file-systems-for-hpc#:~:text=In%20a%
20parallel%20file%20system%2C%20several%20clients%20store%20and%
20access,workloads%20that%20use%20SAS%20applications.

[7] Frank Herold and Sven Breuner. An introduction to beegfs. 2, 2018.

[8] Tecmint Linux Blog Aaron Kili. How to configure custom ssh con-
nections to simplify remote access. https://www.tecmint.com/
configure-custom-ssh-connection-in-linux/.

[9] Glenn Lockwood. Getting started with elbencho. https://www.glennklockwood.
com/benchmarks/elbencho.html.

[10] NetApp. Beegfs on netapp with e-series storage - architecture overview.
https://docs.netapp.com/us-en/beegfs/beegfs-architecture-overview.
html#building-block-architecture.

[11] Wikipedia. Disk mirroring. https://en.wikipedia.org/wiki/Disk_mirroring.

[12] Wikipedia. Parallel virtual file system. https://en.wikipedia.org/wiki/
Parallel_Virtual_File_System.

Section 5 Surendhar Muthukumar 16

https://doc.beegfs.io/latest/index.html
https://github.com/breuner/elbencho
https://cloud.google.com/architecture/parallel-file-systems-for-hpc#:~:text=In%20a%20parallel%20file%20system%2C%20several%20clients%20store%20and%20access,workloads%20that%20use%20SAS%20applications.
https://cloud.google.com/architecture/parallel-file-systems-for-hpc#:~:text=In%20a%20parallel%20file%20system%2C%20several%20clients%20store%20and%20access,workloads%20that%20use%20SAS%20applications.
https://cloud.google.com/architecture/parallel-file-systems-for-hpc#:~:text=In%20a%20parallel%20file%20system%2C%20several%20clients%20store%20and%20access,workloads%20that%20use%20SAS%20applications.
https://cloud.google.com/architecture/parallel-file-systems-for-hpc#:~:text=In%20a%20parallel%20file%20system%2C%20several%20clients%20store%20and%20access,workloads%20that%20use%20SAS%20applications.
https://www.tecmint.com/configure-custom-ssh-connection-in-linux/
https://www.tecmint.com/configure-custom-ssh-connection-in-linux/
https://www.glennklockwood.com/benchmarks/elbencho.html
https://www.glennklockwood.com/benchmarks/elbencho.html
https://docs.netapp.com/us-en/beegfs/beegfs-architecture-overview.html#building-block-architecture
https://docs.netapp.com/us-en/beegfs/beegfs-architecture-overview.html#building-block-architecture
https://en.wikipedia.org/wiki/Disk_mirroring
https://en.wikipedia.org/wiki/Parallel_Virtual_File_System
https://en.wikipedia.org/wiki/Parallel_Virtual_File_System

Performance Evaluation of BeeGFS Under Node Failure Condition

A Elbencho scripts

1 threads=10
2 iodepth=4
3 block=1M
4 hosts=masterbgfs,client1,client2
5 direct=1
6 size=124M
7 files=1
8 dirs=1
9 deldirs=0

10 delfiles=0
11 blockvaralgo=fast
12 mkdirs=1
13 write=1
14 rand=1
15 lat=1

Listing 1: Writetest.elbencho - Benchamrking script file

1 threads=10
2 iodepth=4
3 block=1M
4 hosts=masterbgfs,client1,client2
5 direct=1
6 size=100M
7 files=1
8 dirs=1
9 deldirs=0

10 delfiles=0
11 blockvaralgo=fast
12 mkdirs=1
13 read=1
14 rand=1
15 lat=1

Listing 2: readtest.elbencho - Benchamrking script file

Section A Surendhar Muthukumar 17

	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Scalability, Availability and Performance
	Study Goal

	Architecture
	BeeGFS services
	Management service
	Metadata service
	Storage service
	Client service

	Tuning and configuration features
	File striping
	Buddy mirroring

	Performance analysis system setup
	System Architecture
	Host SSH setup
	Node setup
	Management node setup
	Metadata service setup
	Storage service setup
	Client service setup
	Configuring buddy mirrorgroups
	Directory stripe pattern configuration
	System connectivity check

	Benchmarking the Filesystem
	Node failure simulation
	Elbencho benchmarking
	Benchmarking parameters
	Performance evaluation
	Performance difference on mirroring
	Performance difference during node failure
	Performance during node re-synchronization

	Conclusion
	References
	Elbencho scripts

