
University Göttingen Exercise 1 / 2023.10.18
GWDG AG-C HPC System Administration – Containers / WiSe 2023/24
Freja Nordsiek 30 Minutes Total

Exercise Introduction

This is the exercise on using Podman (https://podman.io) and other tools in the Docker/OCI ecosystem.
Tasks 1 and 2 can be done in either order, but should be done before Task 3. Task 4 should be done absolutely
last since it depends on all of the others.

Contents

Task 1: Listing/deleting containers and container images (5 min) 1

Task 2: Evaluating base images on a registry (5 min) 2

Task 3: Build and run an nginx webserver in Podman (10 min) 3

Task 4: Importing into Docker and running on port 80 (10 min) 4

Task 1: Listing/deleting containers and container images (5 min)

It is very important to know what containers and container images one already has in local storage. Addition-
ally, they can take up a lot of space (anywhere from 1 MiB to > 10 GiB) and one can delete ones that are no
longer used. Podman provides the KIND list commands for this, where KIND is either container or image
(for container images). Run these commands. For the container images, you should get something like

REPOSITORY TAG IMAGE ID CREATED SIZE

docker.io/library/busybox musl 611b54fbba47 6 weeks ago 1.63 MB

and for the containers, you should get something like

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Where did all the containers you made in the tutorial go? By default, Podman does not list container images
for incompatible CPU architectures and OSes, and containers that are no longer alive. To list these, you must
add the -a option (all). You will likely see the same thing for the container images, but for the containers you
should finally see all the containers you used in the tutorial:

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

6ba95297c325 docker.io/library/busybox:musl ls -lh /bin 2 minutes ago Exited (0) 2 minutes ago ecstatic_pascal

a3b07090d0fe docker.io/library/busybox:musl /bin/sh 2 minutes ago Exited (0) 2 minutes ago gifted_shamir

8a2eeac8ea5c docker.io/library/busybox:musl sh 2 minutes ago Exited (0) 2 minutes ago NAME

In the tutorial, you were exclusively referring to container images by REGISTRY/NAMESPACE:TAG and containers
by NAME. You can also refer to them using their IMAGE ID and CONTAINER ID, which will not change if you
change the name and/or tag.

https://podman.io


To delete containers and container images, Podman provieds the KIND rm commands. Delete one of the
containers and container images.

Now, if you want to delete all containers or container images, you would add the -a and -f options (all, force).
Delete the rest of the dead containers.

If you really really really need to delete and reset everything, Podman also provides a system reset command,
though it doesn’t work in all versions if there are containers remaining.

Further Reading

• podman container list – https://docs.podman.io/en/latest/markdown/podman-ps.1.html

• podman container rm – https://docs.podman.io/en/latest/markdown/podman-rm.1.html

• podman image list – https://docs.podman.io/en/latest/markdown/podman-images.1.html

• podman image rm – https://docs.podman.io/en/latest/markdown/podman-rmi.1.html

• podman system reset – https://docs.podman.io/en/latest/markdown/podman-system-reset.1.html

Task 2: Evaluating base images on a registry (5 min)

You will look at and evaluate base images at docker hub. Docker hub’s registry URL is the familiar docker.io.
Its web URL is https://hub.docker.com.

Looking for numpy

Use its web URL and search for numpy container images (search box is at the top), and then look at the list
you see. Scroll to the bottom, looking at the namespaces and names and then seeing how many there are.

Do any of these look like they might be official or from an otherwise trustwrothy source? What about the rest?

You may have noticed two near the top whose namespace is numpy, claiming to be from numpy. Take a minute
to think about how you would go about verifying if they really are from numpy and they aren’t just from a
malware author who grabbed the name first or is using homoglyphs (the lower-case Greek beta and German
Eszett look nearly identical or are identical in many fonts, the upper-case Greek alpha and the upper-case
Latin a are identical in many fonts, etc.).

Looking closer at alpine

Now, search for alpine (a small musl based linux distro). The first several have stamps. What do the stamps
of the first (the one used in the presentation) and second imply? Does it seem trustworthy?

Look at the first one. Notice the black box at the top right that says docker pull alpine. That would be
the Docker command (replace docker with podman for the Podman equivalent) to pull it, assuming you have
the tool configured to use docker.io as the default repository when the repository is not specified. You will
also notice that the namespace is missing (the default if not specified, is library). This is actually a very
dangerous practice. Never do this. Always add in the registry URL (docker.io for docker hub) and namespace
explicitly if not listed. After all, the package managers for your OS (if you use the version of docker/podman
from your OS package manager) could have decided on a different default, or could choose a different one in
the future.

Try to find the 3.17 tag.

HPCSA – Exercise 1 2/7

https://docs.podman.io/en/latest/markdown/podman-ps.1.html
https://docs.podman.io/en/latest/markdown/podman-rm.1.html
https://docs.podman.io/en/latest/markdown/podman-images.1.html
https://docs.podman.io/en/latest/markdown/podman-rmi.1.html
https://docs.podman.io/en/latest/markdown/podman-system-reset.1.html
https://hub.docker.com


Further Reading

• docker hub – https://hub.docker.com

• alpine Linux – https://alpinelinux.org

Task 3: Build and run an nginx webserver in Podman (10 min)

First, setup SSH tunnels from some ports on your machine to ports 80 and 8080 in the VM. Remember to
close your tunnels when done with this exercise.

You made trivial containers and container images in the tutorial. Now, it is time to actually make long running
containers doing some task on a server. In this exercise, you will make a container running a simple webserver
(nginx). The goal is to get it to run well enough to get a 404 message. Getting an actual webpage and other
advanced things is not a goal of this exercise.

Making the container image with nginx

Make the Dockerfile/Containerfile for the container image. You should use the previously researched
docker.io/library/alpine:3.17 base image since it is small and minimalistic. This alpine container image
does not have nginx installed by default, so you will need to install it in the container using alpine’s package
manager apk. It works like $ apt add PACKAGE. Do not worry about configuring nginx yet.

There are two additional things you need to do that was not covered previously with Dockerfile/Containerfiles.
One, you need to tell the container tool that the port for the webserver is to be exposed to the outside using
the EXPOSE directive (port 80). Two, while you could specify the exact command every time you run the
container, it is convenient to make the default command (when you specify nothing) be the command you
want to run, which is nginx. Use the CMD directive to run nginx with no arguments. Its executable is located
at /usr/sbin/nginx inside the container image. Don’t forget to give it a name and tag when building it using
the --tag NAME:TAG option.

Further Reading

• alpine Linux package database – https://pkgs.alpinelinux.org

• Dockerfile reference – https://docs.docker.com/engine/reference/builder/

• Dockerfile CMD – https://docs.docker.com/engine/reference/builder/#cmd

• Dockerfile FROM – https://docs.docker.com/engine/reference/builder/#from

• Dockerfile EXPOSE – https://docs.docker.com/engine/reference/builder/#expose

• Dockerfile RUN – https://docs.docker.com/engine/reference/builder/#run

Trial runs of failure

Now, run a container from your container image that you made with the container run command, but with
the -d option (don’t use -i, -t, or --rm options) so it starts in the detached state (it goes into the background
once it is started). Then, list your containers. You will notice that it is dead (only shows up with the -a

option).

The problem is that /usr/sbin/nginx starts the webserver in a separate background process and returns
(the server daemonizes), which ends execution. Once the program that podman container run calls is done,

HPCSA – Exercise 1 3/7

https://hub.docker.com
https://alpinelinux.org
https://nginx.org
https://pkgs.alpinelinux.org
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/#cmd
https://docs.docker.com/engine/reference/builder/#from
https://docs.docker.com/engine/reference/builder/#expose
https://docs.docker.com/engine/reference/builder/#run


the container is considered dead and all child processes are killed. To actually make the container survive,
we have to make it so that /usr/sbin/nginx does not daemonize. Luckily, this is simple to set in nginx’s
config file /etc/nginx/nginx.conf. You just have to add the line daemon off; to it at the end. Change your
Dockerfile/Containerfile to do just that and rebuild your container image.

Now, run the container the same way as before. You need to add the -p OUTSIDEPORT:INSIDEPORT option
for 80:80 to export port 80 inside the container to outside the container (this is called publishing the port).
This will either crash right away, or if it doesn’t and you list your containers, you will see that it is there and
running, like the following:

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

0a04bb915f7c localhost/nginx:latest /usr/sbin/nginx 4 seconds ago Up 4 seconds ago ng

which means it is running but pointing your web browser at your VM’s port 80 gets no response
(http://localhost:TUNNEL_PORT_FOR_80 where TUNNEL_PORT_FOR_80 is whatever port you are tunnelling
from your computer to port 80 on your VM).

It failed because you ran the container as an uprivileged user (Podman is rootless afterall), and unprivileged
users cannot bind to ports below 1024 (such as 80). The Linux permissions system is blocking your container,
as it is designed. Stop and delete your container. Containers can be stopped using Podman’s container stop

command.

Further Reading

• podman container run – https://docs.podman.io/en/latest/markdown/podman-run.1.html

• podman container stop – https://docs.podman.io/en/latest/markdown/podman-stop.1.html

Remap to an unprivileged port

Podman and Docker can both map ports inside containers to different ports outside of them. This is in fact one
of the cool things that containers allow one to do (e.g. have thousands of webservers running from the same
container image but on different ports without having to make a unique container image for each one specifying
the port). This remapping is done using the -p OUTSIDEPORT:INSIDEPORT option. Rerun the container using
8080 as the outside port instead. Then, point your browser at http://localhost:TUNNEL_PORT_FOR_8080

for whatever port you tunneled to 8080 on the VM and you should get a nice “404 Not Found” message from
nginx (no pages were configured). When you have it working, stop and delete your container.

Further Reading

• podman container run – https://docs.podman.io/en/latest/markdown/podman-run.1.html

Task 4: Importing into Docker and running on port 80 (10 min)

First, setup SSH tunnels from some ports on your machine to ports 80 in the VM. Remember to close your
tunnel when done with this exercise.

Now, there are a lot of reasons you might want to actually use the privileged ports 1–1024 with your containers.
There are a couple ways you could do this:

1. Make a firewall rule (nftables/iptables) that redirects incoming packets on port 80 to your unprivileged
port.

HPCSA – Exercise 1 4/7

https://docs.podman.io/en/latest/markdown/podman-run.1.html
https://docs.podman.io/en/latest/markdown/podman-stop.1.html
https://docs.podman.io/en/latest/markdown/podman-run.1.html


2. Setup a reverse proxy to redirect requests on port 80 to the container’s unprivileged port (often done
with nginx on the host system).

3. Run the container in a root container system such as Docker that lets it use port 80 since it is running
as root.

The first involves learning the firewall enough to do this safely, and it doesn’t scale to doing such a thing with
many containers (a lot of work for each port). The second kind of defeats the point with this trivial web server.
The third is one of the best ways to do it, especially since Podman is so compatible with Docker (this is by
design).

Saving the container image to disk

Before we can load the container image into Docker, we must first save it to disk since Docker does not use
the same local storage. This can be done with Podman’s image save command, by

$ podman image save --format FORMAT -o FILE CONTAINERIMAGE

where FORMAT is the export format (choose docker-archive since the other formats are incompatible with
Docker), FILE is the name of the output file (it will be an uncompressed tar file (though the layers within it
will be compressed tar files)), and CONTAINERIMAGE is the NAME:TAG or IMAGE ID of your container image.

Further Reading

• podman image save – https://docs.podman.io/en/latest/markdown/podman-save.1.html

Installing Docker

WARNING: Podman and Docker cannot coexist on the CentOS 8 that your VM instances are running. This
means that in order to install Docker, you must first uninstall Podman. DO NOT PROCEED TILL YOU
ARE DONE USING PODMAN!

First, uninstall podman with

$ sudo dnf remove podman

Docker is not in any of the CentOS 8 default package repositories, nor repositories that can be enabled using
packages in the default repositories – just Podman. The easiest way to fix this is to add Docker’s official
CentOS repository. You can add the repository with

$ sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo

And then, install the docker-ce package. You will be asked if you accept Docker’s repository signing key. It
should have the fingerprint 060A 61C5 1B55 8A7F 742B 77AA C52F EB6B 621E 9F35.

Now, Docker is a root container management system that runs as a daemon. It must be started every boot
(or enabled so it starts automatically every boot) using systemctl:

$ sudo systemctl start docker

By the way, to enable it for every boot, you would have used enable instead of start. Other commands are
disable, stop, and restart which do exactly what they say.

HPCSA – Exercise 1 5/7

https://docs.podman.io/en/latest/markdown/podman-save.1.html


Further Reading

• Docker installation documentation – https://docs.docker.com/engine/install/centos/ (note, it
uses the older yum instead of dnf)

Importing the container image into Docker

From this point forward, you need to be careful. Using Docker requires that you run all your commands as
root using sudo. This means that if you make a typo or aren’t careful, you can easily damage your system
(e.g. copy a file out of a container and on top of an important file, bind to port 22, etc.).

First, you must import the container image you previously exported to disk into Docker using Docker’s
image load command. Check that the container image was imported using Docker’s image list command
(works just like Podman).

Further Reading

• docker image list – https://docs.docker.com/engine/reference/commandline/image_ls/

• docker image load – https://docs.docker.com/engine/reference/commandline/image_load/

Running the container image in Docker

Now, run the container but using port 80. Everything is exactly the same as you did in Podman, except you
are now using Docker and Docker generally forces you to preceed the names of your container images with
localhost/. Point your web browser at the port on localhost you tunnelled to port 80 on the VM you should
now get a 404 message. You should also see your container if you use Docker’s container list command.

If you were successful, you can stop the container and remove it.

Further Reading

• docker container list – https://docs.docker.com/engine/reference/commandline/container_

ls/

• docker container rm – https://docs.docker.com/engine/reference/commandline/container_rm/

• docker container run – https://docs.docker.com/engine/reference/commandline/container_run/

• docker container stop – https://docs.docker.com/engine/reference/commandline/container_

stop/

Cleaning up Docker and removing it

To clean up, you need to remove your container image from Docker and then stop Docker itself. You can stop
Docker by

$ sudo systemctl stop docker.service

$ sudo systemctl stop docker.socket

If you just specify docker above, it refers to docker.service. You must also stop its socket, hence why there
are two invocations.

HPCSA – Exercise 1 6/7

https://docs.docker.com/engine/install/centos/
https://docs.docker.com/engine/reference/commandline/image_ls/
https://docs.docker.com/engine/reference/commandline/image_load/
https://docs.docker.com/engine/reference/commandline/container_ls/
https://docs.docker.com/engine/reference/commandline/container_ls/
https://docs.docker.com/engine/reference/commandline/container_rm/
https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/commandline/container_stop/
https://docs.docker.com/engine/reference/commandline/container_stop/


and uninstall it by

$ sudo dnf remove docker-ce

Now, you can easily install Podman again, or re-install Docker again.

You can also outright remove the Docker package repository by deleting /etc/yum.repos.d/docker-ce.repo

if you want.

HPCSA – Exercise 1 7/7


	Task 1: Listing/deleting containers and container images (5 min)
	Task 2: Evaluating base images on a registry (5 min)
	Task 3: Build and run an nginx webserver in Podman (10 min)
	Task 4: Importing into Docker and running on port 80 (10 min)

