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Abstract
In order to manage multiple systems, especially large High-Performance Computing (HPC)
clusters, proper utilization of monitoring is of utmost importance. Monitoring has several
use cases, from providing basic health overviews to understanding usage patterns or doing
demand analysis by forecasting utilization based on current data. At the GWDG, two
different Grafana-based monitoring systems are used, one based on the InfluxDB Time
series database (TSDB) and one relying on Prometheus as the data source.

This report provides a methodology for benchmarking pull-based monitoring systems
such as Prometheus on various metrics. Additionally, it provides an answer on whether
both monitoring systems can be merged by evaluating the viability and scalability of a
Prometheus-based monitoring system for a realistic HPC use case.

To accomplish this goal, four different benchmarks were designed: The first benchmark
measures the performance of the metric gathering routine by patching the collector. The
next benchmark provides a end-to-end measurement of the scalability and resilience of
the collector utilizing traditional HTTP load generator technologies. The last collector
benchmark captures the performance penalty incurred by the metric collector on classical
HPC computation load by analyzing the jitter between time measurements. Lastly, the
final benchmark analyzes the overall performance and scalability of Prometheus itself by
mocking the collector daemons and counting the number of pulls.

The results show that, although the collector did not handle the stress test load well,
its throughput and overall performance is sufficient, and the collection time is acceptable,
even using only a single process for execution. Prometheus itself did not scale well beyond
a certain amount of nodes, failing with 2000 collectors when all run on the same hardware.
Note that this is not merely a result of underprovisioned hardware but instead most likely
an architectural problem, since all measurable metrics show that the server was not fully
utilized.

While this report presents a design and implementation of a performance penalty
benchmark, the results were, mostly due to the sheer size of the data set, only partly an-
alyzable within the scope of this report. The data shows a visibly longer tail in execution
time, affirming that a measurable performance penalty exists. To provide a definite, quan-
tifiable conclusion on the performance penalty created by the collector, further analysis
has to be done.

Concluding this report, while the collector’s performance is sufficient, Prometheus
performance strongly decreases once a certain amount of nodes are reached, implying that
it is not usable for very large HPC clusters without the usage of Prometheus clustering
techniques.
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Statement on the usage of ChatGPT and similar tools
in the context of examinations

In this work I have used ChatGPT or a similar AI-system as follows:

□ Not at all

□ In brainstorming

□ In the creation of the outline

□ To create individual passages, altogether to the extent of 0% of the whole text

□ For proofreading

✓□ Other, namely: GitHub Copilot as a coding assistant

I assure that I have stated all uses in full.
Missing or incorrect information will be considered as an attempt to cheat.
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Scalability Evaluation of Prometheus for HPC Monitoring

1 Introduction
1.1 Motivation

With the rise of simulation and big data analytics as new foundations of all modern
science, access to large-scale HPC systems has become paramount for good research. Fur-
thermore, as the area of machine and deep learning progresses, with models containing
over one billion parameters [1], local computation becomes ever less feasible, resulting in
the rise of HPC usage amongst various domains.

This report is written as an addition to my student research at the Gesellschaft für
wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG). The GWDG is the data
center of the University of Göttingen and the data and IT competence center of the Max
Planck Society with its own HPC department, running four large-scale HPC systems: The
Scientific Compute Cluster (SCC), Emmy, Grete, and CARO:

• SCC[2]: The SCC is the oldest cluster maintained by the GWDG. Its user group
is comprised of all researchers of the Max Planck Society as well as all (student)
researchers of the University of Göttingen. It is a very heterogeneous system, based
on several different CPU and GPU generations, located over several locations within
Göttingen. In total, it has 18,376 CPU Cores, 99 TB RAM, and 5.2 PiB of Storage.

• Emmy[3]: Together with the Lise1 cluster provided by the ZIB, Emmy is part of
the fourth supercomputer generation of the HLRN2. It can be used by all HLRN and
NHR users. Ranking 133th at the TOP5003, Emmy is the biggest cluster hosted by
the GWDG. It consists of 111,464 CPU Cores distributed over 1423 compute nodes
resulting in a total peak compute power of 5.95 PetaFLOP/s.

• Grete: Grete is a GPU HPC cluster and part of the NHR system. It features 158
nodes with 2 AMD Epyc 7513 CPUs and four NVIDIA A100 GPUs each, connected
through fast Infiniband fabric. As of November 2023, Grete is ranked 142 in the
TOP500.

• CARO[4]: Analogously to Emmy provided for the NHR, CARO is a compute
cluster hosted for the DLR4. With its 1364 compute nodes with 175,744 CPU Cores
and 3.46 PetaFLOP/s it ranks 228th on TOP500.

As the sheer number of nodes makes individually inspecting each one impossible, a
centralized monitoring solution is required. Beyond getting a basic understanding of which
node is alive, monitoring systems serve several important purposes. With an aggregated
view, system admins can understand the usage patterns. Furthermore, it can be used as
a means of load balancing for detecting preventable bottlenecks such as suboptimal job
queue usage. Additionally, monitoring allows for better demand analysis and forecasting,
allowing for more efficient, just-in-time hardware upgrades.

1https://www.zib.de/research_services/supercomputing
2Norddeutscher Verbund für Hoch- und Höchstleistungsrechnen https://www.hlrn.de/
3As of November 2023.
4Deutsches Zentrum für Luft- und Raumfahrt https://www.dlr.de/en
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1.2 Goals and Contributions

At the time of this writing, the GWDG has two different, Grafana-based monitoring solu-
tions for the SCC and Emmy/Grete. The goal of this report is to evaluate the performance
viability of unifying both monitoring solutions, replacing SCC’s InfluxDB5 and Telegraf6
with Prometheus and node_exporter. As part of this, the following contributions were
made:

• Designing a methodology for benchmarking a pull-based monitoring system.

• Designing a methodology for benchmarking a pull-based monitoring client daemon,
both in terms of throughput and the performance degradation caused by typical,
throughput-oriented HPC load.

• Benchmarking the performance and scalability of Prometheus for an HPC use case.

• Benchmarking the performance and performance penalty of node_exporter for an
HPC use case.

1.2.1 Structure

Starting with Section 2, the general topics of monitoring, time series databases, and
Prometheus are introduced. Related work about time series database performance will
be analyzed. After that, in Section 3, the benchmark methodology for both Prometheus
itself as well as node_exporter will be explained. Then, in Section 4, the results of
those benchmarks will be shown. After a short discussion in Section 5, the work will be
concluded in Section 6.

2 Background: Monitoring
Monitoring consists of 2 important components. On the one hand, it is the continuous
collection of mostly numerical data and metrics from various systems. On the other hand,
it is the aggregation and analysis of this collected data/metrics within a certain period of
time, up to real-time monitoring.

Several different kinds of metrics can be analyzed using monitoring systems. From
typical system metrics such as CPU, RAM, disk, or network usage to monitoring whole
server racks with power and cooling statistics as well as application-specific metrics such
as databases or webservers.

Most monitoring systems follow the collector/database/dashboard architecture. On
each node, a collector is running as a daemon, exposing the internal metrics for a cen-
tralized database, aggregating all nodes. Those databases are usually either general,
document-based NoSQL databases such as MongoDB7 and Elasticsearch8 or specialized
TSDBs such as InfluxDB9 or Prometheus10.

5https://www.influxdata.com/products/influxdb-overview/
6https://www.influxdata.com/time-series-platform/telegraf/
7https://www.mongodb.com/
8https://www.elastic.co/elasticsearch
9https://www.influxdata.com/

10https://prometheus.io/
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To provide a taxonomy, most monitoring systems can be categorized on two dimen-
sions:

Cloud-based or On-Premise: Monitoring systems can either be managed cloud-based
or self-hosted, on-premise services. Both have their advantages and disadvantages.

Cloud-based monitoring services such as Datadog11 or Splunk12 have several advan-
tages. Using an externally hosted service simplifies the overall monitoring maintenance.
By not requiring hardware for another service, it lowers the barrier of entry. Further-
more, since the whole monptoring stack is written by the same manufacturer, it allows
for tighter integration.

On-premise hostings, on the other hand, also have several advantages over the cloud-
based solutions. Since they are part of the local network, they are easier to integrate into
current infrastructure, even those parts that one doesn’t want to publically expose such
as Active Directory or other Identity Management Solutions. Additionally, it mitigates
potential security and privacy risks, especially for data that could either pose a security
risk such as showing applicable vulnerabilities, or data that is legally not allowed to be
processed off-premise such as sensitive user data. Lastly, while the software stack is more
heterogeneous, it allows for more specialization based on the user’s needs.

Push or Pull: There are two different paradigms in data gathering:
In the more common push paradigm, the data-collecting daemon sends the data to

an API endpoint. This has multiple advantages: First, it is easier for firewalls, because
it does not need any inbound connection establishment. It is also less overhead for the
TSDB since it just needs to passively receive the data. Lastly, it is easier to send non-
aggregated raw data, since the client can decide when it has enough data to send to the
database.

In the pull paradigm, the TSDB itself iterates over and fetches all metrics, which are
exposed as newline-separated key-value pairs through a specified HTTP endpoint. The
biggest advantage is that the TSDB can’t be overwhelmed with requests since it implicitly
rate-limits itself through the amounts of outgoing requests. Furthermore, it allows for lazy
and just-in-time fetching of data, reducing the overall overhead in the network.

The GWDG uses both push and pull TSDBs in the SCC and Emmy clusters respec-
tively.

2.1 Current Architecture: GWDG SCC

The SCC uses a push-based architecture: On every node, the plugin-powered Telegraf
daemon collects all metrics, which are then sent to the InfluxDB TSDB. Finally, this
database gets queried using the legacy InfluxQL by Grafana13 as configured in the dash-
boards.

11https://www.datadoghq.com/
12https://www.splunk.com/
13https://grafana.com/
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Figure 1: The InfluxDB-based push-setup for the SCC.

2.2 Current Architecture: HLRN Emmy

For Emmy, a pull-based architecture is used. The node_exporter14 exposes the /metrics
HTTP endpoint, to which the Prometheus database connects when fetching the data. The
aggregated data also gets queried through pre-made Grafana dashboards with PromQL.

Figure 2: The Prometheus-based pull setup for Emmy.

14https://github.com/prometheus/node_exporter
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2.3 Prometheus

More than just a TSDB, Prometheus is a pull-based systems monitoring toolkit. Origi-
nally developed at SoundCloud, it is now a non-commercial open-source project hosted
by the Cloud Native Computing Foundation (CNCF), which is a part of the Linux Foun-
dation. The clients expose the pull metrics via node_exporter or other custom tooling,
which then get scraped by the Prometheus server into its TSDB, which can then be
queried through PromQL, its own query language.

Figure 3: Prometheus high-level architecture [5].

2.4 TSDB Performance Evaluation

While there are several papers on TSDB performance evaluation, most benchmarking was
mainly done by different vendors. In this section, we will cover one publication as well as
two industry standards for push and pull-based database benchmarking respectively.

The most actively maintained academic benchmark was first published by Liu and
Yuan in 2019 [6]. It is maintained to this day. While it currently only supports Push-
based metrics, it supports not only traditional TSDB such as InfluxDB or TimeScaleDB
but also classical SQL-based databases such as SQLite or Microsoft SQL Server. It also
supports several benchmarking scenarios testing both write and query performance.

But the canonical benchmarking suite for push-based TSDBs is the Time Series Bench-
mark Suite (TSBS) [7], maintained by Timescale, the maintainer of timescaledb15, a time-
series database packaged as a PostgreSQL. Initially developed by an external contractor
for InfluxData as influxdb-comparisons [8], it supports most TSDBs. It is split into 3
different, purely distinct phases: Data and query generation, data insertion, and query
execution. This is done to minimize the load generator overhead for more reliable results.

15https://www.timescale.com/
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Due to the constant load configured on the server side instead of the load generator
side, pull-based TSDB benchmarking is more difficult. Although still pretty new, the only
well-maintained benchmark suite for Prometheus-like systems is prometheus-benchmark
[9], developed by VictoriaMetrics16, a competitor to Prometheus. It supports Victo-
riaMetrics as well as Prometheus-based Grafana’s Mimir17 and the CNCF-maintained
Prometheus clustering solutions Cortex18 and Thanos19. Unfortunately, it can not be
used for this benchmark as it expects a Kubernetes-based cloud environment while this
use case is around HPC usage.

Unfortunately, due to the competitive nature of the highly funded No-SQL startup
space, both benchmark suits are susceptible to commercial incentives.

3 Benchmark Methodology
This section will cover the design and methodology behind all benchmarks. In particular,
the following benchmarks were designed as part of this report:

• Measuring the isolated performance of the metric gathering function within the
node_exporter daemon.

• Measuring the end-to-end performance and stress testing the resilience of the node_exporter
daemon with different HTTP load generators.

• Measuring the scalability of Prometheus by increasing the number of daemons to
fetch from.

• Measuring the performance penalty of node_exporter on a running HPC job (jitter-
benchmark).

Note that the code for all benchmarks [10] as well as the patched node_exporter [11]
can be found on Github.

3.1 Setup

For the node_exporter performance benchmarks as well as the Prometheus benchmark,
an HPC gcn2 type node from the HLRN Emmy cluster was used. This node has two Xeon
Platinum 9242 with 48 cores each as well as 376GB of RAM. The servers were solely used
for the benchmarks, thus resulting in no noisy neighbour problems.

In order to facilitate a more minimal operating system with fewer running services, the
jitter-based performance penalty benchmark was done locally on a Thinkpad T14 Gen 1
running a minimal Ubuntu Server 22.04 LTS with all non-essential services killed. The
Thinkpad has a quad-core Intel i5-10210U and 16GB of RAM.

The node_exporter benchmarks use a precompiled node exporter of version 1.7.020

For the isolated metric gathering benchmark, node_exporter was forked from version
16https://victoriametrics.com/
17https://grafana.com/oss/mimir/
18https://github.com/cortexproject/cortex
19https://github.com/thanos-io/thanos/
20With the following collectors enabled: cpu, cpufreq, infiniband, meminfo, netdev, vmstat.
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1.7.0. For Prometheus, an Ubuntu 22.04 based singularity container was used as a basis,
containing a Prometheus version 2.45.1. The Dockerfile is also available in the repository
[10].

3.2 node_exporter

3.2.1 Metric Gathering

When requesting all metrics via the /metrics HTTP endpoint, node_exporter runs the
following function:

1 // Collect implements the prometheus.Collector interface.
2 func (n NodeCollector) Collect(ch chan<- prometheus.Metric) {
3 wg := sync.WaitGroup{}
4 wg.Add(len(n.Collectors))
5 for name, c := range n.Collectors {
6 go func(name string, c Collector) {
7 execute(name, c, ch, n.logger)
8 wg.Done()
9 }(name, c)

10 }
11 wg.Wait()
12 }

Listing 1: How the metrics are collected in collector/collector.go

So when requesting the metrics, node_exporter spawns a new green thread for each
metric plugin, awaiting all results in a fork-join-like model with a semaphore. Instead
of benchmarking the single function by mocking a realistic application state, the Collect
function was patched as follows:

Section 3 Lars Quentin 7
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1 // Collect implements the prometheus.Collector interface.
2 func (n NodeCollector) Collect(ch chan<- prometheus.Metric) {
3 [...]
4 // BENCHMARK BEGIN
5 N := 1000
6 // record the time
7 totalStart := time.Now()
8 for i := 0; i < N; i++ {
9 n.RealCollect(ch)

10 }
11 totalEnd := time.Now()
12 fmt.Println("total time: ", totalEnd.Sub(totalStart)
13 .Milliseconds())
14 fmt.Println("average time: ", float64(totalEnd.Sub(totalStart)
15 .Milliseconds())/float64(N))
16 }
17

18 func (n NodeCollector) RealCollect(ch chan<- prometheus.Metric) {
19 wg := sync.WaitGroup{}
20 wg.Add(len(n.Collectors))
21 for name, c := range n.Collectors {
22 go func(name string, c Collector) {
23 execute(name, c, ch, n.logger)
24 wg.Done()
25 }(name, c)
26 }
27 wg.Wait()
28 }

Listing 2: The patched collector measuring the collection time. Note that the
RealCollect function contains the same code as the unpatched Collect.

Further small patches had to be made to fix any errors, see the repository for more
information [11].

3.2.2 End to End

The end-to-end benchmarks measured the throughput of the client exposing the metrics
using traditional HTTP benchmarking. In particular, two different benchmarking tools
were used:

• wrk [12] is a popular, CLI-based HTTP benchmarking tool written in C. Due to its
optimized performance, it can serve as a baseline optimal throughput. To further
improve throughput, it keeps all HTTP connections open between requests.

• go-wrk [13] is a reimplementation of wrk in the Go programming language, using
Go’s green threads and standard net library for load generation.

All benchmarks are continuously measured using vmstat 1. The benchmarks can be
divided into three different kinds.

Section 3 Lars Quentin 8
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1. wrk sequential: Using a single thread and a single connection, this is the most
realistic load, as metrics are usually only crawled by a single Prometheus server as
well. This is also the simplest possible benchmark; just send it as fast as possible.

2. wrk parallel: Scaling along the number of open HTTP connections and threads.
This is for creating the maximally possible throughput, although it is not real-
istic since Prometheus does not open multiple HTTP connections to the same
node_exporter.

3. go-wrk parallel: Scaling along the number of go routines/green threads. This is
a more realistic load, as it mostly behaves like Prometheus. Both Prometheus and
go-wrk use the same underlying request library, both do not keep HTTP connections
open between requests and both use go routines for parallelism.

The benchmarks work as follows: In an outer loop, we scale around the number of pro-
cesses consumed by the node_exporter by changing the GOMAXPROCS environment vari-
able of the underlying go runtime. Note that even with single threading go routines
can still highly improve performance by hiding I/O idle times between different metrics
fetching. For each parallelism, we scale the software as described above, sending against
the /metrics endpoint, which in turn starts the node exporter to refetch and return the
newest values. By measuring how often this request can be done and the latency it took,
the performance can be evaluated.

Note that this complete benchmarking pipeline is scripted out and automated into a
single SLURM job.

3.2.3 Jitter

While the performance of the metric collector itself is important, it can reasonably be
assumed that they can run well on big HPC machines. From a raw compute providers
standpoint, the more interesting question is whether the metric collection overhead is
manageable, i.e. the performance of the running jobs is significant.

Performance degradation is hard to measure. For once, HPC systems, while running
a minimal operating system, are still very complex running many different daemons. It
is not sufficient to just measure the time a single-threaded metric collection takes and
take that share times the CPU clock speed; other performance losses such as flushed CPU
caches or bad OS scheduling can incur even bigger losses than the actual runtime. As
previously shown node_exporter spawns a new go routine for each metric, which could
result in a lot of cache invalidation.

The approach used in this report is a more realistic one. We have written an MPI-
based program running the following pseudo-code:

Section 3 Lars Quentin 9
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1 #define N 1000000
2 timestamp BIG_ARRAY[N];
3

4 int main() {
5 MPI_INIT();
6 for (int i=0; i<10; ++i) {
7 for (int j=0; j<N; ++j) {
8 BIG_ARRAY[j] = get_time_now();
9 }

10 save_big_array();
11 MPI_BARRIER(); /* sync */
12 }
13 }

Listing 3: A simplified C-style pseudo code of the jitter program.

This code just, as fast as possible, measures the current time on as many processes as
spawned via MPI. By using barriers, it can be assured that the processes do not get out
of sync, creating unexpected load spikes. Once the node_exporter metrics get requested,
a slowdown in measurements can be seen, which can then be analyzed to quantify the
severity of the interference.

3.3 Prometheus

As explained in the background section, benchmarking pull-based TSDB monitoring so-
lutions is comparatively complicated. Using normal push-based APIs, one can just use
traditional HTTP load generators such as JMeter. This is not possible, since the TSDB
itself has to start each request to the metric collector daemons. So, instead of measuring
how many requests the database can handle, it will instead measure how many clients
Prometheus can pull from until its pull frequency suffers. This is done by completely
mocking the node_exporter collection daemon and counting the number of times each
node was requested by Prometheus.

More specifically, Prometheus gets an autogenerated config21 that configures it to
scrape all targets, i.e. all node_exporter, to be checked every 10 seconds. This benchmark
runs for 10 minutes. This means that, once all clients report being crawled significantly
less than 60 times, Prometheus was not able to handle all mock clients anymore, which
implies that the load was too much.

The mock clients were created using Python 3.9 with FastAPI22 0.104 and the Uvi-
corn23 0.24 as an Asynchronous Server Gateway Interface (ASGI) implementation. Each
node exposes 50 integer metrics, although this is configurable. Instead of just using a
static website, each metric updates randomly in order to circumvent any kind of caching
optimization on Prometheus side.

For randomness, Python uses a standard Mersenne twister with a timestamp as a
seed value. Since all mock APIs are spawned at approximately the same time, multiple

21Example config in Appendix.
22https://fastapi.tiangolo.com/
23https://www.uvicorn.org/
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nodes might have the same mock values. Since it was not known whether Prometheus
optimizes/joins multiple nodes with the same values, this had to be fixed.

One could theoretically call /dev/urandom for every number, but both the OS call
and the Python bytes-to-number conversion are too costly. So instead, when starting the
number, the following procedure is run to ensure cryptographical uniqueness between the
different mock clients:

• Get 8 random bits from os.urandom, interpret as unsigned byte b.

• Let the Mersenne twister generate b random numbers as a warmup.

• Use the warmed-up Mersenne twister as a random number generator.

When terminated24, each mock client dumps the amount of requests it received into
a text file. Concurrent writes are fixed by letting each client create its own text with its
current process id interpolated into the filename.

To summarize, the high-level fully automatized workflow works as follows:

• The number of mock clients are provided as a CLI parameter in the form of a free
port range to use.

• Given that port range, a Prometheus config is dynamically generated, configuring
the service to scrape each port once every 10 seconds. That config is later bind-
mounted into a custom Prometheus singularity container.

• Spawn all mock clients; sleep 2 · number_of_clients for them to start.

• Record server utilization in 1 second resolution using vmstat 1.

• Start the singularity container with the config and a data directory bind-mounted
in.

• Sleep for 10 minutes (the actual benchmark).

• Terminate25 prometheus, then vmstat, then all mock exporter.

4 Results
This section will cover the results of the aforementioned benchmarks. First, it will go
over the performance of the node_exporter itself, which measures how performant the
daemon is at collecting all metrics of a single node. After that, the focus will be on the
overhead on normal computation load incurred by the node_exporter. Lastly, the results
of the benchmark of Prometheus itself will be covered.

Note that all benchmark scripts as well as analysis code can be found in the accom-
panying GitHub repository.

24This is done via explicit signal handling.
25The exact signal is SIGTERM.
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4.1 node_exporter Performance

Patched Node Exporter: First, we start looking at the metric gathering benchmark,
i.e. running the metric gathering 1000 times in a loop without the overhead of HTTP and
the Go router. The following probability density functions were computed using seaborns
kernel density estimation.

(a) (b)

Figure 4: A kernel density estimation of the results. a) showing the raw times it took to
collect all metics 1000 times. b) calculated the approximated requests per second from
the initial data.

Calculating from the original data, the average request took 71ms, which is the equiva-
lent of 13.99 requests per second, which shows that there is plenty of spare time for adding
additional metrics. For the realistic use case of running Prometheus as the monitoring
solution of the SCC, it can be assumed that the metrics will be fetched around once every
10 seconds. This results in 0.71% of the time a go process will be running, allocating a
single CPU. As previously mentioned, the node used has two Xeon Platinum 9242 with 48
cores, i.e. 96 threads, each. Depending on how well multithreading is utilized at that mo-
ment, this results in somewhere between 0.014% and 0.0074% of the total compute time.
Although this data shows that the direct resource overhead incurred by node_exporter
is negligible note that this computation does not include the performance penalty on the
other jobs and thus can be seen only as a loose lower bound.

Node Exporter HTTP benchmarking: The results of this benchmark are two-fold.
First, it was analyzed how well it scales with parallelism under moderate load. For that,
a single-threaded wrk load generator26 was used while the number of processes available
to the Go runtime was increased between benchmarks:

26Using multiple open HTTP connections
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Figure 5: The requests per second given the amount of processes available for Gos runtime.
Note that n = 1 failed while benchmarking due to an error in the benchmark pipeline.

It can be seen that beyond 8 processes the performance decreases, due to the overhead
being higher than the performance gains made by the extra parallelism. Furthermore,
with 2 processes, the whole end-to-end request27 was completed around 27.5 times per
second.

Lastly, it was tested how resilient the node_exporter is against very heavy load. For
this, the wrk load generator was used using 16 threads. The benchmark was scaled in
two dimensions: Both in the number of concurrent HTTP connections between wrk and
node_exporter as well as the number of processes available to the Go runtime.

(a)
(b)

Figure 6: a) shows the average throughput and b) the percentage of requests which timed
out.

This benchmark shows that node_exporter performs very poorly under heavy load.
Even with the previously found optimum of 8 OS processes, it results in over 80% of

27Excluding a realistic round trip time since the request was done against localhost

Section 4 Lars Quentin 13



Scalability Evaluation of Prometheus for HPC Monitoring

requests timed out when sent under a heavy load.

4.2 node_exporter Performance Penalty (Jitter)

The following histograms are measurements from the jitter benchmark ran on an 8-thread
CPU, resulting in n = 134, 217, 728 data points per plot.

(a) jitter single thread
t = 2.437996071

(b) baseline single thread
t = 2.421950996

(c) jitter 8 MPI processes (rank 0)
t = 5.836635677

(d) baseline 8 MPI processes (rank 0)
t = 5.968865865

(e) jitter 8 MPI processes (rank 1)
t = 5.914636448

(f) baseline 8 MPI processes (rank 1)
t = 5.864066244

Figure 7: The results for single nodes, plotted onto a 25 bin, linearly sized histogram.

Due to the enormous size of the data set, a more sophisticated analysis was not
possible; an in-depth reasoning is provided in the Discussion below. But it can be seen
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that, while a clear trend of a longer tail can be recognized, it can also be seen that this
tail is very thin containing only a few data points. This implies that the performance
penalty is incurred just a small share of the computation time.

All pre-computed histograms for all configurations and all MPI ranks28 as well as the
fully automated benchmarking workflow and a verbose description are available in the
accompanying GitHub repository.

4.3 Prometheus

For this benchmark, the Prometheus was configured to request each node once every 10
seconds for 10 minutes, i.e. to request each node a total of 60 times. From this maximum
the theoretical max of 60 times the number of nodes can be calculated. All mock clients
as well as prometheus ran on the same node.

Figure 8: Scaling up the number of mock nodes. The number of requests are the number
of times Prometheus contacted one of the mock clients. All mock clients ran on a single
node.

The drop-off will be further analyzed in the discussion. To ensure that it is not a
limitation of the Linux kernel having too many open file descriptors and running processes,
the mock clients were then split into two nodes.

28With a bucket size of 10, 25, 50, and 100 as well as calculated using the Square-root choice, Sturges
Formula, and Rice Rule. Also with the tail 0.05% cut off.
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Figure 9: Scaling up the number of mock nodes. The number of requests are the number
of times Prometheus contacted one of the mock clients. The mock clients were split into
two nodes.

As one can see, using a single node, the performance drops off sharply after 1500
nodes. And even with the load split onto two nodes, it drops to nearly no requests at all
using 2500 nodes.

Excluding the dropoff itself, this performance is very bad. The data implies that,
using our single node setup, monitoring more than 1500 clients would fail. Looking at
the optimum case of a single node setup fetching 1500 node exporter, it approximately
matches 90000 requests, which results in 150 requests per second. The metrics were of
the format keyname3: 42.

Assuming that each number is in the normal 32bit integer range, each metric can be
rounded up to 10 + ⌈log10(231)⌉ = 20 byte of data, with 50 metrics this adds up to 1kb
per node. Thus a total throughput of only around 150 kb of useful data per second is
achieved.

5 Discussion
As clearly seen in the data, the Prometheus job had a scaling problem when moving from
1500 to 2000 mock node exporter. Confusingly, the problem was not CPU, Memory, or I/O
utilization, as all of those were not fully utilized. The data showing the utilization while
benchmarking with one server running 2000 mock nodes can be found in the appendix.

The working hypothesis was that the Linux kernel had problems with that many
mock processors; either handling all the open file descriptors or just scheduling the sheer
amount of processes. To validate that hypothesis, the two HPC node benchmarks were
done. While the benchmark shows that it scales further, it does not show that the problem
was with either the amount of processes or the amount of file descriptors. When splitting
the mock load generator into two nodes, the expected result would be around twice the
amount of nodes until it stops serving all collectors, which is definitely not the case29.

29Not exactly twice the amount, because one of the nodes still ran Prometheus. However this should
not be a problem since, as already mentioned, the node was idling on all ressource dimensions.
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Furthermore, one should note that the mocked node_exporter used pseudorandom-
ness30 for the fake metric generation. While this is less realistic than using more sophisti-
cated data generation methods such as Perlin noise, it incurs significantly less overhead per
fake node. Other benchmarks such as the previously mentioned TSBS used pre-generated
mock data. This would also not be possible as it would result in a very heavy I/O load
on the central storage cluster, resulting in strongly reduced I/O speed for all Prometheus
operations.

Lastly, the jitter benchmark was very difficult to analyze. Due to the inherent design
of recording as many data points as possible, it resulted in over 130 million data points,
sometimes recording less than 3 seconds of time. It was not possible to downsample the
data since the thin long tails were explicitly of interest. The data set was too large to
use kernel density estimations to create a probability density function. Furthermore, due
to the sheer differences in tail latencies, layering the measurements and their baseline on
the same histogram was not possible, as it was not possible to find a bin selection that
properly presented both.

It was not possible to properly analyze the tail, because it was very hard to isolate.
While for example with the 1 thread benchmark the tails measurements went up to the
1e6 nanoseconds range, the p99.9 was only 786ns. The thinness and length of the tail
latencies, the range difference between the benchmarks combined with the sheer data set
size made any sophisticated analysis impossible within the scope of this report. In fact,
this analysis was only possible because the plots could be computed on an HPC node;
On the laptop the benchmarks were made of the process was killed, most likely due to a
Python-internal out-of-heap memory error.

6 Conclusion
For this report, four methods of benchmarking the Prometheus monitoring architecture
were designed and implemented, measuring both the performance of as well as perfor-
mance penalty incurred by the node_exporter metric collector as well as the performance
and scalability of Prometheus.

The results show that, although the collector did not handle the stress test load well,
its throughput and overall performance is sufficient, and the collection time is acceptable,
even using only a single process for execution. Prometheus itself did not scale well beyond
a certain amount of nodes, failing with 2000 collectors when all run on one not fully utilized
HPC node. Thus, a non-clustered Prometheus solution would not be able to serve the
combined load of both the SCC and Emmy cluster as Prometheus performance degrades
too much immensely after a certain amount of nodes.

6.1 Future Work

While a simple Prometheus showed to not scale properly enough, clustered Prometheus-
based solutions such as Cortex31 or Thanos32 could provide a solution able to monitor

30Using the warmed-up Mersenne twister method mentioned in the methodology.
31https://cortexmetrics.io/
32https://thanos.io/
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multiple HPC clusters33. Possible future work includes evaluating and comparing both of
these clusters.

Furthermore, to have a definite conclusion on the full performance penalty created
by node_exporter, a more sophisticated analysis has to be done. This could include
identifying the tail through clustering techniques, manually cutting off the few very ex-
treme data points for more insightful plotting or otherwise computing a cutoff for the
data points.

Lastly, the Prometheus benchmark could be set up in a way that Prometheus itself is
deployed isolated on a single node while all mocked collectors are distributed on different
nodes. This would create a more realistic scenario with higher round trip times between
all nodes.

33The collector itself had sufficient performance.
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A Example Autogenerated Prometheus
Config

1 global:
2 scrape_interval: "10s"
3 evaluation_interval: "10s"
4

5 scrape_configs:
6 - job_name: prometheus
7 static_configs:
8 - targets: [
9 "localhost:9200",

10 "localhost:9201",
11 ...
12 ]

Listing 4: Example Autogenerated Prometheus Config (target list truncated and refor-
matted)

B Prometheus Node Utilization data
All data was collected by running vmstat each second while running the benchmarks
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B.1 I/O was not the bottleneck

Figure 10: The I/O wait times recorded, showing that there was no increasing queue of
I/O operations.
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B.2 Memory was not the bottleneck

Figure 11: The free memory, showing that there was more than enough free memory, and
that the memory usage was not significantly different between the benchmarks.
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Figure 12: The total non-used memory (including page cache and buffer cache), again
showing no significant difference between the well performing 1500 node benchmark and
the slow 2000 node benchmark

Figure 13: No swap was used at both benchmarks.
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B.3 CPU was not the bottleneck

Figure 14: The accumulated CPU usage, both system time (sy) and user time (us),
showing that the processor was not fully utilized in both benchmarks, and that due to
the high amount of threads available the CPU usage was not significantly different.
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