
Firewalls

Julian Kunkel

Institute for Computer Science / GWDG

2023-10-17 High-Performance System Administration

SH

∞

https://hps.vi4io.org

)

https://hps.vi4io.org


Introduction Firewalls in Linux Summary

Learning Objectives

■ Describe main responsibilities of a firewall

■ Utilize nftables in Linux to set up basic rules based on a template

■ Utilizing tools to test the effectiveness of the firewall

Julian Kunkel High-Performance System Administration 2 / 17



Introduction Firewalls in Linux Summary

Outline

1 Introduction

2 Firewalls in Linux

3 Summary

Julian Kunkel High-Performance System Administration 3 / 17



Introduction Firewalls in Linux Summary

Motivation

■ System security is vital

■ Admins want to restrict access to desired/expected services

▶ Maybe only a subset of clients (IPs) shall be able to access
▶ Prevent accidental exposure of services to the world

■ Admins want to limit rate of network or be notified

■ Admins want to block malware and application-layer attacks

■ In some scenarios, want to redirect network traffic

▶ NAT = Network Address Translation rewrites network addresses/ports

⇒ Firewalls do this for us!

Julian Kunkel High-Performance System Administration 4 / 17



Introduction Firewalls in Linux Summary

General Architecture
Firewall

Intranet
(LAN)

Router (WAN)

Firewall

Figure: Source: Wikipedia [3] (heavily
modified)

■ Network packets pass through the firewall

■ A firewall can be local to the computer system

■ Packets can be accepted, rejected, forwarded

■ Packets can be modified and redirected...

DMZ = Demilitarized Zone

SMTPwww

DNS

Intranet
(LAN)

Router (WAN)

Firewalls

DMZ

Figure: Source: Wikipedia [3] (modified)

■ Typically employs two firewalls

■ Exposes externally facing services to untrusted
network

■ Protects the local network by isolating Internet
and private network

Julian Kunkel High-Performance System Administration 5 / 17



Introduction Firewalls in Linux Summary

Differentiating Firewalls

Types of Firewalls [1]

■ Packet filtering
A small amount of data is analyzed and distributed according to the filter’s standards.

■ Proxy service
Network security system that protects while filtering messages at the application layer.

■ Stateful inspection
Dynamic packet filtering monitors active connections to determine routing.

■ Next Generation Firewall/Deep Packet Inspection
Deep packet inspection Firewall with application-level inspection.

Visibility

■ Visible - firewall is between client/target system - client must be configured to use firewall

■ Transparent - communication through firewall is ensured via network configuration

Julian Kunkel High-Performance System Administration 6 / 17



Introduction Firewalls in Linux Summary

Outline

1 Introduction

2 Firewalls in Linux

3 Summary

Julian Kunkel High-Performance System Administration 7 / 17



Introduction Firewalls in Linux Summary

Interaction of Netfilter components in Linux

■ There exist various user-space tools that allow to modify network packets on different levels

arptables

filter

arptables

ebtables

nat/filterbroute

ebtables

ip6tables

ip6tables

iptables

iptables

nat
NAT

engine

L3
/4

 tr
ac

ke
rs

L7
he

lp
er

s

conntrack

Connection
tracking

Xtables

Netfilter hook API

Userspace tools

Netfilter kernel components

from and to to network stack; hardware

NAT Logging
via nf_log

ulogd2

Queueing
via nf_queue

(custom)

raw/mangle/filter raw/mangle/filter

B
rid

gi
ng

other networking components

nf_tables

nftiptables-
nftables

Figure: Source: Jan Engelhardt, Netfilter-components.svg, Wikipedia [4]

Julian Kunkel High-Performance System Administration 8 / 17



Introduction Firewalls in Linux Summary

nftables [5]

■ VM executing byte-code to inspect a network packet

■ Make decisions on how that packet is handled

▶ Based upon data from packet, associated metadata (e.g. interface), and
connection-tracking

▶ May use arithmetic, bitwise and comparison operators

■ May manipulate sets of data (typically, IP/Port)

■ The netfilter tool (nft) can be used to manipulate them

▶ Example: $ nft add rule inet filter output ip daddr 1.2.3.4 drop
▶ May log our count packets for which a rule applies

Julian Kunkel High-Performance System Administration 9 / 17



Introduction Firewalls in Linux Summary

Organisation of rules

■ Rules are uniquely identified by a table, a chain and the specification

■ Rules can also be uniquely identified via a handle

■ A table belongs to one network family (ip, ip6, inet (ip+ip6), arp, bridge)

■ A chain can be linked to a network hook (interfaces with traffic)

Chains

■ Filter hook: INPUT (local tgt), OUTPUT (local send), FORWARD (routing)

■ NAT hook: used to mangle packets (before or after routing)

■ Root can create custom chains for better management

Julian Kunkel High-Performance System Administration 10 / 17



Introduction Firewalls in Linux Summary

Netfilter Packet Flow

■ Processing of a packet is complex, there are many paths and chains

Figure: Source: Jan Engelhardt, Netfilter-packet-flow.svg, Wikipedia [4]

Julian Kunkel High-Performance System Administration 11 / 17



Introduction Firewalls in Linux Summary

Basic NFT Commands [6,7]

■ Show current firewall rules
$ nft list tables % available tables
$ nft -a list ruleset % all rules, -a shows the handles

■ Removing all rules – flush rules, beware of loosing connection to ssh!
$ nft flush ruleset

■ Load rules from a file (-c check only the validity, then remove -c)
$ nft -c -f /etc/nftables.conf

■ nft can be used to manipulate/add/remove individual rules
Example: Drop packets with destination IP address 1.2.3.4
$ nft add rule inet filter output ip daddr 1.2.3.4 drop

■ To ensure persistency, I advise using $ nft -f

Julian Kunkel High-Performance System Administration 12 / 17



Introduction Firewalls in Linux Summary

Stateful inspection via connection tracking [4]

■ Goal: Keep track of logical connections - i.e., across multiple packets

▶ Useful for higher-level protocols such as FTP, TCP and even UDP

■ NEW: trying to create a new connection

■ ESTABLISHED: part of an already-existing connection

■ RELATED: new connection that has been expected (e.g., for FTP)

■ INVALID: invalid state, e.g., not valid according to TCP state diagram

■ UNTRACKED: used by admin to bypass connection tracking

Julian Kunkel High-Performance System Administration 13 / 17



Introduction Firewalls in Linux Summary

Example Session

■ We must test that a firewall works as intended... Let’s try this:

1 # Retrieve data from gwdg.de webserver
2 $ wget 134.76.9.48
3 # Block any outgoing IP to host with the IP of gwdg.de
4 $ nft add rule inet filter output ip daddr 134.76.9.48 drop
5 # This should not work:
6 $ wget 134.76.9.48
7 # List the current rules, with -a we get a handle
8 $ nft -a list ruleset
9 # Remove the rule again, in our case the rule handle is 4
10 $ nft delete rule inet filter output handle 4

Julian Kunkel High-Performance System Administration 14 / 17



Introduction Firewalls in Linux Summary

Example Server Configuration (based upon [8])
1 flush ruleset # remove all existing rules
2 table inet firewall {
3 chain input_ipv4 {
4 # Accept ping (icmp-echo-request) for diagnostic purposes. Allows discover if host is alive. Accept with rate limit
5 icmp type echo-request limit rate 5/minute burst 20 packets counter accept
6 }
7 chain input_ipv6 {
8 # accept neighbour discovery otherwise connectivity breaks count the number of hits to this rule
9 icmpv6 type { nd-neighbor-solicit, nd-router-advert, nd-neighbor-advert } counter accept

10 # accepting ping (icmpv6-echo-request) for diagnostic purposes.
11 icmpv6 type echo-request limit rate 5/second accept
12 }
13 chain input {
14 # By default, drop all traffic unless it meets a filter criteria specified by the rules that follow below.
15 type filter hook input priority 0; policy drop;
16 # Allow traffic from established and related packets, drop invalid, keep this!
17 ct state vmap { established : accept, related : accept, invalid : drop }
18 # Only for new connections
19 iifname lo counter accept # Allow loopback traffic use name for counter
20 # Jump to chain according to layer 3 protocol using a verdict map
21 meta protocol vmap { ip : jump input_ipv4, ip6 : jump input_ipv6 }
22 tcp dport { 22, 80, 443} counter accept # Allow SSH on port TCP/22 and allow HTTP(S) TCP/80 and TCP/443
23 limit rate over 10/minute counter drop # Drop packets with rate > 10/minute, needed to limit logging rate
24 log prefix "[nftables] input Denied: " counter drop # Enable logging of remaining input traffic
25 }
26 chain forward {
27 type filter hook forward priority 0; policy drop; # Drop everything (assumes this device is not a router)
28 } # no need to define output chain, default policy is accept if undefined, but we still do it
29 chain output {
30 type filter hook output priority 0; policy accept;
31 }
32 }

Julian Kunkel High-Performance System Administration 15 / 17



Introduction Firewalls in Linux Summary

Sidequest: Scanning ports using nmap

■ More testing of the firewall

■ With nmap, we can scan open ports
nmap -A localhost

■ Note: A scan is often an indicator for an upcoming attack

▶ Do only scan a host/network if this is agreed by the owner!

■ To create a service for testing, you can service from a TCP port, e.g. using
$ nc -l PORT

■ Logfiles: Use $ cat /var/log/syslog to show output created from nftables

Julian Kunkel High-Performance System Administration 16 / 17



Introduction Firewalls in Linux Summary

Summary

■ The Netfilter hook API allows implementing firewalls on all levels

■ Connection allows tracking the logical connection state

■ List the rules via: $ nft -a list ruleset

■ Recommendation:

▶ Use a file to store and work on the rules
▶ When working on a remote server, have a backup rule to login

Save rules only after testing them to prevent lock-out or connect via IPMI

■ Exercise: We utilize the Linux firewall!

Julian Kunkel High-Performance System Administration 17 / 17



Introduction Firewalls in Linux Summary

References

1 https://www.checkpoint.com/cyber-hub/network-security/what-is-firewall/

2 https://en.wikipedia.org/wiki/Firewall_(computing)

3 https://en.wikipedia.org/wiki/DMZ_(computing)

4 https://en.wikipedia.org/wiki/Netfilter

5 https://lwn.net/Articles/564095/

6 https://wiki.nftables.org/wiki-nftables/index.php/What_is_nftables%3F

7 https:
//wiki.nftables.org/wiki-nftables/index.php/Quick_reference-nftables_in_10_minutes

8 https://wiki.nftables.org/wiki-nftables/index.php/Simple_ruleset_for_a_server

9 https://wiki.nftables.org/wiki-nftables/index.php/Netfilter_hooks

Julian Kunkel High-Performance System Administration 18 / 17

https://www.checkpoint.com/cyber-hub/network-security/what-is-firewall/
https://en.wikipedia.org/wiki/Firewall_(computing)
https://en.wikipedia.org/wiki/DMZ_(computing)
https://en.wikipedia.org/wiki/Netfilter
https://lwn.net/Articles/564095/
https://wiki.nftables.org/wiki-nftables/index.php/What_is_nftables%3F
https://wiki.nftables.org/wiki-nftables/index.php/Quick_reference-nftables_in_10_minutes
https://wiki.nftables.org/wiki-nftables/index.php/Quick_reference-nftables_in_10_minutes
https://wiki.nftables.org/wiki-nftables/index.php/Simple_ruleset_for_a_server
https://wiki.nftables.org/wiki-nftables/index.php/Netfilter_hooks

	Introduction
	Motivation

	Firewalls in Linux
	Summary

