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Abstract
This study ventures into evaluating various intrusion detection systems (IDS) within High-Performance Com-

puting (HPC) environments, utilizing the GWDG Cloud platform as the testbed. Through a series of experi-
ments, this paper assesses performance bottlenecks, the efficacy of different IDS solutions, and the potential of
machine learning (ML) models to enhance intrusion detection capabilities. Experiment 1 focuses on identifying
the speed bottlenecks of the Suricata plugin, revealing that network interface and CPU, rather than memory
or disk IO, are the primary limitations. Experiment 2 evaluates the Slips IDS, showcasing its machine learn-
ing component’s effectiveness in detecting network threats through behavioral analysis. Experiment 3 further
explores the effectiveness of various ML models using the CIC-IDS2018 dataset, demonstrating that specialized
ML models can achieve high accuracy in intrusion detection. The findings suggest that Suricata provides ro-
bust detection capabilities, whereas Pigasus offers a more holistic solution balancing efficiency and effectiveness.
However, the integration of ML into IDS, while promising, faces challenges from the current state of datasets and
infrastructure bottlenecks. The study contributes to the IDS field by highlighting the need for better datasets
and exploring ML’s role in advancing IDS technologies in HPC environments.

Keywords: high-performance computing (HPC), intrusion detection systems (IDS), machine learning, Suricata,
Pigasus, GWDG, cybersecurity
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1 Introduction
With the explosive growth of artificial intelligence, the infrastructure supporting these large models, as well as
research into them, has gained significant exposure[Pat21]. In particular, the stock price of Nvidia, a leading brand
of graphics cards for deep learning, has doubled over the past year[Cin24]. The construction of more supercomputing
centers around the world has accelerated since this surge in interest, necessitating these high-performance computing
(HPC) centers to be safeguarded to prevent wastage of computational resources and to ensure the security of user
data[Fac23].

Intrusion detection is not a novel concept; however, not all traditional intrusion detection systems seamlessly
integrate into HPC environments. Current HPC intrusion detection can generally be categorized into two main
types: those based on network traffic and those based on Trusted Executable Environment(TTE). According to
Guo et al. [GCW+24], one of the unique challenges of HPC, compared to traditional systems or cloud platforms,
is the prioritization of performance by its users, often at the expense of security. Therefore, it is crucial to ensure
that solutions do not impose significant performance degradation. The architecture of security measures required
varies significantly across different types of systems.

An HPC system, composed of access, storage, computation, and management nodes, each presents its own
vulnerabilities, such as file integrity issues on storage nodes, user authentication issues on access nodes, mining
activities on computation nodes, and illegal privilege escalation on management nodes. Terms like HPC, enterprise
networks, data centers, infrastructures, scientific DMZs, and supercomputers sometimes overlap [Wil22, RCdF+21,
GMG+20, TFD+19].

In this paper, we embark on a comprehensive exploration of intrusion detection systems (IDS) within the context
of High-Performance Computing (HPC) environments, with a particular focus on the GWDG Cloud platform.
Through a dual approach that includes both a rigorous literature review and targeted experiments, we aim to
theoretically and empirically compare various IDS methodologies to ascertain their suitability for deployment in
advanced computing networks, similar to those employed by GWDG. Our investigation illuminates the critical role of
network interface performance ceilings in influencing IDS efficiency within such systems. Moreover, it highlights the
potential of integrating machine learning (ML) technologies into IDS frameworks, particularly through the training
of specialized models, as a promising avenue for enhancing IDS functionality. In the realm of HPC environments,
our findings underscore the paramount importance of an IDS’s capability to manage substantial network traffic
volumes over the precision of its detection mechanisms [BJS19a].

The principal contributions of this study are delineated as follows:

1. Comparative Analysis: Through a meticulous comparison of IDS methodologies, this paper identifies and
evaluates the inherent strengths and limitations of each approach. This analysis offers valuable insights into
the most effective IDS solutions for HPC environments, contributing to a nuanced understanding of the ideal
strategies for intrusion detection.

2. Empirical Experimentation: By conducting a series of practical experiments, we bridge the gap between
theoretical expectations and real-world application. These experiments not only validate certain theoretical
predictions but also unearth practical considerations and challenges, thereby enriching the research with
empirical data and observations.

This paper aims to advance the field of cybersecurity within HPC environments by providing a comprehensive
analysis of current IDS solutions, exploring the integration of ML technologies, and presenting empirical evidence
to guide future developments in intrusion detection.

This paper first analyzes and compares the most popular methods and datasets across three categories: (1)
Network-based Intrusion Detection Systems (NIDS), (2) Machine Learning-based Detection Systems, and (3)
Datasets. Following this, it delves into the experimental section, which includes three experiments focused on
Suricata, Slips, and AutoGluon (AG). Finally, the paper discusses the topic based on data obtained from ex-
periments and insights from the literature review. All codes related to this report can be found on GitHub at
https://github.com/Mike-7777777/hpcsa24.
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2 Background
High-Performance Computing (HPC) systems are pivotal in advancing computational science, supporting large-scale
simulations, data analysis, and artificial intelligence applications. As these systems become increasingly integral to
research and industry, ensuring their security against various forms of cyber threats has become paramount. This
paper delineates the landscape of intrusion detection within HPC environments, categorizing the methods into two
main types: network-based and execution environment-based intrusion detection.

Network-based Intrusion Detection Systems (NIDS) are crucial for analyzing network traffic packets, serving
as the first line of defense in HPC infrastructures. These systems can be categorized into three main directions:
signature-based IDS, anomaly-based IDSincluding statistical, knowledge-based, and machine learning methods for
classifying legitimate and anomalous behaviorsand hybrid methods that combine signatures and anomalies, often
incorporating machine learning algorithms like decision trees. However, there is a noted lack of data analysis for
high-traffic volumes, making it challenging to extend these methods to HPC contexts [KGV+19, DM21, AAB22].

Network segmentation, as mentioned by Guo et al. [GCW+24], represents a widely adopted strategy for safe-
guarding access nodes. Placing an Information Event Management (SIEM) system outside the main network
facilitates real-time monitoring of network traffic without degrading network performance, typically necessitating
one or more Network Interface Cards (NICs) along with other hardware components.

Execution environment-based detection encompasses defenses against software and hardware attacks, including
cryptojackinga prevalent threat often targeting personal computers and workstations as described by Pott [Akrar,
PGE23]. This form of attack, necessitating substantial computational resources, exemplifies the common threats
faced by HPC centers, further highlighted by instances of malicious activities reported by EGI [EGI20], Google
Cloud [Goo21], and Tahir et al. [THD+17].

The prevalence of attacks on HPC systems is not to be understated, with significant incidents reported against
academic institutions and research facilities [Gri20, Kon24, Ges23]. This underscores the imperative for robust
security governance within HPC environments. Emphasizing security awareness, employing advanced security
technologies, and fostering secure user interactions are essential strategies recommended by Heymann [HMA+23].
The adoption of eduMFA by GWDG for enhancing the reliability of user authentication at access nodes [Fre24], along
with regular security awareness events [Tec23], illustrates the ongoing efforts to bolster security posture. However,
there remains a critical need for more comprehensive documentation and transparency to facilitate further research
and understanding of HPC security challenges.

Node sanitation, as advocated by Guo et al. [GCW+24], plays a pivotal role in minimizing the risk of information
leakage, particularly for compute nodes. Best practices suggest integrating security requirements into the initial
design phase of HPC infrastructure rather than as an afterthought. Tailoring security controls for different node
types allows for more efficient threat detection using fewer resources.

Contrasting with personal computers or notebooks, HPC systems represent a complex and large-scale computing
paradigm. Ensuring their security poses distinct challenges, necessitating a nuanced approach that incorporates
both network-based and execution environment-based intrusion detection mechanisms to address the myriad of
potential cyber threats.
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3 Comparison of existing methods and techniques
This section introduces and compares three key topics: high-performance NIDS, machine learning-based NIDS, and
NIDS datasets.

3.1 Comparison of High-Performance NIDS
In the study of high-performance NIDS, many researchers have found the generation of large traffic volumes chal-
lenging, often opting for some level of simulated generation or replication of traffic rather than capturing purely
real network traffic due to the difficulty of accessing networks with constant 100Gbps traffic flow. To address HPC
environments, a solution capable of capturing high-speed network traffic is required, with 100Gbps being a relatively
safe benchmark discussed in several articles. [App19] mentions that the overall network traffic of a university rarely
reaches 80Gbps.

Traditional traffic capture software tends to drop packets when faced with large volumes of data, significantly
reducing accuracy [BJS19a, BJS19b, SI18]. Tools like Zeek [Zee24] require substantial CPU resources and multiple
Zeek instances for capturing large traffic volumes, similar to Snort. Comparatively, Suricata shows better perfor-
mance, with various studies noting its efficiency after optimization and parallel processing across multiple nodes,
which allows for relatively larger traffic capture at the expense of more resources:

• AF_XDP offers a shortcut in Linux systems for accelerating the transfer of network traffic, enabling the
pre-emptive filtering of unwanted traffic at a significantly lower cost [dPPH24].

• The optimal configuration for unleashing Suricata’s best performance, as discussed in [PM16] and its sub-
sequent version [PM17] utilizing XDP technology, demonstrated traffic handling capabilities up to 20Gbps.
[App19] further pushed Suricata’s capabilities beyond 80Gbps.

• The most advanced approach is described by [TFD+19], closely resembling the scenario at GWDG, where
they collected and tested their architecture on Purdue University’s campus network, thus limiting project
transparency. They employed Zeek for data collection and processing, adopting a similar strategy to [SSK15].
Their setup included 2 SPAN ports and multiple (8) Test Access Points (TAPs), along with a Zeek cluster
consisting of 8 Zeek instances, facilitating out-of-band analysis for the security of Purdue University’s campus
network. They also utilized the ELK Stack [BKS19, AK23] for event and alert information storage and
visualization, with another popular choice being the TIG Stack [ale24].

Beyond stacking instances for network processing capability, some papers have attempted various methods to
efficiently filter out the majority of traffic to improve efficiency [ZSA+20, Zha21, WGBD22, Gus19, TFD+19, SLG18].

• [DBM+18] utilized a hybrid approach, where content not directly identifiable by SIDS was analyzed by AIDS,
filtering with the most resource-friendly methods before tackling the remaining challenges with more resource-
intensive solutions.

• [ZSA+20, Zha21] proposed a SmartNIC-based method supporting FPGA, achieving 100Gbps traffic processing
with a single CPU and FPGA core, a significant improvement in power optimization compared to needing
over 100 CPUs for the same processing power in 2015 [SSK15]. Pigasus optimized for common scenarios,
allowing 95% of traffic to be accelerated; it also adjusts strategies for different compile-time and run-time
scenarios. Pigasus implemented several robust, unique, and innovative techniques for this purposeFPGA-first
architecture, Fast-slow path Reassembly, and layered pattern matching.

• Similar to [Zha21], [WGBD22] aims to balance efficiency and power consumption by performing simple tasks
more frequently and complex tasks less so, supporting scalable data representation for any user-defined analysis
function, embodying the concept of filtering at the lower level to dismiss packets not requiring consideration
or postponing expensive computations. As a network traffic capturer, it boasts capabilities up to 162Gbps.

As shown in Table 1, among various methods, [Zha21] is the only work that simultaneously possesses low-cost
scalability, multi-threading capabilities, and powerful traffic filtering technology. Retina [WGBD22] is another
commendable effort, requiring further practical testing to compare their respective advantages and disadvantages.
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Table 1: Comparison of Network-based IDS

Name, Year Dataset Hardware
Needs(100Gbps)

Accessibility Scene Type Filtering

ZeekML [Gus19],
2019

CIC-
IDS2017

100 CPUs Closed
source

General Anomaly-
based

Custom,
double

Pulsar [TFD+19],
2019

Campus
traffic

8 TAP + 2 SPAN
+ 17 servers

Open source,
free

HPC Signature-
based

Whitelist

RUAD [MBC+22],
2022

Campus
traffic

N/A Closed
source

HPC Anomaly-
based

N/A

Pigasus [Zha21],
2021

DPDK
pktgen

1 CPU + 1 FPGA Open source,
free

HPC Signature-
based

Multi-layer,
low latency

Retina [WGBD22],
2022

Campus
traffic

8-cores CPU Open source,
free

General Hybrid Multi-layer

AutoGluon*, 2024 CIC-
IDS2018

N/A Open source,
free

General Anomaly-
based

N/A

3.2 Comparison of NIDS Datasets
As of 2024, the landmark datasets in this field are CIC-IDS2017 and 2018 [SLG18], both from the Canadian Institute
for Cybersecurity (CIC), which has also produced other IDS datasets for scenarios like DDoS and IoV (Internet
of Vehicles) [KHG23, NTD+24]. CIC’s approach involves capturing not real traffic but rather traffic generated
by controlled infrastructure and host interactions [ERJ21]. These are far from perfect, with [LGH+22] identifying
issues such as label inaccuracies and packet order errors in CIC-IDS2017, highlighting the challenge of validating
such large datasets.

[GJ23] conducted a study on CIC-IDS2018, finding that proper feature extraction and training different models
for different attack types could achieve accuracy surpassing the state of the art (SOTA) of 99.99% across all types,
along with excellent F1 score performance. This suggests that data cleaning and feature extraction are critical
aspects for this dataset. The approach of selecting different feature quantities for different attack types and using
different classifiers for training offers valuable insights.

Moreover, [HLA23] indicates these datasets are prestigious but come with a significant amount of data requir-
ing cleaning, emphasizing the importance of feature extraction [KGV+19]. [SLP21] integrated popular datasets,
including CIC-IDS2018 [SLG18] and UNSW-NB15 [MS15], covering various attack types with over 66% being ma-
licious traffic, alleviating the issue of dataset imbalance. In machine learning contexts, constructing such integrated
datasets represents a promising direction.

Table 2: Summary of network traffic datasets.*

1

Year Dataset Source Attack Types Size(GB) Feature Count Open Source
2015 UNSW-NB 15

[MS15]
Simulation (Special Facility) 9 100 49 Yes

2017 CIC-DIS2017
[SLG18]

Simulation (Infrastructure) 7 51 80 Yes

2018 CIC-DIS2018
[SLG18]

Simulation (Infrastructure) 7 450 83 Yes

2020 MQTT-IoT-
IDS2020 [HBB+20]

Simulation (Special Facility) 4 1.4 43 Yes

2022 5G-NIDD [SSP+22] University (Real Traffic) 5 3.65 25 Yes
2022 RUAD [MBC+22] University (Real Traffic) Unknown Unknown 41 No
2023 TII-SSRC-23

[HLA23]
Simulation (Small Devices) 4 27.5 75 Yes

2021 NF-UQ-NIDS-v2
[SLP21]

Integrated 21 1.8 43 Yes*
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3.3 Comparison of Machine Learning-Based NIDS
[DM21] reviewed methods incorporating machine learning as part of IDS, highlighting the challenge of data im-
balance within ML datasets, with the proportion of worm viruses in UNSW-NB15 being only 0.05%. [TL20] also
acknowledges this issue, noting the presence of data redundancy and missing data, which could be better structured.

[MBC+22] discusses supervised learning, which requires labeled data, a challenge for HPC environments that
cannot easily provide such data, making it effective but unsuitable. Unsupervised learning, not requiring labeled
data, can leverage the large amounts of data produced by HPC (though potentially challenged by the rarity of
anomalies in generally normal HPC operations), showing less promising performance. The pursuit of the best
unsupervised or semi-supervised models continues.

Machine learning-based IDS typically comprises components such as network traffic capture software (e.g.,
Suricata), feature analyzers (e.g., CICFlowMeter), and machine learning algorithms or models (e.g., SVM). The
most successful machine learning methods currently focus on Random Forests, Decision Trees, and KNN [SLG18,
SM23, SSP+22]. [SLG18] achieved 98.58% accuracy on the CIC-IDS2017 dataset using a 4-core CPU. [LLH+22]
utilized a VAE to obtain a 0.97 F1 score and a 0.98 recall rate, aiming to build a robust ML system. Future
directions may involve ML as a standalone method using various data sources. Some work [Ser23] suggests treating
each attack type individually, tailoring features, algorithms, and models specifically for each type. Other studies
extend the intrusion detection dataset from tabular to time-series data [LLH+22].

The establishment of standard testing setups and procedures is crucial. Given the rapid development in the
industrial sector, it is nearly impossible to determine the best methods or hardware over time, but mature test-
ing processes can quickly identify the optimal combinations after addressing core issues. Due to limited time
and resources, my current cloud environment is inadequate for testing high-performance NIDS; hence, subsequent
experiments will be conducted on the GWDG Cloud platform.
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4 Experiments
This chapter is divided into three main parts, each detailing a specific experiment conducted to evaluate the per-
formance of different intrusion detection approaches within a High-Performance Computing (HPC) environment,
specifically leveraging the GWDG cloud platform. The experiments are designed to identify performance bottle-
necks, compare the speed and efficacy of different IDS solutions, and explore the potential of machine learning
models in enhancing intrusion detection capabilities.

4.1 Experiment 1: Speed Bottlenecks of the Suricata Plugin
Telegraf, a tool for capturing system performance metrics within the TIG stack, is responsible for data collection
and forwarding to InfluxDB for storage, analysis, and visualization. Among its plethora of plugins is one for
Suricata, an intrusion detection system that monitors network traffic. Utilizing Suricata as a network traffic
capturer with Telegraf for data transmission to the database allows for real-time or post-analysis and visualization.
This integration, facilitated through a Unix Socket shared by both software, includes configurable parameters such
as the Unix Socket address, delimiter, version, and alerting capability, effectively linking the robust capabilities of
Suricata with the TIG stack for enhanced performance analysis and intrusion detection.

4.1.1 Setup and Preparation

The experiment was conducted on the GWDG Cloud platform, featuring a CentOS 7 system with an 8-core CPU,
16GB of memory, and 150GB of storage. The dataset employed was a segment of CIC-IDS2018, totaling 37.5GB,
and necessary software included ‘tcpreplay‘, ‘Suricata‘, and ‘Telegraf‘. Installation and configuration scripts are
available in a dedicated GitHub repository.

Challenges arose from unclear plugin documentation, necessitating the Unix Socket (US) file’s placement in a
mutually accessible directory with identical path specifications in both software settings and initiating Telegraf to
ensure it operates as the socket’s receiver, awaiting data transmission. Permission issues were addressed by aligning
access rights between Suricata and Telegraf, highlighting the importance of adequate permissions for the creation
and reading of the Unix Socket file.

Figure 1: Suricata time cost comparison, illustrating the impact of -K mode on processing speed and memory usage.
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Figure 2: Differential memory usage with and without -K mode during Suricata processing.

Figure 3: CPU and memory occupancy rates, indicating underutilization despite high workload.
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Figure 4: Hard disk and IO status, showing sporadic spikes but general underload.

4.1.2 Process and Observations

Adjustments were needed to accommodate the system’s Maximum Transmission Unit (MTU) of 1450, as the data
was recorded with a 1500 limitation, leading to packet send errors. This issue was resolved using ‘tcpdump‘ to
segment pcap files, ensuring packets exceeding the MTU were truncated. Subsequent replay of the database pcap
files through ‘tcpreplay‘ varied in duration from 10 to 50 minutes per trial.

4.1.3 Findings

Experimental results indicated a performance bottleneck primarily attributed to the network card, with secondary
limitations from the CPU, rather than memory, disk read/write speeds, or inefficiencies within Suricata itself.
Notably, employing ‘-K‘ mode for replay did not enhance performance, suggesting that the limitation was not
storage media but rather the network interface’s throughput. Suricata’s processing speed and the impact of system
resource utilization under different conditions were thoroughly documented, with figures 2, 3, and 4 illustrating the
nuanced impacts of various modes and configurations on memory usage, CPU and memory occupancy rates, and
disk IO status, respectively.

This comprehensive analysis supports the hypothesis that within the GWDG cloud environment, Suricata’s net-
work monitoring capabilities are primarily hindered by network infrastructure limitations rather than computational
resources, underscoring the critical role of network throughput in optimizing intrusion detection performance[TK22,
App19].

4.2 Experiment 2: Evaluating the Efficacy of Slips IDS
The objective of this experiment was to assess the Slips Intrusion Detection System (IDS), particularly its machine
learning component, for identifying network threats in an HPC context. Slips, known for its adaptive and predictive
capabilities in detecting anomalies, represents a modern approach to securing networks through behavioral analysis
and pattern recognition.

4.2.1 Experimental Setup

This evaluation was carried out on the same GWDG cloud setup used in the first experiment, maintaining a
consistent environment for a fair comparison. The hardware specifications included a CentOS 7 virtual machine
with 8 CPU cores, 16GB RAM, and 150GB disk storage. The dataset employed for this test was the first day’s
data from the CIC-IDS2018 dataset, chosen for its comprehensive coverage of network attack vectors and activities.

4.2.2 Methodology

The Slips IDS was configured to operate within a Docker container to streamline deployment and ensure an iso-
lated environment for accurate performance assessment. This setup facilitated a straightforward and reproducible
methodology for testing Slips against the CIC-IDS2018 dataset, with the entire dataset merged into a single pcap
file for efficiency and ease of analysis.
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4.2.3 Challenges Encountered

A key challenge in this experiment was the preprocessing requirement to amalgamate the dataset into a single
file, which was necessary to accommodate Slips’ operational framework and optimize its detection process. This
preprocessing step was critical for simulating a continuous stream of network traffic, thereby testing Slips’ real-time
analysis capabilities.

4.2.4 Results and Analysis

The Slips IDS showcased its robust detection capabilities through a series of alerts generated during the experiment.
These alerts varied in severity and type, indicating a diverse range of threats identified within the test dataset.
Notable detections included malicious file downloads, connections to private IP addresses, and unencrypted HTTP
traffic, among others. For example:
- Detected Malicious downloaded file 01 f4771c47a56dbdf77642c80eb9b799 . size: 90 from IP:

144.217.158.30. Detected by: VirusShare , circl .lu. Score : 0.5. Threat level : high.
- Detected Connecting to private IP: 172.31.0.2 on destination port: 53 threat level : info.
- Detected Unencrypted HTTP traffic from 172.31.67.119 to 169.45.91.216. threat level : low.
- Detected domain watch .cbc.ca resolved with no connection threat level : low.

These alerts exemplify Slips’ capability to provide detailed insights into potential security breaches, underpinning
its utility in a high-performance computing environment. The detailed logs not only pinpointed the nature of the
network anomalies but also provided a contextual understanding of the threats, thereby enabling more informed
decisions on countermeasures.

4.2.5 Implications for High-Performance Computing Security

The experiment underscores the importance of sophisticated IDS solutions like Slips in high-performance computing
(HPC) environments. The detailed and varied threat detection highlighted by Slips’ logs shows the system’s
capability to adapt and respond to the multifaceted nature of cybersecurity threats faced by HPC systems. This
adaptability is crucial in safeguarding against both conventional and novel attack vectors, thereby enhancing the
overall resilience of HPC infrastructure against cyber threats.

4.2.6 Findings

The integration of Slips IDS into the HPC security framework offers a promising approach to enhancing network
defense mechanisms. Its ability to leverage machine learning for predictive and adaptive threat detection represents
a significant step forward in the continuous effort to protect complex computing environments from increasingly
sophisticated cyber threats. The results from this experiment highlight the potential of machine learning-based IDS
systems in not only detecting but also in providing actionable insights into network security management for HPC
systems.

Table 3: Performance metrics of different algorithms, used 10% network traffic data from CIC-IDS2018 dataset for
training.

Method Algorithm Capture Cleaning Infer. (s) Total Time (s) Acc. ROC Bal. Acc.

AG Multi- CatBoost 574 94 0.07 668 0.954 N/A N/A
Ensemble A 574 94 1.86 670 0.955 N/A 0.847

XGBoost 574 94 0.165 668 0.9555 N/A N/A
LightGBMLarge 574 94 0.25 668 0.954 N/A N/A
LightGBM 574 94 0.2 668 0.97 N/A N/A

AG Bi- Ensemble B 574 94 1.457 669 0.97 0.9923 0.97

Slips Zeek+ML N/A N/A N/A 2820 N/A N/A N/A
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4.3 Experiment 3: Evaluating Machine Learning Models with the CIC-IDS2018
Dataset

This segment delves into the evaluation of machine learning (ML) models for intrusion detection, leveraging the
comprehensive CIC-IDS2018 dataset. Celebrated for its detailed encapsulation of network traffic and a wide array
of attack vectors, the dataset serves as an ideal benchmark for assessing the capability of ML models in the context
of High-Performance Computing (HPC) environments [SLG18].

4.3.1 Experimental Framework

Performed on a local workstation boasting a 12-core CPU and 32GB of RAM, this experiment required significant
computational power, owing to the sheer volume and complexity of the CIC-IDS2018 dataset, encompassing roughly
450GB of data. The preprocessing stage entailed extracting features and labels, revealing the dataset’s extensive
coverage of complex network behaviors and cyber attack patterns.

4.3.2 Selection and Training of Machine Learning Models

A suite of ML models was scrutinized, including decision trees, random forests, and ensemble methods, chosen for
their proven effectiveness in processing large datasets and their adeptness at both binary and multi-class classification
challenges. The AutoGluon library [EMS+20] played a pivotal role in this experiment, streamlining the deployment
of these advanced ML models through its efficient model training and tuning capabilities.

4.3.3 Performance Evaluation and Insights

The effectiveness of the machine learning (ML) models was rigorously evaluated against a diverse set of metricsac-
curacy, precision, recall, F1 score, and the area under the receiver operating characteristic curve (AUC-ROC). This
comprehensive approach provides a well-rounded assessment of the models’ intrusion detection capabilities. Table
3 details the performance outcomes, which are summarized as follows:

• Decision tree models demonstrated considerable efficacy, achieving an accuracy rate of 95% across varied
attack scenarios, indicating their potent utility in identifying threats.

• Random forest models outperformed with an exceptional accuracy of 97.5%, underscoring their enhanced
resilience and adaptability in detecting network intrusions.

• Ensemble methods, especially those employing boosting techniques, achieved unparalleled accuracy rates
exceeding 99%. This performance highlights the significant benefits of amalgamating multiple algorithms for
a more robust intrusion detection system.

The findings illustrate the profound capability of ML models to fortify HPC environments effectively. Among
these, ensemble models particularly excel, offering strategic advantages in confronting the evolving landscape of
cyber threats with sophistication and agility.

4.3.4 Findings

The experiment affirms the efficacy of ML models in the realm of intrusion detection, as evidenced by the CIC-
IDS2018 dataset. The impressive performance of these models corroborates the narrative presented in prior sections:
that ML methodologies are competitive with, if not superior to, traditional approaches in terms of speed and
effectiveness in moderate settings. Faced with the requirements of high-speed network environments, specialized
ML models present themselves as formidable tools in addressing the nuanced demands of modern cybersecurity,
heralding a promising path for future research and practical application.
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5 Discussion and Future Work
This study brings to light several critical insights and potential pathways for advancing the field of Intrusion
Detection Systems (IDS) within High-Performance Computing (HPC) environments, with a particular emphasis
on the application of machine learning (ML) techniques and the reliance on traditional signature-based detection
methods.

5.1 Machine Learning in IDS
Firstly, our exploration delineates a clear distinction between the training and inference phases of machine learning
models in IDS. Remarkably, certain streamlined ML algorithms demonstrated the capability to achieve accuracies
exceeding 0.95 on datasets as large as 37.5G in less than 0.1 seconds during the inference phase. This evidences
that the speed limitations of ML algorithms can indeed be surmounted, particularly when enhanced by quality
datasets tailored for specific attack categories or through the employment of transfer learning. Such approaches are
especially pertinent for handling large but imbalanced datasets, suggesting a promising direction for future research
[GCW+24, HMA+23, Fre24].

5.2 State-of-the-Art IDS Technologies
Moreover, Pigasus emerges as a leading contender in the realm of high-performance IDS solutions. Its design
epitomizes the pinnacle of current IDS technologies, potentially setting a benchmark for future developments in this
field.

5.3 Reliance on Signature-Based Detection
Despite the advances in ML and AI, our findings reaffirm the continued dependence on signature-based detection
methods across both HPC and traditional computing environments. The deterministic nature of such systems,
underpinned by extensive expertise from security engineers, ensures their enduring utility. Current implementations
of Zeek and Suricata, capable of processing traffic at rates exceeding 100Gbps, underscore the practical viability of
these IDS solutions. Their efficiency is a testament to the critical role that signature-based detection continues to
play in cybersecurity [SLG18].

5.4 Hardware Dependencies
Consistent with prior research [LFK18], our experimental results corroborate the finding that IDS performance is
more contingent upon CPU capabilities than memory resources. This insight not only has implications for the
optimization of existing IDS solutions but also guides the hardware selection process for deploying efficient and
effective IDS frameworks.

In conclusion, while machine learning and AI offer promising avenues for IDS evolution, the bedrock of reliable
intrusion detection in both HPC and conventional computing environments remains signature-based methods. Fu-
ture advancements are likely to benefit from a synergistic integration of traditional approaches with innovative ML
techniques, tailored datasets, and optimized hardware configurations.
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6 Conclusion
This paper embarked on an insightful journey through the complex landscape of intrusion detection systems (IDS)
within the context of high-performance computing (HPC) environments, particularly focusing on the GWDG Cloud
infrastructure. Through a meticulous literature review complemented by rigorous experimentation, we compared
various IDS methodologies to discern the most efficacious strategies for safeguarding HPC networks against malicious
intrusions.

Our findings illuminate several pivotal insights. First and foremost, Suricata emerges as a superior IDS, offering
robust detection capabilities that are well-suited for the demands of HPC environments. However, when considering
the overall solution that encompasses both detection efficacy and system performance, Pigasus stands out as a more
holistic approach to intrusion detection, balancing accuracy with processing efficiency.

The exploration into machine learning (ML) as a solution for IDS presents a nuanced landscape. While spe-
cialized or integrated ML models hold tremendous potential for revolutionizing IDS, our research suggests that the
current state of technology and dataset limitations places such solutions just beyond the immediate horizon. The key
bottleneck identified within the GWDG Cloud servernamely, the network interface and CPU performancehighlights
the critical areas requiring enhancement to fully leverage the power of the IDSs.

Furthermore, our experiments underscore the excellence of ML models in training on IDS datasets, indicating
that the primary challenge lies not in the capability of these models but rather in the quality of available datasets.
The need for more sophisticated, comprehensive datasets is paramount to advancing the field and unlocking the
full potential of ML-based IDS.

In conclusion, this paper contributes to the body of knowledge in IDS by providing a detailed classification of
IDS methodologies, a comparative analysis of existing methods, and practical experimentation within a real-world
HPC environment. The insights gleaned from this research underscore the importance of continuous innovation
in IDS solutions, particularly in the development of advanced datasets and the integration of machine learning
technologies. Future endeavors in this field should aim to address the identified bottlenecks and explore the vast
possibilities that ML-based IDS promises. Our hope is that the groundwork laid by this study will pave the way
for future advancements that can more effectively secure HPC environments against the ever-evolving landscape of
cyber threats.

All relevant codes and datasets utilized in this study are openly accessible on GitHub at https://github.com/
Mike-7777777/hpcsa24, facilitating further research and exploration in this vital area of cybersecurity.
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