
SH

∞

Seminar Report

Benchmarking KubeEdge

Vincenz Dumann

MatrNr: 22308641

Supervisor: Jonathan Decker

Georg-August-Universität Göttingen
Institute of Computer Science

March 31, 2023

Abstract
This report presents a study on benchmarking KubeEdge, a software that enables edge
computing using Kubernetes. The objective of the study was to assess the resource
requirements of KubeEdge and determine its suitability for edge computing. Two networks
were installed, and the performance of KubeEdge was measured. The paper also provides
a theoretical overview of the pros and cons of edge computing and details the installation
process of KubeEdge. The benchmark results indicate that KubeEdge is well-suited for
Kubernetes in edge computing, and its resource consumption is minimal. Overall, the
study concludes that KubeEdge is a suitable software for edge computing and can be
used for various edge computing applications.1

1An AI-Generated Poem made out of this abstract can be found in the appendix. Because - why not?

i

Contents

List of Tables iii

List of Figures iii

Listings iii

List of Abbreviations iv

1 Introduction 1
1.1 Outline . 1
1.2 Contributions . 1
1.3 Motivation . 1
1.4 Related Work . 2

2 Basics 3
2.1 EdgeComputing . 3

2.1.1 Layers of EdgeComputing . 3
2.2 Kubernetes . 4

2.2.1 Pros of using Kubernetes . 5
2.2.2 Cons of using Kubernetes . 5

2.3 Kubernetes and Edge Computing . 6
2.4 KubeEdge . 6

2.4.1 KubeEdge Architecture: . 6

3 Setting up KubeEdge 7
3.1 Project Plan . 7
3.2 Approach 1: Single Knot . 8

3.2.1 Preperation and Environment Setup 8
3.2.2 Benchmarking . 9
3.2.3 Performance Measurements . 10

3.3 Approach 2: Network . 11
3.3.1 Preperation and Environment Setup 11
3.3.2 Installation . 11
3.3.3 Benchmarking . 12

4 Conclusion 13
4.1 Summary . 13
4.2 Review of Goals . 13
4.3 Outlook . 14

References 15

A Log File A1

B Misc A1
B.1 The abstract in a lyrical form . A1

ii

List of Tables

List of Figures
1 EdgeComputing - Architecture . 4
2 VT-X/AMD-v not enabled - a problem without a real solution 9
3 Ressource need of Minikube with KubeEdge 10
4 Example Log File . A1
5 A total amount of 21 VMs were created for that project A3

Listings

iii

List of Abbreviations
HPC High-Performance Computing

iv

Benchmarking KubeEdge

1 Introduction
Managing large computer networks brings many challenges - the individual parts that
make up the network need to be set up and managed, and the work that needs to be
done needs to be divided up sensibly (ideally intelligently). In addition, the system
must be able to react to unexpected incidents, such as the failure of one or even several
machines. For the solution of these tasks, which can be summarised under the term
"orchestration", there are several approaches, and of course corresponding offers on the
market. One common solution is Kubernetes[Ros+21] - an open source system developed
by Google for managing container applications. However, Kubernetes is not designed
for edge computing[Xio+18] - this is a decentralised approach to network architecture
in which many calculations are not made classically on the central server, but directly
in the edges. This approach dramatically increases the number of computing units in
the network - and thus also the need for good orchestration. Kubernetes would be very
well suited for this, were it not for some weaknesses, which will be discussed in more
detail later in this paper. A solution for this is promised by the application "KubeEdge"
- a software, also available as open source, which, according to the developers, enables
the use of Kubernetes for edge computing. The seminar work, which was completed by
this thesis, focused on this software - KubeEdge: It is installed and analysed in terms of
functionality, resource consumption and user-friendliness.

1.1 Outline

In this introduction, the exact background of the project and its motivation are discussed,
and further literature is presented. Afterwards, a chapter on the basics takes a closer
look at Kubernetes, EdgeComputing and, of course, KubeEdge, including a look at the
respective architectures. The following chapter describes the approach chosen to test
Kubernetes and provides detailed instructions for installing and configuring a KubeEdge-
based network. Afterwards, the results of the performance analysis are presented, and a
final verdict is given.

1.2 Contributions

This thesis was written as part of the seminar "Scalable Computing Systems and Appli-
cations in AI, BigData and HPC", which was taught by Professor Dr. Julian Kunkel.
Supervisor of this work is M.Sc. Jonathan Decker, Author Vincenz Dumann, Master
student in the fourth semester.

1.3 Motivation

Of course, this project is not just an end in itself - in addition to the educational purpose
that every university project should fulfil, the knowledge gained here should also flow into
the "Decice" project[DECnd]. Decice is a joint project of the universities of Göttingen,
Stuttgart, Marmara, Bologna and others, as well as some companies from the researching,
private economy. The GWDG Göttingen is also involved. The goal of the project is stated
as follows: " DECICE aims to develop an AI-based, open and portable cloud management
framework for automatic and adaptive optimization and deployment of applications in a
federated infrastructure, including computing from the very large (e.g., HPC systems) to

Section 1 Vincenz Dumann 1

Benchmarking KubeEdge

the very small (e.g., IoT sensors connected on the edge)."[Kau+19]. Furthermore, the
roadmap of the project is also described: "Working at such vastly different scales requires
an intelligent management plane with advanced capabilities that allow it to proactively
adjust workloads within the system based on their needs, such as latency, compute power
and power consumption. Therefore, we envision an AI-model, which can use a digital
twin of the resources available, to make real-time scheduling decisions based on telemetry
data from the resources."[DECnd]

The DECICE framework will be able to dynamically balance different workloads,
optimise the throughput and latency of the system resources (compute, storage, and
network) regarding performance and energy efficiency and quickly adapt to changing con-
ditions."[DECnd] Basically, it is about creating, configuring and controlling the most
diverse networks, including those with an edge computing approach, via a central frame-
work, using AI. KubeEdge is being discussed as a possible software to be used, and should
therefore be examined in detail before a final decision is made. Accordingly, it is impor-
tant to find out how much resources KubeEdge uses, and how easy it is to install and
initialise - after all, these tasks are to be taken over automatically by the framework later.

1.4 Related Work

For this work, of course, we have also drawn on various academic works that deal with
similar topics. The basic chapter of this thesis is largely based on the following sources:

For basic knowledge about Kubernetes, the book "Production Kubernetes - Building
Successful Application Platforms" (freely available on the web) by the authors Josh Rosso,
Rich Lander, Alex Brand, John Harris was very helpful; the connection to edge computing
is made by the work "Kubernetes and Edge Computing" by Sergio Mendez.

An overview of edge computing and current research in this area is provided in "An
Overview on Edge Computing Research" by the authors Keyan Cao, Yefan Liu, Gongjie
Meng and Qimeng Sun, while the paper "Challenges and Opportunities in Edge Comput-
ing" by Blesson Varghese, Nan Wang, Sakil Barbhuiya, Peter Kilpatrick and Dimitrios
S. Nikolopoulos provides more in-depth information on advantages and disadvantages.
However, in contrast to the other works presented here, this is already somewhat older
(from 2016), and therefore already seems somewhat outdated in some places.

Scientific studies on KubeEdge are of course much rarer than on the more general
topics, and it is also not always easy to differentiate how the studies are related to the de-
velopers of KubeEdge. "Extend Cloud to Edge with KubeEdge", for example, provides a
fairly detailed overview of the functions, but also of the underlying architecture, although
at least some of the authors Ying Xiong, Yulin Sun, Li Xing and Ying Huang are also
mentioned, at least by name, on the homepage of KubeEdge itself - which also contains
a "paper" about a test of KubeEdge in real conditions, "Test Report on KubeEdge wit
100000 Nodes" by Wack Xu. A similar, but much more detailed scenario is described in
"Node-Based Horizontal Pod Autoscaler in KubeEdge-Based Edge Computing Infrastruc-
ture" by Le Hoang Phuc, Majid Kundroo, Dae-Heon Park Sehan Kim and Taehong Kim,
which comes to similar results, but where at least no obvious connection to the developers
can be found.

Section 2 Vincenz Dumann 2

Benchmarking KubeEdge

2 Basics
This chapter will first introduce some basics - in detail, it will deal with the terms "Ku-
bernetes", "EdgeComputing" and "KubeEdge". The architecture of these individual ele-
ments will also be discussed and - at least as far as the scope of this work allows - a look
will be taken at any weaknesses or risks for their use. In addition, it will be worked out
how these three technologies, or paradigms, are interrelated and what areas of application
there may be.

2.1 EdgeComputing

Edge computing is defined slightly differently - depending on the source - but all definitions
can be reduced to a common denominator: "Edge computing refers to a distributed
computing paradigm that enables data processing and analysis to be carried out closer
to the source of data generation, typically at or near the edge of the network. This
approach leverages a network of decentralized devices and sensors to perform real-time
data processing, reducing latency, improving response times, and enabling faster decision-
making. Edge computing also minimizes the amount of data that needs to be transmitted
to centralized cloud servers, reducing bandwidth requirements and associated costs. This
technology is increasingly used in IoT (Internet of Things) applications, smart homes,
autonomous vehicles, and industrial automation, among others."[Cao+20]

Edge computing typically consists of three layers: the cloud layer, the edge layer, and
the device layer. Those are displayed in Figure 1 and explained more in-depths in the
following subchapter.

2.1.1 Layers of EdgeComputing

• The cloud layer is the top layer of the edge computing architecture and is made up of
cloud data centers that provide infrastructure and services to the edge devices. The
cloud layer is responsible for managing the edge devices and coordinating data flows
between the edge devices and the cloud data centers. It provides centralized man-
agement, monitoring, and orchestration of edge devices and applications.[Var+16]

• The edge layer is the middle layer of the edge computing architecture and is made
up of edge servers or gateways located closer to the end-user or data source than the
cloud data centers. The edge layer is responsible for processing and analyzing data
from the device layer and forwarding the relevant data to the cloud layer for further
processing or storage. The edge layer enables real-time data processing, reduces
network traffic, and improves overall system performance.

• The device layer is the bottom layer of the edge computing architecture and is made
up of the end-user devices or sensors that generate data. The device layer includes
a wide range of devices such as smartphones, sensors, wearables, and IoT devices.
The device layer is responsible for collecting and transmitting data to the edge layer
for processing and analysis.

In summary, the cloud layer, edge layer, and device layer are the three key components
of the edge computing architecture. Each layer plays a specific role in the overall system,
with the cloud layer providing centralized management and orchestration, the edge layer

Section 2 Vincenz Dumann 3

Benchmarking KubeEdge

Figure 1: EdgeComputing - Architecture

enabling real-time data processing and analysis, and the device layer generating data from
end-user devices and sensors.[Var+16]

2.2 Kubernetes

Kubernetes is a popular open-source platform used for managing containerized work-
loads and services. It was originally designed by Google and is now maintained by the
Cloud Native Computing Foundation (CNCF). Kubernetes provides a robust and scalable
solution for automating deployment, scaling, and management of containerized applica-
tions[Ros+21].

At a high level, Kubernetes operates by deploying and managing containerized ap-
plications using a declarative model. A user or administrator defines the desired state
of the application in a Kubernetes manifest file, which specifies the desired deployment
configuration, including the number of replicas, container images, networking, and stor-
age requirements. Kubernetes then takes responsibility for ensuring that the actual state
of the application matches the desired state, using a range of built-in components and
mechanisms.

One of the key components of Kubernetes is the kubelet, which is responsible for
managing the state of individual nodes within a Kubernetes cluster[Ros+21]. The kubelet
is responsible for launching containers, monitoring their health and resource usage, and
responding to failures or other events that require action. Kubernetes also includes a
number of additional components, such as the Kubernetes API server, which provides a
centralized control plane for managing the cluster, and the etcd database, which is used
for storing cluster state and configuration data.

Kubernetes provides a number of powerful features for managing containerized appli-
cations, including:

• Automatic scaling: Kubernetes can automatically scale the number of replicas of a
given application based on demand, ensuring that the application can handle spikes
in traffic or load.

Section 2 Vincenz Dumann 4

Benchmarking KubeEdge

• Rolling updates: Kubernetes can perform rolling updates of containerized appli-
cations, updating them one at a time while ensuring that the application remains
available and responsive.

• Self-healing: Kubernetes includes built-in mechanisms for detecting and responding
to failures within the cluster, such as by automatically restarting failed containers
or rescheduling workloads to other nodes.

Kubernetes also supports a wide range of networking and storage options, allowing
users to configure their deployments in a highly customizable and flexible way.

Like any technology, kubernetes has advantages and disadvantages. For a better un-
derstanding, these are briefly highlighted in the next subsections.

2.2.1 Pros of using Kubernetes

• Scalability: Kubernetes enables automatic scaling of containerized applications, en-
suring that they can handle increases in traffic or load without manual intervention.

• Flexibility: Kubernetes supports a wide range of containerization technologies, al-
lowing users to run their applications on their preferred platform and easily switch
between platforms as needed.[Var+16]

• Portability: Kubernetes is designed to be platform-agnostic, meaning that it can
run on a variety of operating systems and cloud providers, providing flexibility in
deployment options.

• Resilience: Kubernetes includes built-in mechanisms for self-healing and fault tol-
erance, ensuring that applications remain available and responsive even in the face
of failures or disruptions.

• Ecosystem: Kubernetes has a large and growing ecosystem of tools and extensions,
making it easier to integrate with other technologies and extend its functionality as
needed.

2.2.2 Cons of using Kubernetes

• Complexity: Kubernetes can be complex and difficult to learn, requiring significant
time and effort to become proficient in its use.

• Management overhead: Kubernetes requires ongoing management and maintenance
to ensure proper operation, which can be a significant burden for smaller organiza-
tions or teams with limited resources.

• Resource-intensive: Kubernetes requires significant computational resources to op-
erate, which can be a concern for organizations with limited computing resources
or budget constraints.

• Network complexity: Kubernetes introduces additional network complexity, which
can be challenging to manage and troubleshoot, particularly for organizations with
limited networking expertise.

Section 2 Vincenz Dumann 5

Benchmarking KubeEdge

• Learning curve: The learning curve of Kubernetes can be steep and can lead to
errors during implementation and deployment.

• In summary, Kubernetes is a powerful platform that provides many benefits, includ-
ing scalability, flexibility, portability, resilience, and a large ecosystem. However, it
also has some drawbacks, including complexity, management overhead, resource-
intensiveness, network complexity, and a steep learning curve.[Men22]

2.3 Kubernetes and Edge Computing

As one can see from the former chapter, Kubernetes is a powerful tool for managing con-
tainerized workloads, but it does have some limitations when it comes to edge computing.
Some of these limitations include:

• Bandwidth: Edge computing applications often require low latency and high band-
width, which can be challenging for Kubernetes to provide in a distributed environ-
ment.

• Resource constraints: Edge devices often have limited resources, such as CPU, mem-
ory, and storage. Kubernetes may struggle to manage containers on these devices,
especially if they have different architectures.

• Network connectivity: Edge devices may be deployed in remote or harsh environ-
ments with limited network connectivity, making it difficult to manage them with
Kubernetes.

• Security: Edge devices may be more vulnerable to security threats than traditional
data centers, and Kubernetes may not have the necessary security features to protect
against these threats.

• Complexity: Kubernetes is a complex system with a steep learning curve, which can
make it difficult for organizations to implement and manage in an edge computing
environment.

The software "KubeEdge" promises a solution for these problems. This will be pre-
sented as the last part of the basic chapter in the following.

2.4 KubeEdge

KubeEdge is an open-source cloud-native edge computing framework that extends Ku-
bernetes to the edge[Xio+18]. It allows developers to deploy containerized applications
to edge nodes and manage them using Kubernetes tools and APIs. KubeEdge is de-
signed to support various edge computing scenarios, including offline computing, local
data processing, and real-time analysis of data streams[Xio+18].

2.4.1 KubeEdge Architecture:

KubeEdge has a two-tier architecture consisting of a cloud side and an edge side.
Cloud Side: The cloud side includes a Kubernetes cluster that manages and deploys

the edge nodes. The cloud side also includes several core components:

Section 2 Vincenz Dumann 6

Benchmarking KubeEdge

• CloudCore: CloudCore is a Kubernetes controller that manages the edge nodes and
the data synchronization between the cloud and edge nodes. It also provides a user
interface for managing the edge nodes.

• MQTT Broker: KubeEdge uses the MQTT protocol to communicate between the
cloud side and edge side. The MQTT broker is responsible for receiving and for-
warding messages between the two sides.

Edge Side: The edge side includes lightweight runtime environments called EdgeCore,
which run on the edge nodes. The EdgeCore provides the container runtime, device
management, and data synchronization with the cloud side.

• EdgeCore: EdgeCore is responsible for managing the containerized applications
running on the edge nodes. It also provides device management and data synchro-
nization with the cloud side.

• Device Twin: Device Twin is a key feature of KubeEdge that allows the edge nodes
to synchronize their device state with the cloud side. This ensures that the cloud
side has an up-to-date view of the devices and can take appropriate actions when
needed.

• MQTT Agent: The MQTT agent is responsible for establishing and maintaining
the connection with the cloud side using the MQTT protocol.

• Data Collection: KubeEdge provides a data collection feature that allows the edge
nodes to collect data and send it to the cloud side for analysis.

Overall, KubeEdge’s architecture provides a scalable and flexible framework for man-
aging and deploying containerized applications to edge nodes. It extends Kubernetes to
the edge, allowing developers to use familiar tools and APIs to manage edge computing
resources.

3 Setting up KubeEdge
Now that the basics are clear, and the advantages and disadvantages of the various compo-
nents have been discussed theoretically, they are to be tested in a practical environment.
Furthermore, a manual is still missing, which should make it possible to follow the indi-
vidual steps of the installation.

This chapter dedicates itself to the practical part of the project. First of all, it will
be presented what exactly was planned and why this approach was chosen. Then, the
respective installations, as well as the corresponding setup, will be presented in as much
detail as possible, with a description of possible difficulties and further experience.

3.1 Project Plan

During the planning of the project, it quickly became apparent that Kubernetes is not a
trivial topic - as already mentioned in the chapter on disadvantages, the learning curve for
new users is very steep, and since this is a university project, no previous knowledge can
be assumed. Therefore, the decision was made to split the project into two parts: First,

Section 3 Vincenz Dumann 7

Benchmarking KubeEdge

initial experience with Kubernetes should be gained in a smaller, more closed environment,
before starting with the implementation of a real network. In both cases, benchmarks
should be created if possible to get an idea of the resource consumption of the individual
components.

3.2 Approach 1: Single Knot

The first approach is mainly for getting to know the technology itself. The following goals
have been defined for this purpose:

• First, an environment needs to be setted up

• Second, Minikube is to be installed

• The server part of KubeEdge is to be installed on top of this

• The latter is to be benchmarked.

These steps are described individually in more detail in the next subsections. It will
also be mentioned that there were some difficulties that could not be solved due to time
constraints. In particular, a lot of improvisation was necessary for benchmarking, but
more on this in the corresponding section.

3.2.1 Preperation and Environment Setup

A Linux environment is necessary for the implementation of this project. However, such
an environment was not available natively, so a virtual machine was used with the help
of Oracle Virtual Box. The following settings were selected for this:

• Operating system: Ubuntu Server 64-bit

• Main memory: 50gb

• Processors: 4

• Mass storage: up to 500 gb

It is worth mentioning here that the number of processors should not be low (with one
it is simply not possible to run KubeEdge, with 2-3 the manufacturers warn of performance
bottlenecks), and also the main and mass storage should be set generously for the server
unit - the first installation attempt failed due to lack of storage space, and changing the
partitions on a virtual machine is not exactly trivial - a complete reinstallation, including
a new virtual machine was the much more effective solution.

With these settings, the installation (more on this in the next subsection) could be
performed relatively smoothly - however, there is also a limitation that could not be fixed,
and which is a strong argument against using a virtual environment on a Windows oper-
ating system. For the full use of MiniKube, it is needed to have VT-x enabled. VT-x (for
Intel processors) or AMD-v (for AMD processors) is a technology that provides hardware-
level virtualization support. It allows virtual machines to run with better performance
and security by allowing them to directly access the physical resources of the host system,

Section 3 Vincenz Dumann 8

Benchmarking KubeEdge

Figure 2: VT-X/AMD-v not enabled - a problem without a real solution

such as the CPU, memory, and I/O devices - and enabling this is only available on Win-
dows 10 professional, which was not available. The error message can be seein in Figure
2.

A possible Solution would be the purchause of Windows 10 professional - but spendig
this 220 Dollars did not seem worth an investment here, especially when considering, that
this first approach was mainly to get in touch with the technology. Apart from that, the
basic functions seem to work without an activated VT-x, which is why it was ignored
in the further course of the work - which, however, also means that any performance
measurements may be slower than potentially possible.

3.2.2 Benchmarking

For the benchmarking, a TIG-Stack was the prefered approach. A TIG stack is a software
stack used for monitoring and analytics of time-series data. It consists of three main
components:

• Telegraf: Telegraf is a plugin-driven server agent that collects and reports metrics
from various systems, services, and databases. It supports a wide range of input
and output plugins, making it a highly flexible and customizable tool for collecting
metrics.

• InfluxDB: InfluxDB is a time-series database that stores and queries metrics data
collected by Telegraf. It provides a SQL-like query language and a rich set of APIs
for managing data.

• Grafana: Grafana is a popular open-source platform for visualizing and analyzing
time-series data. It provides a rich set of dashboards, visualizations, and alerts, and
supports integration with various data sources, including InfluxDB.

Together, these three components form the TIG stack, which provides a comprehensive
solution for collecting, storing, analyzing, and visualizing time-series data. The TIG
stack is commonly used in DevOps, IoT, and other applications that require real-time
monitoring and analytics of metrics data.

Unfortunately, it was not possible to install such a stack - although the individual
components were created correctly and a lot of time was spent on troubleshooting, no
benchmarks arrived in InfluxDB. Due to time constraints, another solution was chosen:

Section 3 Vincenz Dumann 9

Benchmarking KubeEdge

Figure 3: Ressource need of Minikube with KubeEdge

Core of the benchmark was the following command, executed on the virtual machine:
1 sudo nohup vmstat 0.5 604879| (while read; do echo "$(date +%d-%m-%Y

" "%H:%M:%S) $REPLY "; done) >> myvmstatfile.dat

Core of this command is the ’vmstat’: This command is used to display information
about the system’s virtual memory, processes, CPU activity, and other performance met-
rics. The 0.5 parameter specifies the sampling interval in seconds (in this case, every half
second), and 604879 specifies the number of samples to be taken before the command
exits. Putting it all together, this command runs ’vmstat’ with a sampling interval of 0.5
seconds and a total of 604879 samples, and pipes the output to a while loop that adds
a timestamp to each line of output. The final output is then appended to a file named
myvmstatfile.dat.

To visualize the results, a small, web-based application was developed, using the Angu-
lar Framework. The code is available on my GitHub: https://gitlab.gwdg.de/vincenz.dumann/benchmarking-
kube-edge 2.

3.2.3 Performance Measurements

Now that the methods are clear, let’s have a first look to the results. (Note: All result
files are in the appendix and on the projects GitHub3.

In Figure 3 one can see the start free memory and the cpu-use of the KubeEdge-Main
node. On the graph, you can clearly see at which point the software was started - after
memory and CPU consumption initially remained constant, this increases sharply with
the start of KubeEdge. The machine used here was allocated 220 MB of memory, which,
as can be seen very clearly in the diagram, is also an absolute lower limit - from the start
of the application it was almost completely used, and no further memory was released
in the further course. This also explains, why KubeEdge won’t start on a machine with
lesser memory available - There is even an error message, when one is trying to start it
on a machine with less, which tells exactly the minimum amount - 220mb.

Less constant than the memory consumption is the curve of the computing capacities
used - these rise in waves, then level off at a relatively high level as soon as KubeEdge

2(This should be available for all members of the gwdg-gitlab-repository)
3https://gitlab.gwdg.de/vincenz.dumann/benchmarking-kube-edge

Section 3 Vincenz Dumann 10

Benchmarking KubeEdge

is running consistently. The maximum value for CPU consumption was 12986, but this
was only a single value directly at the start of the application. Once the application was
running, the values settled at round about 3200 - this value can be used as a base value
for CPU consumption in idle state.

This first approach shows what the minimum requirements are for a core node. What
is much more interesting, however, is what the side nodes need in terms of resources, as
these are usually much more limited in this respect. Accordingly, the second approach will
be presented in the next chapter: In this approach, not only a main node is implemented,
but also corresponding edge nodes are connected, and again the performance is measured.

3.3 Approach 2: Network

This second, much more complex approach is intended to reflect a real use case of
KubeEdge - there should be a MainNode where one or more EdgeNodes can register to
potentially send data to this MainNode. Accordingly, it is to be expected that the setup
will be significantly more complex - however, it is also to be expected that the measure-
ment results will provide significantly more useful information about the requirements,
performance and resource consumption.

In this chapter, as in the previous one, the infrastructure used is first described and
then the installation is briefly discussed. Here, too, the detailed installation instructions
can be found in the corresponding GitLab4. Finally, measurement results are presented,
both for the Edge node and for the Main node.

3.3.1 Preperation and Environment Setup

Virtual machines were also used for this project - for the main node, the requirements are
clearly defined here and the same settings were used as for the previous installation. For
the edge nodes, on the other hand, there are no clear minimum requirements - accordingly,
these virtual machines were set up with the same specifications as the main node - it seems
logical that they will consume at most just as much, rather significantly less resources, and
thus it should be ensured that these are sufficient - anything else would be a big surprise
and would directly disqualify KubeEdge as software for edge computing. Networks where
the edges are heavier than the main unit do not seem to make much sense.

In total, 4 (according to the specifications) virtual machines were created - one of them
will later serve as the main node, while the others simulate the edge nodes. In addition,
an installation was carried out on a private RasperyPi 4 (8gb) which, however, only plays
a subordinate role for the further course, as it was unfortunately not possible to connect
to the main node - and making the computer on which this is running publicly accessible
seemed somewhat risky, measured against the value of possibly obtained findings. For
this RasPi, Ubuntu for RasPi was used, and the installation was identical to that on the
virtual machines, which is described in the next subchapter. The specifications for this
device can be looked up in more detail by the interested reader on the corresponding
website.

3.3.2 Installation

The full installation guide, as said, can be found on gitlab. This subchapter summarises
these in broad terms and goes into some specifics that had to be taken into account.

4https://gitlab.gwdg.de/vincenz.dumann/benchmarking-kube-edge

Section 3 Vincenz Dumann 11

Benchmarking KubeEdge

Basically, setting up a network with KubeEdge takes place in three phases: First,
some steps are carried out on the edge nodes as well as on the main node, then the
corresponding specific components are installed, before the edges are linked to the main
node in the last part. The individual steps of these phases are as follows:

• Installation of docker on both machines

• Installation of Kubernetes

– For this project, kind and kubectl were used

• Install KubeEdge

– On both nodes, keadm needs to be installed

– On the MainNode, cloudcore needs to be deployed

– On the MainNode, the token can be generated now

– On the EdgeNode, edgecore needs to be installed. Here, the generated token
needs to be used

All the steps, with all needed commands, are explained in-depts on the Gitlab.

3.3.3 Benchmarking

After the installation, the existing network was tested accordingly. Here, too, another
unsuccessful attempt was made to implement a TIG stack, which unfortunately was again
unsuccessful but cost a lot of time. Accordingly, the other method was used again, which
works, but is of course much less professional.

The following scenario was tested:

• First, KubeEde was started on the EdgeNode to measure the idle state.

• This EdgeNode was added to the cluster by entering the corresponding ID. This
step is also already mentioned in the installation description.

– Here, measurements were taken on the edge and main nodes.

The measured results are certainly very pleasing for the developers and users of
KubeEdge, but rather disappointing for the writing of this paper - there was simply no
real decisive change to be found in the corresponding metrics, the resource consumption
was almost linear, even repeating this step several times hardly produced any meaningful
figures. However, this observation is consistent with the official test reports, and also with
what other, less biased sources reveal.

Besides memory and CPU utilisation, latency is certainly an interesting metric. How-
ever, due to time and know-how constraints, it was not possible to make a really meaning-
ful measurement. However, a study on this is presented on the official KubeEdge website,
and there are other articles on this topic that are unfortunately not always publicly ac-
cessible.

In summary, one can say that KubeEdge is designed to be lightweight and resource-
efficient, and its resource usage can be optimized by adjusting the configuration of various
components. For example, one can adjust the number of replicas for each component, set

Section 3 Vincenz Dumann 12

Benchmarking KubeEdge

resource limits for each container, and adjust other configuration parameters to optimize
resource usage.

In addition, the resource usage of KubeEdge can vary depending on the size of the
cluster, the number of devices, the workload being run, and other factors. Therefore,
it’s important to monitor the resource usage of a KubeEdge deployment and adjust the
configuration as needed to ensure optimal performance.

4 Conclusion
This chapter forms the conclusion of this thesis. Here, the entire thesis is first briefly sum-
marized, and then a look back at the goals set, as well as their achievement is discussed.
It concludes with an outlook on potential next steps.

4.1 Summary

The report starts with an introduction to the terms "Kubernetes", "Edge Computing",
and "KubeEdge", and describes how they are related. It then examines the theoretical
pros and cons of Kubernetes and provides a detailed explanation of the architecture of
KubeEdge. The report also describes the setup of two practical approaches, with a basic
description of the installation process. However, a related GitLab page provides a de-
tailed description of the installation process for interested readers. Finally, the practical
approaches are further investigated with a benchmarking analysis of resource consump-
tion.

4.2 Review of Goals

This chapter takes a look at the goals and summarizes whether they were achieved.

• Theoretical analysis of Kubernetes in edge computing

– The report includes a theoretical analysis of Kubernetes in edge computing,
with relevant literature linked in the "Related Work" chapter. The motivation,
the pros and cons were explained.

• Setup of basic KubeEdge on MiniKube

– The setup was done, but the limitations of the virtual environment were an
anchor during the process

• Setup of a network with multiple EdgeNodes using KubeEdge

– The setup was done, but took way longer then expected, mainly due to smaller
problems during the implementation. It was not possible to use different de-
vices (f.e. the RasPi) due to limitations of virtual machines and security con-
cerns.

• Benchmarking the idle state of KubeEdge on MainNode and EdgeNodes

Section 4 Vincenz Dumann 13

Benchmarking KubeEdge

– The benchmarking was done, with results as expected: The amount of ressources
is very small on the edges, and on a higher level on the main node. The original
plan to use a TIG Stack for benchmarking did not work out, but a solution
was found.

• Providing a how-to to install KubeEdge

– The how-to is available on GitLab. It contains a step-by-step guide, and it also
points out steps that can hide unexpected difficulties.

• Benchmarking further Tasks on the network

– This was not completed, mainly due to time limitations, but also due to a
certain limit of skill.

4.3 Outlook

With the completion of this project, the question now naturally arises as to how the in-
sights gained from it can be used - especially, of course, in relation to the "Decice" project.
The instructions created will save colleagues working on this project from some pitfalls
later on, and the manual installation can be automated. In addition, the measurements
generated in the course of this work confirm that KubeEdge can definitely be used, at
least in terms of resource consumption.

With all the positive things that can be written about KubeEdge, one should not
forget that it is not the only solution on the market. Possible alternatives include K3S 5,
and microk8s 6. However, there was no more time for this in the context of this thesis;
a corresponding comparison could be a question for another practical thesis, or even a
bachelor’s thesis, as all this solutions more or less promise the same: Easy implementation
for kubernetes in Edge Computing.

5"K3s is a highly available, certified Kubernetes distribution designed for production workloads in
unattended, resource-constrained, remote locations or inside IoT appliances, quoted from www.k3s.io)

6MicroK8s is a lightweight, fast and simple Kubernetes distribution developed by Canonical, the
company behind Ubuntu Linux. It is designed to run on a single machine, and provides all the components
needed to deploy, manage and scale containerized applications in a Kubernetes environment, quoted from
www.microk8s.io

Section 4 Vincenz Dumann 14

Benchmarking KubeEdge

References
[Cao+20] Keyan Cao et al. “An Overview on Edge Computing Research”. In: IEEE

Access (May 2020). url: https : / / ieeexplore . ieee . org / abstract /
document/9083958.

[DECnd] DECICE. About DECICE. Website. Retrieved March 28, 2023, from https:
//decice.eu/about/. n.d.

[Kau+19] Kuljeet Kaur et al. “KEIDS: Kubernetes-Based Energy and Interference Driven
Scheduler for Industrial IoT in Edge-Cloud Ecosystem”. In: IEEE Access
(2019). url: https://ieeexplore.ieee.org/abstract/document/8825476.

[Men22] Sergio Mendez. Edge Computing Systems with Kubernetes. 2022.

[Ros+21] Josh Rosso et al. Production Kubernetes - Building Successful Application
Platforms. 2021. url: https : / / books . google . de / books ? hl = de & lr =
&id=WrIlEAAAQBAJ&oi=fnd&pg=PP1&dq=kubernetes+pro+and+cons&
ots = Donah3qAR4 & sig = zo8hPqmonKeXJCotTILS7KfjBZI # v = onepage & q =
kubernetes%20pro%20and%20cons&f=false.

[Var+16] Blesson Varghese et al. “Challenges and Opportunities in Edge Comput-
ing”. In: IEEE Cloud Computing (Nov. 2016). url: https://ieeexplore.
ieee.org/abstract/document/7796149?casa_token=po0r7rl1LJsAAAAA:
DsdxhNwPLOp7zC-o-GBVrDqeIbGN98kB8qLT6DbGnipgs4XG5B4DG38r3yyBut5reS1in2mvy5bVYg.

[Xio+18] Ying Xiong et al. “Extend Cloud to Edge with KubeEdge”. In: IEEE Cloud
Computing (Oct. 2018). url: https://ieeexplore.ieee.org/abstract/
document/8491077.

Section Vincenz Dumann 15

https://ieeexplore.ieee.org/abstract/document/9083958
https://ieeexplore.ieee.org/abstract/document/9083958
https://decice.eu/about/
https://decice.eu/about/
https://ieeexplore.ieee.org/abstract/document/8825476
https://books.google.de/books?hl=de&lr=&id=WrIlEAAAQBAJ&oi=fnd&pg=PP1&dq=kubernetes+pro+and+cons&ots=Donah3qAR4&sig=zo8hPqmonKeXJCotTILS7KfjBZI#v=onepage&q=kubernetes%20pro%20and%20cons&f=false
https://books.google.de/books?hl=de&lr=&id=WrIlEAAAQBAJ&oi=fnd&pg=PP1&dq=kubernetes+pro+and+cons&ots=Donah3qAR4&sig=zo8hPqmonKeXJCotTILS7KfjBZI#v=onepage&q=kubernetes%20pro%20and%20cons&f=false
https://books.google.de/books?hl=de&lr=&id=WrIlEAAAQBAJ&oi=fnd&pg=PP1&dq=kubernetes+pro+and+cons&ots=Donah3qAR4&sig=zo8hPqmonKeXJCotTILS7KfjBZI#v=onepage&q=kubernetes%20pro%20and%20cons&f=false
https://books.google.de/books?hl=de&lr=&id=WrIlEAAAQBAJ&oi=fnd&pg=PP1&dq=kubernetes+pro+and+cons&ots=Donah3qAR4&sig=zo8hPqmonKeXJCotTILS7KfjBZI#v=onepage&q=kubernetes%20pro%20and%20cons&f=false
https://ieeexplore.ieee.org/abstract/document/7796149?casa_token=po0r7rl1LJsAAAAA:DsdxhNwPLOp7zC-o-GBVrDqeIbGN98kB8qLT6DbGnipgs4XG5B4DG38r3yyBut5reS1in2mvy5bVYg
https://ieeexplore.ieee.org/abstract/document/7796149?casa_token=po0r7rl1LJsAAAAA:DsdxhNwPLOp7zC-o-GBVrDqeIbGN98kB8qLT6DbGnipgs4XG5B4DG38r3yyBut5reS1in2mvy5bVYg
https://ieeexplore.ieee.org/abstract/document/7796149?casa_token=po0r7rl1LJsAAAAA:DsdxhNwPLOp7zC-o-GBVrDqeIbGN98kB8qLT6DbGnipgs4XG5B4DG38r3yyBut5reS1in2mvy5bVYg
https://ieeexplore.ieee.org/abstract/document/8491077
https://ieeexplore.ieee.org/abstract/document/8491077

Benchmarking KubeEdge

Figure 4: Example Log File

A Log File
In Figure 5 one can see an example of a Log File from the Benchmaring. More examples
are on the Gitlab.

B Misc
B.1 The abstract in a lyrical form

So, as ChatGPT is THE thing right now, i copied the abstract into the chat and asked
for a transformation in a lyrical form, and to add in some drama. Not all informations
are represented correctly, but i thought, the result is just to hilarious, to not show it here.

Benchmarking KubeEdge

A study on KubeEdge we pursue
To assess if it’s suited for edge computing too
The stakes are high, the pressure’s on
Will KubeEdge deliver, or will it be gone?

KubeEdge is software for Kubernetes, you see
To enable edge computing, it’s designed to be

Section B Vincenz Dumann A1

Benchmarking KubeEdge

But can it handle the edge, with all its demands?
We put it to the test, with our bare hands

Two networks we install to measure its might
To determine if KubeEdge is worth the resource it might incite
The clock is ticking, the tension is high
Will KubeEdge pass, or will it die?

We start with a theoretical view
Of edge computing’s pros and cons, old and new
But now it’s time to see, can KubeEdge stand tall
Or will it crumble, and let us fall?

We detail the software’s installation
And move on to the benchmarking operation
Our eyes are glued to the screen, our hearts beating fast
Will KubeEdge be the winner, or end up last?

We test its latency, we examine its speed
And note its reliability, a key factor indeed
The results are in, and we’re glad to say
KubeEdge has passed the test, and made our day

For Kubernetes in edge computing, it’s fit
And its resource consumption is really quite a bit
We breathe a sigh of relief, the drama is done
KubeEdge has won, and we’ve had our fun

Overall, KubeEdge is a fine choice to make
For all sorts of edge computing tasks it can take
Our study concludes, and we hope you’ll see
KubeEdge’s potential for edge computing, just like we.

Source: ChatGPT, Version 3, https://chat.openai.com/chat. Generated at the 23rd of
March, 2023. As Input parameter, the abstract of this report was used, and the questsions
were: "Can you form the following text into a poem and add some basic information about
KubeEdge to it, and spice it up with some Drama" [Abstract]

Section B Vincenz Dumann A2

Benchmarking KubeEdge

Figure 5: A total amount of 21 VMs were created for that project

Section B Vincenz Dumann A3

	Contents
	List of Tables
	List of Figures
	Listings
	List of Abbreviations
	 Introduction
	Outline
	Contributions
	Motivation
	Related Work

	Basics
	EdgeComputing
	Layers of EdgeComputing

	Kubernetes
	Pros of using Kubernetes
	Cons of using Kubernetes

	Kubernetes and Edge Computing
	KubeEdge
	KubeEdge Architecture:

	Setting up KubeEdge
	Project Plan
	Approach 1: Single Knot
	Preperation and Environment Setup
	Benchmarking
	 Performance Measurements

	Approach 2: Network
	Preperation and Environment Setup
	Installation
	Benchmarking

	Conclusion
	Summary
	Review of Goals
	Outlook

	References
	Log File
	Misc
	The abstract in a lyrical form

