
Universität Göttingen Linux Crash Course Exercise 1 / October 16, 2023
Institute for Computer Science/GWDGHigh-Performance Computing System Administration / WiSe 2023/24
Jonathan Decker, Ruben Kellner 35 Minutes Total

Exercise Introduction

Before starting the exercise, make sure you have the slide deck for the Linux Crash Course ready and you have
a Bash shell under Linux before you. You can use the GWDG machines or any other Linux system with an
up to date Bash shell, such as a local virtual machine.

The goal of these exercises is to make you familiar with the Bash shell so feel free to play around with it,
test things out and either ask for help or search for help online. This crash course only introduces a subset
of the commands available in Bash and there is yet another myriad of tools that can be installed from the
internet. Focus on understanding the Bash shell, its commands and shortcuts so you can productively work
with it rather than perfectly completing all exercises.

When copying out commands, depending on the PDF reader you are using, spaces might be lost such that the
command does not work. Check with the command in the PDF and add missing spaces.

Contents

Task 1: Follow Along (30 min) 1

Task 1: For the Advanced (30 min) 5

Task 2: Bash Scripting Basics (5 min) 5

Task 2: Advanced Bash Scripting (5 min) 5

Task 2: System Overview Script (5 min) 6

Task 1: Follow Along (30 min)

This exercise walks you through the commands shown in the slides. You do not have to perfectly follow all
steps, experiment with the commands if it helps you to get a better understanding of them.
Try using TAB to auto-complete commands and file/directory names.
Use ARROW-UP/DOWN to cycle through your command history and reuse or edit past commands if it means
typing less.

Folder Navigation

sleep 60 Sleep for 60 secs.

CTRL + c Interrupt the command.

cd Switch to your home directory.

pwd

ls

ls -a

ls -l

ls -la

mkdir shell-ex Create folder shell-ex.

cd shell-ex

mkdir "delete me"

rmdir delete me Observe that it tries to delete delete and me.

rmdir "delete me"

ls -a .. List parent directory.
Help

mkdir --help

man mkdir See different ways of getting help.
q Pager can be quit using q .

man --help

man -h

man man Open the first page of the manual for man.

whatis man See what pages are available for command man.

man 7 man Open page 7 of the manual for man.
Permissions

cd ∼/shell-ex
mkdir perm-ex

cd perm-ex

touch file.txt

mkdir folder

ls -la

chmod a-r file.txt Remove read permission.

chmod a-r folder

ls -la

ls folder Try to read the folder.

cat file.txt These should both fail.

touch folder/newfile.txt Writing new files is still okay.

chmod a= file.txt Remove all permissions.

chmod a= folder

rm file.txt Try to delete file.txt.

rmdir folder Try to delete folder. This should fail.

chmod u+r folder Add read permissions back.

ls folder

touch folder/file2.txt Try to create another file. This should fail.

chmod u+w folder Add back write permission.

touch folder/file2.txt Try again to create another file. This should still fail.

chmod u+x folder You need execution permission on a folder to create
files.

touch folder/file2.txt

Nano

cd ∼/shell-ex
mkdir nano-ex

cd nano-ex

nano Create and start editing a buffer.
Write some text and one very long line.
CTRL + o Name it file.txt Save your file.
CTRL + x Exit nano.

cat file.txt

nano file.txt

Make a change.
CTRL + x Try to exit without saving.

Answer the prompt with n or y and ENTER .

HPCSA – Linux Crash Course Exercise 1 2/6

Environmental Variables

echo $HOME
echo $PWD
echo $PATH
echo -e ${PATH//:/:\\n}
printenv See all variables, depending on host, this might be a lot.

export HELLO=hello

echo $HELLO
export HELLO="$HELLO world" Append to a variable.

echo "$HELLO"
echo '$HELLO'
unset HELLO

echo $HELLO
nano ∼/.bash profile

Add the line [[-f ∼/.bashrc]] && . ∼/.bashrc
Save and exit nano.

nano ∼./bashrc
Add the line export HELLO=hi

Add the line alias ll='ls -la'
Save and exit nano. Feel free to add more aliases that seem useful.

source ∼/.bashrc
ll Try out the new alias.

echo $HELLO
File and Folder operations

cd ∼/shell-ex
mkdir operations-ex

cd operations-ex

mkdir folder

touch file

mv file folder Move file into the folder.

mv folder/file file.txt Move it back out and rename it from file to file.txt.

cp file.txt folder

cp folder folder2 This should fail.

cp -R folder folder2

Reading and Searching

cd ∼/shell-ex
mkdir read-search-ex

cd read-search-ex

man man > man.txt Use a redirection to create a file with the output from
man.

head man.txt View the first 10 lines of man.txt.

tail man.txt View the last 10 lines of man.txt.

head -n 20 man.txt View the first 20 lines of man.txt.

grep manual man.txt Show all lines containing manual in man.txt.

grep -c manual man.txt Count the number of occurrences of manual.

grep -wc manual man.txt Count the number of occurrences of manual as a whole
word.

cp man.txt man2.txt

nano man2.txt

Make some changes, write text, delete some lines.

diff man.txt man2.txt See your changes.

HPCSA – Linux Crash Course Exercise 1 3/6

wc man.txt Print line, word and byte counts for man.txt.
Processes

top Get an overview of current resource usage.

htop Get a better overview of current resource usage.

ps Get a list of all your current processes.

ps -ef Get a list of all currently running processes.

sleep 60 & Run sleep in a background job.

kill PID Enter the process id returned by the previous command.

export HELLO2=hi2 && echo $HELLO2 && unset HELLO2 && echo $HELLO2
Chain commands using &&.

Redirection

mkdir ∼/shell-ex/redirect-ex && cd ∼/shell-ex/redirect-ex
ps -ef > p.txt Write output of command into a file.

echo $HOME >> p.txt Append output to file.

tail p.txt

ps -ef | grep ssh Pipe the output of one command into another.

ps -ef | grep -wc root Count the number of processes involving root.

ps -ef | grep root | sort -nk 2 | head Get the first 10 processes involving root by pid.

ps -ef | head -1; ps -ef | sort -r -nk 3 | head -15 Get the 15 processes with the highest CPU con-
sumption.

!! Use the previous command again.

echo "alias bycpu='!!'" >> ∼/.bashrc Turn previous command into an alias called bycpu .

source ∼/.bashrc
bycpu Test our your new alias.

Bash History

history View your command history.

history | grep ps Find all commands including ps.

history | less Open history in a pager.

!NUMBER Insert a number from history to repeat that command.

!ps Expands to the last used command starting with ps.

!?grep Expands to the last used command containing grep.

wget & curl

mkdir ∼/shell-ex/wget-curl-ex && cd !#:1 !#:1 refers to the second word of the current command.

wget gwdg.de See that it downloads the html document into in-
dex.html.

wget -O gwdg.html gwdg.de Now its saved to gwdg.html instead.

curl gwdg.de See that it prints to the shell instead.

The request needs to be redirected and curl did not
follow it automatically.

curl -L gwdg.de The -L flag follows the redirect.

curl -Lo gwdg2.html gwdg.de Combine the flags.

lynx gwdg.de -dump | less Lynx is a terminal browser, it can also be used directly.

tar -cvzf gwdg.html.tar.gz gwdg.html Create an archive from gwdg.html.

rm gwdg.html Remove the original file.

tar -xvzf gwdg.html.tar.gz Extract it again.

zip gwdg.html.zip gwdg.html Use zip instead of tar & gzip.

rm gwdg.html

unzip gwdg.html.zip Unpack again.

ls -alh See the file sizes of the archives and the regular files.

HPCSA – Linux Crash Course Exercise 1 4/6

Further Reading

• Advanced Programming in the UNIX Environment 3rd edition by R. Stevens and S. Rago

Task 1: For the Advanced (30 min)

This is a more difficult optional task which can be done instead of Task 1

Work on these task. You do not need to complete them all or in that order, focus on those that interest you.

• Find out how to use curly brackets { } to not type common sub-strings in arguments twice

(e.g. mv file{.txt,.md} folder)

• Customize your PS1 variable and save it to your .bashrc.

• Find examples that use PS2 , PS3 , PS4 , PS5

• Send yourself an email using Bash (sendmail , mail and mailx are available)

• Find out how to use the trap command

• Find out how to use the awk scripting language within Bash

Task 2: Bash Scripting Basics (5 min)

cd Switch to home directoy.

mkdir script-ex && cd !#:1 Create a folder for the exercises.

nano first.sh

Write #!/usr/bin/bash as the first line.

Write echo "Hello World!" as the second line.
Save and exit nano.

chmod u+x first.sh Add execution permission.

./first.sh Run it.

Further Reading

• https://linuxhint.com/30_bash_script_examples/

Task 2: Advanced Bash Scripting (5 min)

This is a more difficult optional task which can be done instead of Task 2

Implement bash scripts that can be useful to you.

• Create a script that runs another command for every file in a folder with a certain file extension
Look up the syntax for bash for-loops.

• Make a copy of the above script and extend it to make a backup script, which takes two folders and
a number of file extensions to include. It should then use rsync to transfer all files with the given
extension from the first folder and all its subfolders to the second folder.

• Further, improve your script by using bash function syntax and using cases to handle options such as
--help , an option for giving the list of extensions and other options you find useful.

HPCSA – Linux Crash Course Exercise 1 5/6

https://linuxhint.com/30_bash_script_examples/

Hints

• Make sure to include your scripts into your PATH inside .bashrc so they are always available

Task 2: System Overview Script (5 min)

This is a more difficult optional task which can be done instead of Task 2

Create a bash script that gives an overview of the current system and its resource usage.
Add the script as an alias to your .bashrc.
Incorporate the outputs of the following commands in some form in your script:

• hostname

• uptime

• uname -r

• arch

• w

• free

• hostnamectl

• lscpu

• hostname -I

You can lookup commands and how to use them via man or on the internet.

Hints

• Use https://www.shellcheck.net/ to check whether your syntax is valid.

• echo -e Enables backslash escapes such as \t for tabs.

• echo -e "Date: ‘date‘" This will execute the command within ‘.

• Use cut to reduce the output of commands, for example, w | cut -d ' ' -f1 gives a list of all

users. echo -e ` w | -d ''-f1 ` to ignore new lines.

• echo -e "CPU Usage:\t" ` cat /proc/stat | awk '/cpu/{printf("%.2f%\n"),
($2+$4)*100/($2+$4+$5)}'| awk '{print $0}'| head -1 ` Gives current CPU usage.

• You can use colored outputs like this
RED='\033[0;31m' NC='\033[0m' echo -e "Default ${RED}colored text${NC}Blank text"

Colors are '\033[0;30m' to '\033[0;37m' and '\033[1;30m' to '\033[1;37m'
• You can use functions to organize your code:

function name(){
Function code

} You can call the functions like this $(function name)

HPCSA – Linux Crash Course Exercise 1 6/6

https://www.shellcheck.net/

	Task 1: Follow Along (30 min)
	Task 1: redFor the Advanced (30 min)
	Task 2: Bash Scripting Basics (5 min)
	Task 2: redAdvanced Bash Scripting (5 min)
	Task 2: redSystem Overview Script (5 min)

