
SH

∞

Seminar Report

Comparing different BaaS solutions and
their performance

João Pedro Soares

MatrNr: 23346583

Supervisor: Timon Vogt

Georg-August-Universität Göttingen
Institute of Computer Science

March 24, 2024

Abstract
In this report, we go over the main differences between Supabase and Pocketbase and the
advantages of using these tools over creating your own backend or using a proprietary
solution like Firebase. Developing an app with either of these platforms comes with its
specific challenges, which is only natural since the technologies behind them differ. In our
report, we determined that the performance between the two is different in some situa-
tions, but ultimately, for the purpose of developing simple applications, the differences are
negligible. Both are very simple to set up and use but Supabase has some more advanced
features(better data importing tools, edge functions, and vector embeddings for similarity
search) that can be useful in bigger projects. Supabase is the most popular of the two
platforms, but they are both very effective.

i

Statement on the usage of ChatGPT and similar tools
in the context of examinations

In this work I have used ChatGPT or a similar AI-system as follows:

□ Not at all

□ In brainstorming

□ In the creation of the outline

□ To create individual passages, altogether to the extent of 0% of the whole text

✓□ For proofreading

✓□ Other, namely: In the creation of parts of the code for the web development project,
ChatGpt was used to help create better looking UI for the React application. It was
also used for creating SQL queries for creating and updating tables in the databases.

I assure that I have stated all uses in full.
Missing or incorrect information will be considered as an attempt to cheat.

ii

Contents

List of Tables iv

List of Figures iv

List of Listings iv

List of Abbreviations v

1 Introduction 1
1.1 Contributions . 1
1.2 Report outline . 2

2 State-of-the-art 2
2.1 Comparing Firebase vs Supabase vs Pocketbase 2
2.2 Performance benchmarks . 3
2.3 Other alternatives to Firebase . 3

3 Practical comparison 3
3.1 Designing the web application . 3

3.1.1 Designing the database . 5
3.2 Developing the application . 5
3.3 Using Supabase . 6

3.3.1 Admin Dashboard . 7
3.3.2 Self-hosting . 8

3.4 Using Pocketbase . 9
3.4.1 Admin Dashboard . 9
3.4.2 Self-hosting . 10

4 Results 10
4.1 Complexity/Ease of use . 11
4.2 Security . 11
4.3 Scalability . 12
4.4 Other important evaluation criteria . 12

4.4.1 Price . 12
4.4.2 Vector embeddings and similarity search 13
4.4.3 Performance . 13
4.4.4 Community support . 14

5 Discussion 14

6 Conclusion 14

References 16

iii

List of Tables

List of Figures
1 Firebase vs Supabase vs Pocketbase . 2
2 Graph showing App structure . 5
3 DB Schema Visualizer . 6
4 Products Page from project’s frontend . 7
5 Supabase Admin Dashboard(Table Editor Page) 8
6 Pocketbase Admin Dashboard(Table Editor Page) 10
7 Comparing elapsed time of API calls on different hardware 13
8 Comparing Results from our conducted research between Supabase and

Pocketbase . 14

List of Listings
1 Bash code for hosting Supabase . 9

iv

List of Abbreviations
GWDG Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen

VM Virtual Machine

Baas Backend as a Service

v

Comparing different BaaS solutions and their performance

1 Introduction
The software industry has fully embraced the cloud and made it the norm for developing
web applications. With services provided by companies such as Amazon, Google, Mi-
crosoft, and others, the process of getting your application to your user base has never
been more convenient. However, there are still many other individuals and companies
developing open-source tools for web development. This scientific report embarks on a
journey to explore two open-source tools: Supabase and Pocketbase, comparing their
unique features and advantages and how they stand apart from their proprietary coun-
terparts.

Firebase[Goo20] is a series of products and solutions that take advantage of Google’s
cloud resources to provide developers with tools for developing their applications, namely
authentication, storage, databases, analytics, and much more, all in one platform.

Supabase[Sup20a] is an open-source alternative to Firebase. Supabase sets itself apart
by offering a suite of services for web development, which include a Hosted Postgres
Database, robust Authentication and Authorization mechanisms, auto-generated APIs,
Edge Functions, and File Storage. What distinguishes Supabase is its open-source nature,
which grants developers the freedom to deploy it locally or on servers they own, in contrast
to Firebase, which is intrinsically tied to the Google Cloud Platform.

Another noteworthy contender to Firebase is Pocketbase[Poc23b], another open-source
Backend as a Service (Baas) solution. Pocketbase, unlike Supabase, does not have its
proprietary cloud service, necessitating self-deployment. We will examine the deployment
process of both solutions and compare their user-friendliness to provide a comprehensive
assessment of the two platforms.

The primary objective of this report is to construct a small-scale web application, im-
plementing Supabase as its primary backend technology, alongside React and Express.js.
Subsequently, we will assess the performance of the deployed application by hosting it
on both Supabase’s cloud service and the cloud Virtual Machine (VM)s provided by
Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG) and do-
ing the same for Pocketbase(comparing local deployment with deploying the services on a
remote server). This comparative analysis aims to shed light on the practical implications
of using these tools, with a particular emphasis on ease of use and performance.

By the end of this report, readers will have gained valuable insights into the capabil-
ities of Supabase, as well as a comparative understanding of its deployment challenges
and performance compared to Pocketbase. In an age where open-source solutions are
rapidly reshaping the web hosting landscape, this exploration promises to contribute to
the knowledge base of developers and technology enthusiasts alike.

1.1 Contributions

In this report, we built a React application and two different backends, each using one of
the different Baas solutions, and deployed locally(using different machines that were avail-
able) and also remotely in the cloud. As we developed these applications we performed
several tests. We also came up with what we thought was a good basis for evaluation in
creating two hypothetical developers that would benefit from the use of these tools and
understanding how the needs of these users could lead them to choose one of the tools
over the other.

Section 1 João Pedro Soares 1

Comparing different BaaS solutions and their performance

1.2 Report outline

This report undertakes a comprehensive comparison of three prominent backend service
providers: Firebase, Supabase, and Pocketbase. In the state-of-the-art section, the re-
port delves into a thorough examination of each platform, juxtaposing their features,
and performance benchmarks, and exploring alternatives to Firebase. Following this, the
practical comparison section details the practical application of these platforms, from de-
signing the web application and its database to the development process and utilization of
Supabase and Pocketbase, including their admin dashboards and self-hosting capabilities.
The subsequent section presents the results of the evaluation, covering aspects such as
complexity of use, security, scalability, and other pertinent criteria like pricing, support
for advanced features such as vector embeddings and similarity search, performance, and
community support. Concluding remarks synthesize the findings, offering insights and
recommendations. Through this structured analysis, readers gain a nuanced understand-
ing of the strengths and limitations of each platform, aiding informed decision-making in
backend service selection.

2 State-of-the-art
2.1 Comparing Firebase vs Supabase vs Pocketbase

As was mentioned in the Introduction, Supabase is marketed as an open-source alternative
to Firebase. Supabase has been compared to Firebase in [Sup20f] and [Jag23]. In the table
in Figure 1 we can observe the main differences between the two that were pointed out
in these articles and also the features from Pocketbase.

Figure 1: Firebase vs Supabase vs Pocketbase

The most significant differences between Firebase and its open-source counter-parts
are:

• you can use them for free.

• they use relational databases instead of noSQL, which makes querying and retrieving
information faster and allows for more complex queries.

• they have smaller communities but growing communities(fewer extensions and learn-
ing resources).

Section 2 João Pedro Soares 2

Comparing different BaaS solutions and their performance

2.2 Performance benchmarks

There are benchmarks made available by Supabase on Github[Sup20b] comparing it to
Firebase. Another benchmark by Supabase [Sup20c] compares its performance while
running on different machines: AWS t3a.micro (vCPU 2, RAM 1GB), Fly.io micro-1x
(shared vCPU, RAM 128MB) and a Fly.io micro-2x (shared vCPU, RAM 512MB).

The most recent results performed by their developer team show that Supabase out-
performs Firebase by up to 4x on the number of reads per second, and 3.1x on writes per
second.

Pocketbase also has Github repository [Poc23c] with benchmarks and test made on
different machines comparing their respective performance: Hetzner CAX11 (2vCPU
ARM64, 4GB RAM), Hetzner CAX41 (16vCPU ARM64, 32GB RAM), Hop.io (1vCPU,
512MB RAM) and Fly.io (1VCPU, 256MB RAM).

After analyzing these benchmarks, both Hetzner CAX11(machine with the best speci-
fications) and Fly.io(machine with the worst specifications) demonstrate competitive per-
formance in various scenarios(results of each one of the test didn’t vary much despite the
differences in available resources). The choice between them may depend on factors such
as specific use cases, pricing, and additional features offered by each provider.

2.3 Other alternatives to Firebase

Other tools in the world of BaaS solutions that are worth exploring are:

• Amplify from AWS - build full-stack web and mobile apps in hours. Easy to start,
easy to scale.

• NHost - an open-source backend and development platform that enables developers
to build and scale their web and mobile apps.

• Appwrite - an open-source platform for building applications at any scale, using
your preferred programming languages and tools.

• Fastgen - a low-code API and workflow builder with an integrated Postgres DB.

It’s important to keep in mind the support and community around each tool, as any
developer would not want to invest time in using a tool just to find a problem/bug that
won’t be fixed in the future. It’s crucial, when choosing a tool for your next big project
to understand the capabilities and the available community resources. Choosing the right
BaaS solution is important as it can impact your project in the long run.

3 Practical comparison
3.1 Designing the web application

In this report, we wanted to review these platforms from a broad perspective, but it’s
important to keep in mind all the different types of developers. Engineers, designers,
and product managers utilize "user personas" to understand their user needs, prioritize
features, and design user-friendly products that cater to specific user requirements. We
developed two "user personas" that are trying to create the same application, using the
same data.

Section 3 João Pedro Soares 3

https://aws.amazon.com/amplify/?nc1=h_ls
https://nhost.io/
https://appwrite.io/
https://fastgen.com/

Comparing different BaaS solutions and their performance

• User A - is an inexperienced developer who is creating a simple project for a
Hackathon. This person values ease of use and development speed. However, the
solution must scale in case the project is successful.

• User B - is an experienced developer who can build the back-end from the ground
up but wants to find a possible workaround for some of the complicated issues that
come with back-end development, such as security, scalability, performance, API
development, and authentication.

To evaluate tools for the different user personas described, you’ll want to consider
criteria that align with their specific needs and preferences. Here are some criteria tailored
to each user persona:

For User A:

• Ease of Use: Intuitiveness of the platform/interface.

• Development Speed: How quickly can they create the required reports and dash-
boards without extensive coding or technical skills?

• Customization: Ability to easily edit the data.

• Visualization Options: Variety and quality of visualization tools available. Will help
in communicating the project’s goals to judges or stakeholders.

For User B:

• Security: Capabilities for implementing robust security measures.

• Scalability: Ability to handle growth and increased data loads.

• Performance: Tools and features to enhance application performance.

• Flexibility: Customizability and flexibility in implementing complex solutions.

To test these solutions, creating an example web application is necessary. The goal
was to create an app that displayed data from a relational database in a user-friendly
interface. This project uses React, Tailwind CSS, and a database and it’s a comparison
shopping website for cosmetic products that uses content creators as the main source for
product reviews. In Figure 4, we can see what the products page looks like. Users can go
on the website and search for products by category and, when they click on a product,
they can see a list of content creators who recommended that product and the video they
made about that product. Additionally, a user can follow a content creator and see all
the videos they made and all their product recommendations.

Essentially, we will develop the same application in two different ways:

• Using Supabase as the backend

• Using Pocketbase as the backend

To do this we needed to develop the code in a way that we could reuse as much
of the software as possible. Therefore, the front end should make a call to an API that
handles all the interactions with the database, authentication, etc. That way we can build
two different APIs with the same endpoint and parameters(so the code on the front end

Section 3 João Pedro Soares 4

Comparing different BaaS solutions and their performance

stays the same). We included a graph that demonstrates our intention in Figure 2(this
graph includes a 3rd backend that would be developed from scratch that we ended up
removing from the report due to the added complexity that developing this would bring
to the report). This repository includes all the code developed during the research for
this report and instructions on how to run/deploy it.

Figure 2: Graph showing App structure

3.1.1 Designing the database

In total, there are 7 tables: types, brands, creators, products, product-types,
videos, and recommendations. You can understand the different relations between
tables in the database schema visualization in Figure 3.

3.2 Developing the application

Before creating the front end, we designed the whole application around the user’s actions
that we wanted to implement. The user should be able to easily search the app’s page
and answer questions like:

• What are the available products from brand _ ?

• What are the creators that recommend the product _ ?

• What products does the creator _ recommend?

• What are the Top Creators of the website?

• What are the Top Brands on the website?

Section 3 João Pedro Soares 5

https://gitlab.gwdg.de/joao.soares/hpcsa-report-comparing-different-baas-solutions-and-their-performance

Comparing different BaaS solutions and their performance

Figure 3: DB Schema Visualizer

To answer these questions we designed the database and relation between the different
tables in a way that optimized the queries that get the answer to those questions. This
included the creation of certain "view" tables. A view is a virtual table based on the result
set of an SQL statement(basically a table whose structure cannot be changed). We used
views to avoid writing complex select queries using the platform’s SDKs(writing code for
Supabase/Pocketbase that selects all rows from a view table only takes 2 to 3 lines of
code) and also because it’s more optimal than running the full query every time we want
to get this information.

3.3 Using Supabase

Supabase offers a collection of products, which include:

• database - Supabase provides a full Postgres database for every project with Real-
time functionality, database backups, extensions, and more.

• authentication - add and manage email and password, passwordless, OAuth, and
mobile logins to your project through a suite of identity providers and APIs.

Section 3 João Pedro Soares 6

Comparing different BaaS solutions and their performance

Figure 4: Products Page from project’s frontend

• storage - store, organize, transform, and serve large files—fully integrated with your
Postgres database with Row Level Security access policies.

• AI and vectors - use Supabase to store and search embedding vectors. Useful for
creating search engine-like functionality in your web applications.

• edge functions - globally distributed, server-side functions to execute your code
closest to your users for the lowest latency.

These products can be used through Supabase’s client libraries, which are available
in several different programming languages: Javascript, Flutter, Python, C#, Swift, and
Kotlin. Only Javascript and Flutter are officially supported, while the other client libraries
are developed by the community.

3.3.1 Admin Dashboard

Supabase’s dashboard provides insightful statistics and offers tools to simplify data ma-
nipulation and the platform’s different products. When you open the dashboard and
create a new project you will come to the "Project Page". Here there are several tabs
accessible from the left-side menu, with the most relevant being the following:

• Table Editor - allows the user to visualize the data in the tables as a spreadsheet
and edit single rows. Here you can create new tables and even import data from a
CSV or TSV file. This makes it so that the user doesn’t need to specify the table’s
structure(What are its fields? What are the field types?). Here you can also edit a
table’s fields by changing their type or default value, making them unique, adding
foreign key relations, and "check" constraints. We can see what this page looks like
from the screenshot in Figure 5.

Section 3 João Pedro Soares 7

Comparing different BaaS solutions and their performance

• SQL Editor - allows the user to run SQL queries on the database. Just like you
would do when using Oracle’s SQL Developer or PostgreSQL’s PGadmin, you can
query tables to get quick results, update existing tables(add or delete rows), and
create new tables or views. The views you create can then be visualized in the
"table editor" tab.

• Database - offers several tools to help administrate your database. Here you can see
all your tables through a Schema Visualizer, create roles to manage access control,
create triggers or functions, and create data backups.

• Authentication - allows the user to manage the app’s authentication rules. Here the
user can see all of the app’s registered users, select each table’s security policies,
turn on their desired 3rd party OAuth providers, and create email templates for
auth email confirmations.

• Reports - displays statics such as API request, response speed, network traffic,
database health(memory usage, swap usage, CPU usage), and query performance(Most
time-consuming, Most frequent, Slowest execution time).

Figure 5: Supabase Admin Dashboard(Table Editor Page)

3.3.2 Self-hosting

To self-host Supabase, we can use this docker-compose script, and these detailed instruc-
tions. To run Supabase on my GWDG instance, we cloned the repo to our local machine
and copied it over to the instance using this command:

1 scp -i hpcsa -course -vm-key.pem /MY_LOCAL_FOLDER/supabase /*
cloud@141 .5.105.244:/ home/cloud/supabase

Then we connected to the instance and forwarded port 8000 to port 8000 on my
machine using the following command:

1 ssh -L 8000:127.0.0.1:8000 -o ServerAliveInterval =60 -i hpcsa -
course -vm-key.pem cloud@INSTANCE_FLOATING_IP

Section 3 João Pedro Soares 8

https://github.com/supabase/supabase/tree/master/docker
https://supabase.com/docs/guides/self-hosting

Comparing different BaaS solutions and their performance

Inside the instance, we navigated to supabase/docker/ and ran this command:

Listing 1: Bash code for hosting Supabase
1 # Copy the fake env vars
2 cp .env.example .env
3 # Pull the latest images
4 docker compose pull
5 # Start the services (in detached mode)
6 docker compose up -d

After that, we just needed to import my data through the admin dashboard, and the
app was ready to be used. It was that simple.

3.4 Using Pocketbase

PocketBase is an open-source backend consisting of an embedded database (SQLite) with
real-time subscriptions, built-in auth management, convenient dashboard UI, and simple
REST-ish API.

Pocketbase offers a different set of products from Supabase:

• database - PocketBase uses embedded SQLite (in WAL mode). For the majority of
the queries, SQLite (in WAL mode) outperforms traditional databases like MySQL,
MariaDB, or PostgreSQL (especially for read operations).

• authentication - just like Supabase, add and manage email and password, password-
less, OAuth, and mobile logins to your project.

• no edge function support - PocketBase differs from the other similar backend solu-
tions like Firebase, Supabase, Nhost, etc., and doesn’t support running server-side
cloud functions without manual resource allocation. Instead, PocketBase could be
used as a Go or JS framework that enables you to build your own custom app-specific
business logic and still have a portable backend at the end.

3.4.1 Admin Dashboard

Pocketbase has a more basic dashboard, compared with Supabase, as we can see from the
screenshot in Figure 6. There are 3 tabs accessible from the left-side menu:

• Collections - allows the user to visualize the data in the collections as a spreadsheet
and edit single records. Here you can create new collections but you cannot import
data from a CSV or TSV file. Here you can also edit a table’s fields by changing
their type or default value, making them unique, adding foreign key relations, and
"check" constraints.

• Logs - displays HTTP API logs, including timestamps.

• Settings - general project settings: set up OAuth, create and manage app adminis-
trators, create backups, set up email templates, and export/import collection con-
figurations.

Section 3 João Pedro Soares 9

Comparing different BaaS solutions and their performance

Figure 6: Pocketbase Admin Dashboard(Table Editor Page)

3.4.2 Self-hosting

One of the best PocketBase features is that it’s completely portable. This means that
it doesn’t require any external dependency and could be deployed by just uploading the
executable on your server. To do this on GWDG, we first created a m1.large instance and
downloaded the prebuilt minimal PocketBase app, and copied the files from my computer
to the instance over SSH, using the following command:

1 scp -i hpcsa -course -vm-key.pem /MY_LOCAL_FOLDER/pocketbase_0 .21.1
_linux_amd64 /* cloud@141 .5.105.244:/ home/cloud

Then, we connected to the instance and forwarded port 8090 to port 8090 on our
machine using the following command:

1 ssh -L 8090:127.0.0.1:8090 -o ServerAliveInterval =60 -i hpcsa -
course -vm-key.pem cloud@INSTANCE_FLOATING_IP

Then inside the instance, we ran ./pocketbase serve. After that, we just needed to
import the data and Pocketbase was ready to be used. It was that simple.

4 Results
After spending the duration of the app’s development evaluating the experience of using
the different tools provided by Supabase and Pocketbase, we decided to evaluate them
according to the criteria that seemed more relevant to the "user personas" A and B.

Section 4 João Pedro Soares 10

Comparing different BaaS solutions and their performance

4.1 Complexity/Ease of use

Supabase’s documentation is well-structured and easy to read and navigate through.
There are code examples for all the available functions, including parameters and expected
results. On the other hand, Pocketbase also includes code examples for all available func-
tions, including parameters and expected results, but the documentation is not as well
structured.

The ability to import data from a CSV or TSV file in the Supabase dashboard is a
big time saver and could be a deciding factor for some users(User A). This feature is very
popular, as many users have requested something similar for Pocketbase [Poc22]. There
are even some unofficial solutions developed by the community, like the one we used in
our project, developed by Github user michal-kapala [mic23]. We did notice some issues
with this solution, mainly with handling some strings with special characters(some CSV
files had URLs to images or videos and these had to be edited to be able to import the
data).

Overall, there is no clear winner for this section. Both Supabase and Pocketbase are
very intuitive and easy to use, but the addition of a proper, official data import tool for
Pocketbase would be appreciated.

4.2 Security

When using Supabase, you can set different RLS policies for each table. Row-level security,
or RLS, refers to the practice of controlling access to data in a database by row so
that users are only able to access the data they are authorized for. This contrasts with
database-level or table-level security, which controls access to entire databases or tables.
This means that we can select what tables we want our app users to be allowed to edit
and which ones they should not be able to edit.

RLS is not supported in Pocketbase(uses table-level security). Instead, the developer
can set up API Rules, which serve as access controls and data filters for collections. Each
collection is governed by five specific API action rules:

• listRule: Defines access control for listing data.

• viewRule: Dictates access to viewing specific data entries.

• createRule: Specifies access control for creating new data entries.

• updateRule: Governs access to updating existing data entries.

• deleteRule: Controls access to deleting data entries.

For collections related to authentication (Auth collections), an additional rule called
options.manageRule exists. This rule enables a designated user, even from a different
collection, to have full management control over another user’s data. This includes tasks
such as changing their email, password, etc.

The rules can be configured with the following settings:

• "locked" (null): This setting restricts the action to be performed only by an
authorized admin. It serves as the default configuration.

• Empty string: This configuration allows anyone, including admins, authorized
users, and guests, to perform the specified action.

Section 4 João Pedro Soares 11

Comparing different BaaS solutions and their performance

• Non-empty string: When set, only users, whether authorized or not, that meet the
criteria defined by the rule filter expression will be able to perform the corresponding
action. This provides a fine-grained control over access based on specific conditions.

Overall, there is no clear winner for this section. Both Supabase and Pocketbase offer
reliable security mechanisms that allow developers to set restrictions on who can and can’t
alter the tables in the database.

4.3 Scalability

When using Firestore(from the Firebase toolkit), as it is a NoSQL document database,
it scales automatically and handles relational data fairly well. However, it does have
some limitations, and scaling certain types of data relationships can be extremely diffi-
cult(not ideal for full-text search). Supabase uses PostgreSQL, which allegedly is expen-
sive and difficult to scale(in its vanilla form, is not inherently designed as a distributed
database). Scaling PostgreSQL typically involves various manual interventions and opti-
mizations, and it may require significant expertise to set up and manage in a distributed,
high-performance, or highly available environment. Supabase addresses these issues by
handling the scaling for you automatically, whether by providing your project with more
disk space[Sup20e] or by partitioning tables for distribution. In addition, Supabase offers
read-only replicas which help developers scale to millions of users. We have customers
now with millions of users, so it definitely can be done.

Pocketbase only scales on a single server, aka. vertical. Most of the time, you may
not need the complexity of managing a fleet of machines and services just to run your
backend. PocketBase is a great choice for small and midsize applications - SaaS, mobile
API backend, intranet, etc. Even without optimizations, PocketBase can easily serve
10,000+ persistent real-time connections on a cheap $4 Hetzner CAX11 VPS (2vCPU,
4GB RAM). You can explore the official benchmarks repo for more details.

In summary, if scalability is a major concern for the project and we are planning for
more than 10,000+ users to use our application, it’s best to pick Supabase over Pocketbase.

4.4 Other important evaluation criteria

4.4.1 Price

Self-hosting Supabase is free. If the user wishes to use Supabase’s cloud platform, they
provide simple, predictable pricing. Pocketbase is self-host only, meaning there is no
official cloud platform, but they suggest some free options for small POC and hobby
apps:

• Fly.io (the free tier comes with 1vCPU, 256MB RAM, and 1GB disk storage /up to
3GB but requires card details/).

• PocketHost.io (shared single VM instance, maintained and provided by benallfree).

Other than those options, the price for running Supabase/Pocketbase ultimately de-
pends on the price for the instances needed to run the necessary services, whether these
instances are provided by a cloud provider or by the user itself.

Section 4 João Pedro Soares 12

https://github.com/pocketbase/benchmarks
https://supabase.com/pricing
https://fly.io/
https://pockethost.io/
https://github.com/benallfree

Comparing different BaaS solutions and their performance

4.4.2 Vector embeddings and similarity search

Vector embeddings represent different dimensions of certain data that are essential for
understanding patterns, relationships, and underlying structures. In the case of our ap-
plication, vector embeddings are important for creating the "search-engine-like" features
that enable the users to search for different products according to several criteria(name,
type, color, and brand). For example, the user could wish to search for "Brown Mascara
from MAC".

To help in this task, Supabase uses pgvector and other tools to allow the devel-
oper to store, index, and query your vector embeddings at scale., using their client li-
braries[Sup20d].

In the case of Pocketbase, there are no features that allow for the creation of vector
embeddings. There are third-party tools that allow the use of SQLite to store and query
vector embeddings[Ste23], but when asked if the developers of the tool would add it in
the future, they said that "there are no plans implementing it since it will be hard to
make it portable"[Poc23a].

Therefore, if we intend to build search features into our application(like in the case of
our app where we want to develop a search engine for cosmetics), we would want to pick
Supabase over Pocketbase to save time on implementing vectorization from scratch.

4.4.3 Performance

Figure 7 shows performance comparisons of Supabase and Pocketbase running on a Mac-
Book Pro 2018(16 GB RAM) and a GWDG m1.large(8GB RAM) instance running Cen-
tOS 8. We ran each one of the API calls exactly 10 times and averaged the response time
for each of them.

Figure 7: Comparing elapsed time of API calls on different hardware

We can see that, the API calls on Supabase cloud service tend to take the same amount
of time, despite the different sizes of the data being transferred. When running locally,
Supabase and Pocketbase perform very similarly when retrieving fewer rows (between
100 and 300). However, when retrieving 10300 rows, when running on the Macbook,
Pocketbase takes 2x longer than Supabase and, when running on m1.large, Pocketbase
takes 6x longer than Supabase.

Section 4 João Pedro Soares 13

https://github.com/pgvector/pgvector

Comparing different BaaS solutions and their performance

4.4.4 Community support

As of January 2024, Supabase has more than 62.1k stars on Github with 1049 contributors
and Pocketbase has 30.7k stars with 46 different contributors. Supabase has an average
open-issue age of less than 30 days, while Pocketbase has an average open-issue age of
between 30 and 90 days(this is an important metric as it lets us know how long it takes
for an issue to be addressed by the contributors).

You can get advanced current repository statistics and insights from RepoTracker here:

• Supabase - https://repo-tracker.com/r/gh/supabase/supabase?utm_source=github-stats

• Pocketbase - https://repo-tracker.com/r/gh/pocketbase/pocketbase?utm_source=
github-stats

5 Discussion
In this section, we connect the information from Section 2 to the description of the project
from Section 3 and evaluation from Section 4 to form a conclusion in what area which of
the products is ahead.

In Figure 8 we can see the main takeaways from Section 4. We can see that Pocketbase
lacks some specific features that put it at a disadvantage. These could be added in the
future, however as we are evaluating these tools as they currently are, Supabase is just
more versatile. On the matter of how does this affect users A’s and B’s development, we
can say that picking Supabase over Pocketbase gives them more options over the kind of
applications they can build(see Section 4.4.2) and they both will appreciate the scalability
capacity of Supabase(see Section 4.3). However, if user A just wanted to build a simple
application that doesn’t require them to use Supabase’s additonal feautures then they
would be more than fine using Pocketbase.

Figure 8: Comparing Results from our conducted research between Supabase and Pock-
etbase

6 Conclusion
Our goal for this report was to compare the feautures and capabilies of Supabase and
Pocketbase. We built a React application and two different backend, each using one of
the different Baas solutions. We evaluated the two on complexity/easy-of-use, security,
scalability, price, community-support and additional feautures.

Section 6 João Pedro Soares 14

https://repo-tracker.com/r/gh/supabase/supabase?utm_source=github-stats
https://repo-tracker.com/r/gh/pocketbase/pocketbase?utm_source=github-stats
https://repo-tracker.com/r/gh/pocketbase/pocketbase?utm_source=github-stats

Comparing different BaaS solutions and their performance

Both Supabase and Pocketbase are strong candidates for BaaS solutions and can be a
great fit depending on the requirements of your project. If you’re looking for a versatile
platform with great real-time capabilities and a vast feature set, Supabase may be the way
to go. However, Pocketbase is an excellent open-source alternative that offers a reliable
relational database and a well-designed user interface.

Section 6 João Pedro Soares 15

Comparing different BaaS solutions and their performance

References
[Goo20] Google. Firebase. Accessed on 27/10/2023. 2020. url: https://firebase.google.

com/.

[Jag23] Jagrat Patel. Supabase vs Firebase2. Accessed on 27/10/2023. 2023. url: https:
/ /www . linkedin . com/pulse / firebase - vs - supabase - which - platform - best -
building-your-jagrat-patel/.

[mic23] michal-kapala. Pocketbase import - Github. Accessed on 27/12/2023. 2023. url:
https://github.com/michal-kapala/pocketbase-import.

[Poc22] Pocketbase Github. Pocketbase Issues - Import/Export CSV/JSON. Accessed
on 29/12/2023. 2022. url: https://github.com/pocketbase/pocketbase/issues/
48.

[Poc23a] Pocketbase. Inclusion of Vector Database in PocketBase’s Roadmap. Accessed
on 22/01/2024. 2023. url: https : / / github . com / pocketbase / pocketbase /
discussions/2990.

[Poc23b] Pocketbase. Pocketbase. Accessed on 27/10/2023. 2023. url: https://pocketbase.
io/.

[Poc23c] Pocketbase. pocketbase-Benchmarks. Accessed on 27/12/2023. 2023. url: https:
//github.com/pocketbase/benchmarks.

[Ste23] Stephen Collins. How to use SQLite to store and query vector embeddings.
Accessed on 27/10/2023. 2023. url: https://stephencollins.tech/posts/how-
to-use-sqLite-to-store-and-query-vector-embeddings.

[Sup20a] Supabase. Supabase. Accessed on 27/10/2023. 2020. url: https://supabase.
com/.

[Sup20b] Supabase. Supabase Benchmarks Github. Accessed on 27/10/2023. 2020. url:
https://github.com/supabase/benchmarks/issues/8.

[Sup20c] Supabase. Supabase Benchmarks Github 2. Accessed on 27/10/2023. 2020. url:
https://github.com/supabase/benchmarks/issues/6.

[Sup20d] Supabase. Supabase Docs - AI Vectors. Accessed on 27/10/2023. 2020. url:
https://supabase.com/docs/guides/ai.

[Sup20e] Supabase. Supabase Docs - Database Size. Accessed on 27/10/2023. 2020. url:
https://supabase.com/docs/guides/platform/database-size.

[Sup20f] Supabase. Supabase vs Firebase. Accessed on 27/10/2023. 2020. url: https:
//supabase.com/alternatives/supabase-vs-firebase.

Section João Pedro Soares 16

https://firebase.google.com/
https://firebase.google.com/
https://www.linkedin.com/pulse/firebase-vs-supabase-which-platform-best-building-your-jagrat-patel/
https://www.linkedin.com/pulse/firebase-vs-supabase-which-platform-best-building-your-jagrat-patel/
https://www.linkedin.com/pulse/firebase-vs-supabase-which-platform-best-building-your-jagrat-patel/
https://github.com/michal-kapala/pocketbase-import
https://github.com/pocketbase/pocketbase/issues/48
https://github.com/pocketbase/pocketbase/issues/48
https://github.com/pocketbase/pocketbase/discussions/2990
https://github.com/pocketbase/pocketbase/discussions/2990
https://pocketbase.io/
https://pocketbase.io/
https://github.com/pocketbase/benchmarks
https://github.com/pocketbase/benchmarks
https://stephencollins.tech/posts/how-to-use-sqLite-to-store-and-query-vector-embeddings
https://stephencollins.tech/posts/how-to-use-sqLite-to-store-and-query-vector-embeddings
https://supabase.com/
https://supabase.com/
https://github.com/supabase/benchmarks/issues/8
https://github.com/supabase/benchmarks/issues/6
https://supabase.com/docs/guides/ai
https://supabase.com/docs/guides/platform/database-size
https://supabase.com/alternatives/supabase-vs-firebase
https://supabase.com/alternatives/supabase-vs-firebase

	Contents
	List of Tables
	List of Figures
	List of Listings
	List of Abbreviations
	Introduction
	Contributions
	Report outline

	State-of-the-art
	Comparing Firebase vs Supabase vs Pocketbase
	Performance benchmarks
	Other alternatives to Firebase

	Practical comparison
	Designing the web application
	Designing the database

	Developing the application
	Using Supabase
	Admin Dashboard
	Self-hosting

	Using Pocketbase
	Admin Dashboard
	Self-hosting

	Results
	Complexity/Ease of use
	Security
	Scalability
	Other important evaluation criteria
	Price
	Vector embeddings and similarity search
	Performance
	Community support

	Discussion
	Conclusion
	References

