
SH

∞

Seminar Report

Smart Injection of Environment
Variables in Kubernetes Pod

Pranay Bhatia

MatrNr: 17935037

Supervisor: Jonathan Decker

Georg-August-Universität Göttingen
Institute of Computer Science

March 24, 2024

Abstract
Automating Kubernetes Pod Restarts with Dynamic Environment Variable
Injection using HashiCorp Vault

In the realm of Kubernetes orchestration, automating the dynamic injection of envi-
ronment variables into running pods has been a longstanding challenge. This research
introduces a novel solution that leverages HashiCorp Vault and a Kubernetes liveness
probe to facilitate automated restarts of pods upon changes to environment variables.

Traditional solutions for injecting secrets into pods at startup lack the capability
to handle dynamic updates without manual intervention. This research addresses the
difficulty of achieving automated restarts when environment variables within a pod need
to be modified, presenting a comprehensive solution for seamless integration.

Current industry-standard solutions, such as HashiCorp Vault, excel at secret injection
during pod initialization. However, they fall short in automating pod restarts when
environment variables change, requiring manual restarts or reliance on DevOps processes.
This limitation hinders the efficiency and agility of managing dynamic configurations.

Our innovative approach introduces a liveness probe within Kubernetes, ensuring con-
stant monitoring of the environment variable path within the pod. If changes are detected,
the liveness probe communicates with HashiCorp Vault, retrieves the updated variables,
and triggers a controlled restart of the main container. This self-contained solution elimi-
nates the need for manual interventions and provides a seamless mechanism for automated
updates.

The proposed solution has been successfully implemented, demonstrating its effective-
ness in automating pod restarts upon changes to environment variables. The evaluation
revealed that the solution operates with minimal overhead, ensuring a reliable and effi-
cient mechanism for maintaining up-to-date configurations within a dynamic Kubernetes
environment.

In summary, this research introduces an automated solution to a prevalent challenge
in Kubernetes orchestration, offering a streamlined process for dynamically updating en-
vironment variables and triggering pod restarts. The outcome demonstrates the potential
for increased efficiency and autonomy in managing containerized applications, paving the
way for more responsive and adaptive Kubernetes deployments.

i

Contents

1 Introduction 1

2 Problem Statement 2

3 Background 2
3.1 HashiCorp Vault . 2
3.2 Liveness Probes . 3

4 Architecture 4
4.1 Working . 4
4.2 Kubernetes and Vault Integration . 4
4.3 Liveness Probe Implementation . 5
4.4 Deployment Restart Mechanism . 5

5 Result 6
5.1 Integration . 6
5.2 Risks . 7

6 Conclusion 7

A Code samples A1

ii

Smart Injection of Environment Variables in Kubernetes Pod

1 Introduction
In modern containerized environments orchestrated by Kubernetes, managing environ-
ment variables efficiently and securely is essential for ensuring the reliability and security
of applications. Environment variables play a crucial role in configuring and customizing
containerized applications, providing a flexible and dynamic way to pass configuration
information to running containers. However, manually updating environment variables
in Kubernetes deployments can be cumbersome and error-prone, particularly in dynamic
environments where configuration changes are frequent.

The aim of this report is to propose a novel approach for smartly injecting environment
variables into Kubernetes clusters and automating the process of detecting changes and
restarting pods accordingly. By leveraging Kubernetes’ liveness probe mechanism—a
built-in feature for determining the health of containerized applications—we can create a
robust and automated solution for managing environment variables seamlessly.

Our approach involves encapsulating the logic for retrieving, validating, and updat-
ing environment variables within a liveness probe script, which is embedded within the
container’s configuration. This script continuously monitors the availability and integrity
of environment variables, fetching them from a secure and centralized source, such as
HashiCorp Vault. Upon detecting changes or discrepancies in the environment variables,
the liveness probe triggers a pod restart, ensuring that the application remains up-to-date
with the latest configuration changes.

By automating the injection and updating of environment variables in Kubernetes
deployments, our approach offers several benefits, including:

• Improved Reliability: Ensuring that applications always have access to the cor-
rect and up-to-date environment variables enhances the reliability and stability of
Kubernetes deployments.

• Enhanced Security: By fetching environment variables from a centralized and secure
source, such as HashiCorp Vault, we can enforce access controls, encryption, and
audit trails, thereby enhancing the security posture of the application. [Vauc]

• Efficient Configuration Management: Automating the process of injecting and up-
dating environment variables simplifies configuration management tasks, reducing
the risk of human error and streamlining the deployment process. [vaulwt-k8s]

The report begins with an introduction, setting the stage for discussing the proposed
solution. It then addresses the problem statement, highlighting the challenges associated
with manual environment variable management. Following this, the background section
provides insights into HashiCorp Vault and Kubernetes’ liveness probe mechanism, crucial
components of the solution. Moving on to the architecture, the report details the workings
of the proposed approach, including Kubernetes and Vault integration, liveness probe
implementation, and deployment restart mechanism. The results section discusses the
integration process and identifies potential risks. Finally, the conclusion synthesizes the
key findings and outlines future directions. Additionally, the report includes code samples
in the appendix for reference.

Section 2 Pranay Bhatia 1

Smart Injection of Environment Variables in Kubernetes Pod

2 Problem Statement
In Kubernetes deployments, there can be enormous variables which need to be set before
container deployment. This task is carried out by dev-ops colleagues. Manual tweaking
and adjustment of variables are required to get a container up and running. This can lead
to errors, inconsistencies, and downtime, particularly in dynamic environments where
configuration changes are frequent. The problem statement revolves around the need
for a robust and automated solution to intelligently inject environment variables into
Kubernetes clusters and automatically trigger pod restarts upon detecting changes or
updates to the configuration.

Key challenges include:

1. Manual Configuration Management: Manually updating environment vari-
ables in infrastructure is time-consuming, error-prone, and can result in configura-
tion drifts and inconsistencies across pods.

2. Dynamic Environment: In dynamic Kubernetes environments where pods scale
up, scale down, or migrate across nodes, ensuring that all pods have access to the
latest environment variables becomes challenging.

3. Application Reliability: Changes to environment variables, such as API keys or
database credentials, may require pod restarts to take effect, impacting application
availability and reliability if not handled efficiently.

4. Scalability: As Kubernetes deployments scale to accommodate varying workloads,
the process of injecting and updating environment variables must scale accordingly
to meet the demands of dynamic environments.

Addressing these challenges requires the development of an automated solution that
integrates with Kubernetes deployments, intelligently manages environment variables,
and ensures the reliability, security, and scalability of applications running in Kubernetes
clusters.

3 Background
3.1 HashiCorp Vault

Introduction: HashiCorp Vault is a popular open-source tool for managing secrets and
sensitive data in modern cloud-native environments. It provides a centralized platform for
securely storing, accessing, and managing secrets such as API keys, passwords, certificates,
and encryption keys. Vault offers a robust set of features and capabilities designed to
address the challenges of secrets management in dynamic and distributed systems. [Vauc]

Use and Benefits: The primary use of HashiCorp Vault is to securely manage secrets
and sensitive data in cloud-native applications and infrastructure. By centralizing the
storage of secrets, Vault helps organizations improve security, compliance, and operational
efficiency.

Section 3 Pranay Bhatia 2

Smart Injection of Environment Variables in Kubernetes Pod

Thanks to Built-in APIs which allow developers and operators to interact with
Vault programmatically. These APIs provide access to Vault’s functionality, including
the ability to retrieve, create, update, and delete secrets. [Vaua]

Key/Value Secrets Engine API is the API allows users to store and retrieve secrets
as key/value pairs within Vault’s hierarchical data store. This also provides metadata,
which defines what is the current of secret of defiled in each Key/Value secret engine.
[KV]

Additionally, Vault provide a User interface, which developers can use to add, modify,
delete and update the secrets which are inside kubernetes container. [Vaub]

In summary, HashiCorp Vault is a powerful tool for managing variables in cloud-native
environments. Its rich set of features and flexible APIs makes it an essential component
for our architecture.

3.2 Liveness Probes

Functionality of Liveness Probe
What is Liveness Probe: In Kubernetes, a liveness probe is a mechanism used

to determine the health of a containerized application running in a pod. It periodically
checks the application’s state to ensure that it is running as expected. The liveness probe
performs this check by sending requests to a specified endpoint within the container and
evaluating the response. If the application responds successfully, indicating that it is
healthy, the liveness probe considers the container to be in a good state. However, if the
application fails to respond or returns an error, indicating that it is unhealthy, the liveness
probe takes action, such as restarting the container. [Kub] [Zah23]

Benefits: The use of liveness probes offers several benefits for managing containerized
applications in Kubernetes deployments:

• Improved Reliability: By continuously monitoring the health of containerized
applications, liveness probes help ensure that unhealthy containers are detected
and replaced promptly, minimizing downtime and enhancing application reliability.
[Oda22]

• Automatic Recovery: Liveness probes facilitate automatic recovery from appli-
cation failures by restarting unhealthy containers, thereby maintaining the desired
state of the application and preserving service availability. [Kub]

• Scalability: Liveness probes enable Kubernetes clusters to dynamically scale re-
sources based on workload demands, as unhealthy containers are replaced with
healthy ones, allowing the cluster to adapt to changing conditions efficiently. [Zah23]

• Simplified Operations: By automating the detection and recovery of unhealthy
containers, liveness probes reduce the need for manual intervention and streamline
operations, making it easier to manage large-scale Kubernetes deployments. [Zah23]

Parameters: Liveness probes in Kubernetes are configured using several parameters
that define how the probe operates and when it should take action:

• Initial Delay: This parameter specifies the amount of time to wait after the con-
tainer starts before performing the first liveness probe. It allows the application to
initialize before being checked for health. [Kub]

Section 3 Pranay Bhatia 3

Smart Injection of Environment Variables in Kubernetes Pod

• Period: The period parameter defines the frequency at which the liveness probe
should be executed, indicating how often the application’s health should be as-
sessed.[Kub]

• Timeout: This parameter sets the maximum amount of time the probe should wait
for a response from the application. If the application fails to respond within this
timeframe, the probe considers it unhealthy.[Kub]

• Failure Threshold: Conversely, the failure threshold parameter defines the num-
ber of consecutive failed probe results that indicate the application is unhealthy and
should be restarted.[Kub]

Leveraging Liveness Probe for Conditional Restart of Cluster: By leveraging
the functionality of liveness probes, Kubernetes deployments can implement conditional
restarts of clusters based on the health status of containerized applications. We will use
liveness probe to verify if the secret version of a key/vault secret engine matches to current
deployment version. If both version matched, we will classify pod as healthy. In case of
mismatch pod should restart itself automatically and fetch latest version of secrets from
the vault.

4 Architecture
To start, the code implementation can be accessed at https://github.com/pranay-bh/
helm-keycloak for complete architectural setup.

4.1 Working

The above diagram illustrates the sequence of events within a Kubernetes environment,
depicting the initialization and operation of containers, as well as interactions with ex-
ternal services such as Vault for secret management. On start, Kubernetes startup trig-
gers the activation of the MyAppInitContainer, responsible for generating a .env file at
/tmp/.env. Subsequently, the .env file is passed to the MyAppMainContainer, which ini-
tiates normal application functionality, such as content serving via Nginx. Concurrently,
the liveness probe is activated by MyAppMainContainer. The probe then communicates
with Vault to verify the availability of a specific path (http://vault/secret/myapp).
Depending on the response received, different paths are followed: if the path is absent
(404), Vault initializes with environment variables and creates a version file; if present
(200), Vault compares the current version with the locally stored version. In case of a
version mismatch, Vault updates the version and .env files, leading to the failure of the
liveness probe, triggering a restart of MyAppMainContainer. Upon restart, the updated
.env file is utilized, ensuring seamless operation with the new environment. (Figure 1).

4.2 Kubernetes and Vault Integration

The script provided facilitates the integration between Kubernetes and HashiCorp
Vault. It begins by checking if the VAULT_ENABLE environment variable is set to
"true". If enabled, it proceeds to fetch secrets from Vault using the specified to-
ken and address constructed based on environment variables (VAULT_SERVICE_HOST and
VAULT_SERVICE_PORT).

Section 4 Pranay Bhatia 4

https://github.com/pranay-bh/helm-keycloak
https://github.com/pranay-bh/helm-keycloak

Smart Injection of Environment Variables in Kubernetes Pod

Figure 1: implementation Sequence diagram

4.3 Liveness Probe Implementation

The liveness probe implementation leverages Kubernetes’ built-in feature to ensure the
health of containerized applications [Kub]. Within the script, an HTTP request is made
to the specified Vault address to check the availability of secrets. The response status
code is evaluated, and actions are taken accordingly. If the secret store is missing (404),
it initializes a new Key-Vault secret path. If the token is incorrect (403), it logs an error.
Otherwise, it compares the version of the retrieved secrets with the locally stored version.
If a mismatch is detected, it updates the environment variables and exports them for the
application to use.

4.4 Deployment Restart Mechanism

The deployment restart mechanism is triggered conditionally based on the outcome of
the liveness probe. If the script detects changes in the environment variables fetched
from Vault, it exits with a non-zero status code (1), indicating that a restart is required.
This triggers Kubernetes to restart the pod, ensuring that the application picks up the

Section 4 Pranay Bhatia 5

Smart Injection of Environment Variables in Kubernetes Pod

updated environment variables. Conversely, if no changes are detected, the script exits
with a zero status code (0), indicating that the environment variables are up to date, and
no restart is necessary. This mechanism ensures that the application remains consistent
to configuration changes and always uses the latest variables from Vault.

5 Result
The result addresses the challenges posed by manual configuration in Kubernetes deploy-
ments, offering a robust, UI Based automated solution to intelligently inject environment
variables into Kubernetes clusters. The solution not only eliminates the need for manual
tweaking and adjustment but also make developers to do the same task without having
knowledge of deployments and infrastructure. It enhances reliabilit and scalability within
dynamic environments where configuration changes are frequent. The solution includes
a script packaged along with the application container image or as a ConfigMap in Ku-
bernetes, ensuring availability within the container environment and execution as part of
the pod lifecycle.

During pod initialization, Kubernetes mounts the script and executes it as a liveness
probe. The script communicates with HashiCorp Vault using the specified address and
token to fetch secrets as needed. Standard Unix commands such as curl and jq are
utilized to interact with the Vault API and parse JSON responses. Upon detecting changes
in retrieved secrets, the script restart the pods and exports new secrets as environment
variables within the pod, ensuring the application has access to the latest configuration.

The result addresses the problem statement by providing an automated solution that
intelligently manages environment variables, enhancing the reliability, security, and scal-
ability of applications running in Kubernetes clusters. By automatically triggering pod
restarts upon detecting changes or updates to the configuration, the solution minimizes
errors, inconsistencies, and downtime, thereby optimizing the operational efficiency of
Kubernetes deployments.

5.1 Integration

To start, the code implementation can be accessed at https://github.com/pranay-bh/
helm-keycloak for basic deployment guideline. To integrate HashiCorp Vault into a
generic deployment, follow the outlined procedure:

1. Deploy HashiCorp Vault: Begin by deploying HashiCorp Vault within your
environment. This provides a UI to change environment variables.

2. Configure Config Map: Create a config map containing a shell script named
vault-integration.sh from the GitHub repository mentioned architecture.

• This script takes two parameters:

– Vault Token: By default, set to ’admin’.
– Vault Path: This path acts as the location in Vault where the variables

will be stored. Adjust this path if needed.

If Vault is running in a different cluster: Update the Vault Path to reach the
URL and Vault token of the external Vault instance.

Section 5 Pranay Bhatia 6

https://github.com/pranay-bh/helm-keycloak
https://github.com/pranay-bh/helm-keycloak

Smart Injection of Environment Variables in Kubernetes Pod

3. Values.yaml File: Ensure that the values.yaml file includes the following vari-
ables
Vault_Token Vault_Path Vault_Enabled

4. Update Deployment Container:

• Add two volume mounts:

– For bash scripts (config and secret YAML file mounts are read-only after
Kubernetes 1.19) (in previous script:, /var/tmp).

– For writing the .env file and temporary files to compare Vault secret ver-
sions (in previous script:, /tmp).

• Create an init container responsible for creating a new .env file. This file stores
all variables required for the main container’s startup. Its absence may cause
the main container to fail to start.

• Mount volumes and pass Vault-specific environment variables to the main con-
tainer.

• Create and execute a script from the liveness probe to interact with Vault.

5.2 Risks

The above mentioned deployment structure posses some potential risks. Firstly, Vault
serves as the single source of failure within the system. Any downtime or service inter-
ruption of the Vault instance could disrupt critical operations reliant on its services.

Moreover, without proper backup mechanisms, such as persistent storage or integration
with Consul for Vault, the loss of Vault data upon restart poses a significant risk. To
mitigate this, implementing persistence storage with Vault or utilizing Consul for Vault
management can enhance data reliability and availability.

Additionally, containerized applications must be configured to correctly source envi-
ronment variables from the Vault setup. Misconfiguration can lead to applications failing
to accessing updated environment variables.

Thus, while Vault integration offers numerous benefits, careful consideration and im-
plementation of mitigating measures are essential to address these potential risks effec-
tively.

6 Conclusion
In conclusion, the developed solution represents a significant advancement in addressing
the challenges associated with manual configuration in Kubernetes deployments.The au-
tomation of environment configuration not only eliminates the need for manual tweaking
and adjustment but also minimizes errors, inconsistencies, and downtime that may arise
from manual intervention.

By automatically triggering pod restarts upon detecting changes or updates to the
configuration, the solution optimizes operational efficiency and reduce Devops effort, en-
suring that applications are always running with the latest configuration parameters. This
proactive approach streamlines the deployment process and enhances the overall agility
of Kubernetes environments.

Section 6 Pranay Bhatia 7

Smart Injection of Environment Variables in Kubernetes Pod

In essence, the developed solution provides a foundation for reliable and scalable Ku-
bernetes deployments, empowering organizations to effectively manage complex configu-
rations while maintaining high levels of operational efficiency and automation.

Section 6 Pranay Bhatia 8

Smart Injection of Environment Variables in Kubernetes Pod

References
[Kub] Kubernetes Probes. Configure Liveness, Readiness and Startup Probes. Ku-

bernetes. url: https : / / kubernetes . io / docs / tasks / configure - pod -
container/configure-liveness-readiness-startup-probes/ (visited on
03/20/2024).

[KV] KV - Secrets Engines | Vault | HashiCorp Developer. KV - Secrets Engines
| Vault | HashiCorp Developer. url: https://developer.hashicorp.com/
vault/docs/secrets/kv (visited on 03/20/2024).

[Oda22] Mehmet Odabasi. Kubernetes Probes Explained with an Emphasis on Liveness
Probe through Hands-on Experience. Oct. 2022. url: https://medium.com/
@mehmetodabashi/kubernetes-probes-explained-with-an-emphasis-on-
liveness-probe-through-hands-on-experience-71ac8192a64c (visited on
03/20/2024).

[Vaua] Vault | HashiCorp Developer. HTTP API | Vault | HashiCorp Developer.
url: https : / / developer . hashicorp . com / vault / api - docs (visited on
03/20/2024).

[Vaub] Vault | HashiCorp Developer. Vault UI | Vault | HashiCorp Developer. url:
https://developer.hashicorp.com/vault/tutorials/getting-started/
getting-started-ui (visited on 03/20/2024).

[Vauc] Vault by HashiCorp. Secrets Management. url: https://www.vaultproject.
io/use-cases/secrets-management (visited on 03/17/2024).

[Zah23] Adam Zahorscak. Guide to Understanding Your Kubernetes Liveness Probes
Best Practices. 2023. url: https://www.fairwinds.com/blog/a-guide-to-
understanding-kubernetes-liveness-probes-best-practices (visited on
03/20/2024).

Section 6 Pranay Bhatia 9

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://developer.hashicorp.com/vault/docs/secrets/kv
https://developer.hashicorp.com/vault/docs/secrets/kv
https://medium.com/@mehmetodabashi/kubernetes-probes-explained-with-an-emphasis-on-liveness-probe-through-hands-on-experience-71ac8192a64c
https://medium.com/@mehmetodabashi/kubernetes-probes-explained-with-an-emphasis-on-liveness-probe-through-hands-on-experience-71ac8192a64c
https://medium.com/@mehmetodabashi/kubernetes-probes-explained-with-an-emphasis-on-liveness-probe-through-hands-on-experience-71ac8192a64c
https://developer.hashicorp.com/vault/api-docs
https://developer.hashicorp.com/vault/tutorials/getting-started/getting-started-ui
https://developer.hashicorp.com/vault/tutorials/getting-started/getting-started-ui
https://www.vaultproject.io/use-cases/secrets-management
https://www.vaultproject.io/use-cases/secrets-management
https://www.fairwinds.com/blog/a-guide-to-understanding-kubernetes-liveness-probes-best-practices
https://www.fairwinds.com/blog/a-guide-to-understanding-kubernetes-liveness-probes-best-practices

Smart Injection of Environment Variables in Kubernetes Pod

A Code samples
1 if ["$VAULT_ENABLE" = "true"]; then
2

3 VAULT_TOKEN="admin"
4 VAULT_PATH="myapp"
5 VAULT_ADDRESS="http :// $VAULT_SERVICE_HOST:$VAULT_SERVICE_PORT/

↪→ v1/secret/data/$VAULT_PATH"
6 echo "address: " $VAULT_ADDRESS
7 VAULT_HEADER="X-Vault -Token: $VAULT_TOKEN"
8

9 echo "Installing necessary packages: curl and jq..."
10 which apt -get && apt -get update && apt -get install -y curl jq
11 curl
12 jq
13

14 HTTP_STATUS_CODE=$(curl -s --location "$VAULT_ADDRESS" --header
↪→ "X-Vault -Token: $VAULT_TOKEN" -o /dev/null -w "%{
↪→ http_code}")

15

16 if ["$HTTP_STATUS_CODE" = "000"]; then
17 echo "Service not found on given URL: $VAULT_ADDRESS"
18 exit 0
19 elif ["$HTTP_STATUS_CODE" = "404"]; then
20 echo "Store does not exist. Initializing Vault store in

↪→ $VAULT_PATH for the first time ..."
21 BODY=$(env | sort | jq -R -n 'reduce inputs as $line ({}; .

↪→ + ($line | split ("=") | {(.[0]): .[1]})) | {"data":
↪→ .}')

22 curl -s -H "$VAULT_HEADER" -H "Content -Type: application/
↪→ json" -X POST -d "$BODY" "$VAULT_ADDRESS" -o /dev/
↪→ null

23 echo 1 > /tmp/version.txt
24 exit 0
25 elif ["$HTTP_STATUS_CODE" = "403"]; then
26 echo "Incorrect token: $VAULT_TOKEN for $VAULT_ADDRESS"
27 exit 0
28 else
29 echo "Status code: $HTTP_STATUS_CODE"
30 echo "$(curl -s -H "$VAULT_HEADER" "$VAULT_ADDRESS" | jq -r

↪→ '.data.metadata.version ')" > /tmp/liveness -version.
↪→ txt

31

32 if cmp -s /tmp/version.txt /tmp/liveness -version.txt; then
33 echo "Environment variable version $(cat /tmp/liveness -

↪→ version.txt) is up to date"
34 exit 0
35 else
36 echo "New environment variable version $(cat /tmp/

↪→ liveness -version.txt) detected"

Section A Pranay Bhatia A1

Smart Injection of Environment Variables in Kubernetes Pod

37 JSON_DATA="$(curl -s -H "$VAULT_HEADER" "$VAULT_ADDRESS
↪→ ")"

38 echo "$(echo $JSON_DATA | jq -r '.data.metadata.
↪→ version ')" > /tmp/version.txt

39 rm /tmp/.env || true
40 echo "Exporting variables for $VAULT_PATH with version

↪→ $(cat /tmp/version.txt)"
41 keys=$(echo "$JSON_DATA" | jq -r '.data.data | keys[]')
42 for key in $keys; do
43 value=$(echo "$JSON_DATA" | jq -r ".data.data[\"

↪→ $key\"]")
44 export "$key"="$value"
45 # echo "Exporting variable: $key=$value"
46 echo "$key=\"$value\"" >> /tmp/.env
47 done
48 exit 1
49 fi
50 fi
51 else
52 echo "VAULT_ENABLE is not set to true. Doing nothing and moving

↪→ on as expected."
53 fi

Listing 1: liveness probe bash script

Section A Pranay Bhatia A2

	Contents
	Introduction
	Problem Statement
	Background
	HashiCorp Vault
	Liveness Probes

	Architecture
	Working
	Kubernetes and Vault Integration
	Liveness Probe Implementation
	Deployment Restart Mechanism

	Result
	Integration
	Risks

	Conclusion
	Code samples

