

Marcus Merz

Monitoring in High Performance Computing

Installing an example monitoring stack (TIG)

Table of contents

- 1 Objective
- 2 Monitoring
- 3 Monitoring infrastructure
- 4 TIG
- 5 Installation/Discussion

6 References

Learning Objectives

- Basic understanding of monitoring
- Basic installation of a monitoring stack

Objective O	Monitoring ●○○	Monitoring infrastructure	TIG 000000	Installation/Discussion	References ○
Definitio	on				

- Continuous collection of data/metrics from a system
- Analysis of the collected data/metrics within a period of time
- Up-to realtime
- Storing of (selected) data for later analysis

Difference to reporting:

- Monitoring takes place nearly in realtime
- Reporting is about analysing data/metrics over a long period: statistics

Motivation

- W/o monitoring the status of the system/software is unclear
- Admins want monitoring data to check:
 - Availability
 - Performance of the system
- Problems, e.g., regressions can be identified using the data/metrics
- Analyze system performance to plan future updates/systems (procurement)
- HPC users profile/optimize jobs utilizing metrics

What can be monitored?

Availability of network infrastructure/components/services:

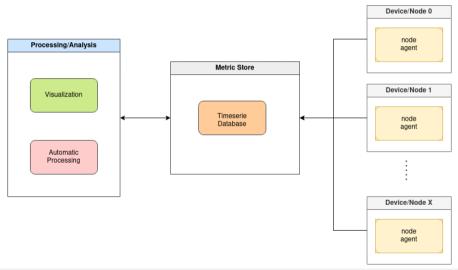
- PDUs, PSU, CDUs, ...
- Switches, router, servers, compute nodes, ...
- SSH, FTP, Apache web server, ...

Performance/Load/Misc.:

- Infrastructure: bandwidth used, node load, I/O load, storage used, ...
- Job specific: CPU load, bandwidth used, I/O Load, storage/memory used ...
- Energy consumption metrics to be associated later with jobs etc.

Monitoring infrastructure in HPC

Monitoring stacks usually consists of three components/stages:


- Metrics collector:
 - collect
 - aggregate/pre-process
 - forward/store/provide metrics to database
- Database: collects, stores and provides data (relational, time-series)
 - collect/stores metrics from collectors
 - provides the collected data via APIs for further processing
 - can have retention handling etc.
- Processing: tools accessing the data and the database to
 - perform automatic data analysis
 - visual display of data to allow human analysis of the performance/data

Objective	Monitoring
0	000

Installation/Discussion

References

Monitoring infrastructure in HPC 2

Components: metrics collector

- task: collect, aggregate/preprocess and provide data to the database
- usually a local process run as service
- usually extendable/utilizing other tools to get metrics
- main approach for providing data:
 - > pull agent waits for the database to ask for the data
 - > push agent pushes collected data automatically to database
- examples: PCP, Telegraf, node-exporter, cc-exporter

Components: metrics database

follow two main types

- relational DB
- time-series DB
- offer the typical DB functionality to work in enterprise (fleets, sharding)
- may offer functionality specifc to time series data, e.g. data retention, compaction
- examples: InfluxDB, Prometheus, OpenTSDB

Components: metrics database - TSDB

- developed specific for storing time series data
- time series data consists of
 - time-stamps
 - tags identifying the metrics/other metadata
 - data/values
- time series data for a specific measurement are
 - highly uniform
 - have no relation/are standalone
 - easily transferable using text
- uniformity/structure allow for specific optimimzation, e.g.
 - compression
 - transfer rate/ingestion

Components: TSDB vs. relational DB

Relational DB

- Defined table format/schema
- Develop for large amount of data with complex relations
- Fast to process SQL queries on huge sets
- Fast to operate on entries (e.g. modify/delete)
- Difficult to store large amounts of uniform data at the same time

Time-series DB

- Flexible format, no fixed schema
- Developed for storing large amounts of uniform data at the same time
- Fast to store the data
- Slow to operate on data in the DB (e.g., modify/delete entries)

Components: processing

the collected data can be processed by anything imaginable:

- scripts
- programms
- visualization software
- use cases, e.g.:
 - regressions testing (compare system performance before/after changes using)
 - degeneration loss of performance due to factors like age, overheating
 - report generation
 - analyse program performance

visualization examples: Grafana, Kibana, Graphite, Cyclotron, matplotlib, ...

Objective O	Monitoring	Monitoring infrastructure	TIG ●00000	Installation/Discussion	References ○

TIG Stack

Abbreviation for

- **Telegraph** the node agent collecting metrics on the systems
- InfluxDB a time-series database used to store the data
- **Grafana** a tool to visualize metrics and create dashboards

Objective	Monitoring	Monitoring infrastructure	TIG	Installation/Discussion	References
0	000	0000000	000000	00	0

TIG Dashboard example

Marcus Merz

Objective Monitoring Monitoring infrastructure TIG Installation/Discussion References

InfluxDB

- Developed by InfluxData
- First released 2013
- Written in Go for performance
- Time-series based instead of relational
- Design specifically for time-series from all kind of devices
- Query language Flux (similar to SQL)
- push approach
- open-core

Objective O	Monitoring	Monitoring infrastructure	TIG 000●00	Installation/Discussion	References O

Telegraf

- Developed by InfluxData
- Node agent for InfluxDB
- Tasks: collecting, processing, aggregating, writing metrics
- Extendable architecture based on plugins
- As InfluxDB written in Go for max. performance
- Is run as service on the monitored systems

Telegraf - Plugins

- Telegraf uses plugins to collect and send data
- the plugins utilize different tools to collect metrics e.g.
 - Likwid to collect hardware counters from CPUs
 - Files in /procfs for process statistics
- 2 plugin types: input and output
- At least one input and one output plugin has to be configured e.g.
 - Input: CPU, diskio, procstat
 - Output: influxdbv2

Huge variety of plugins can be found the Plugin documentation

Objective ○	Monitoring	Monitoring infrastructure	TIG 00000●	Installation/Discussion	References ○
0					

Grafana

- Developed by GrafanaLabs
- Web based dashboard application to visualize data
- Written in Typescript, Go
- build in webserver based on Go http server
- Supports relational, time-series databases
- open-core
- Can display real-time data using specific plugins/config (MQTT+Telegraf)
- Goals: easy visual analysis of data from different sources, easy dashboard creation

Objective O	Monitoring	Monitoring infrastructure	TIG 000000	Installation/Discussion ●○	References ○

Installation of TIG

Tutorial 2

Tutorial x

Plenary discussion

issues

- impression/experience
- questions/open points?

References

- https://www.influxdata.com/
- https://grafana.com/
- https://docs.influxdata.com/telegraf/v1.20/plugins/