

Institute of Computer Science

Tim Dettmar

ARM Evaluation in HPC

Project Preliminary Results

Scalable Computing Systems

02.02.23

Table of contents

- 1 Preliminary Evaluation
- 2 Literature Review
- 3 Further Evaluation

Outline

1 Preliminary Evaluation

2 Literature Review

3 Further Evaluation

Evaluation Hardware

ARM Nodes

- Huawei TaiShan 200 (28x)
 - Dual Kunpeng 920 ARMv8 CPUs (2.6GHz, 2x64C)
 - 128GB RAM
 - 100Gbit/s InfiniBand
- NVIDIA ARM Developer Kit (2x)
 - Ampere Altra Q80-30 (3.0GHz, 80C)
 - 512GB RAM
 - 200Gbit/s BlueField-2 DPU with InfiniBand
 - ARM Cortex A72 (2.0GHz, 8C)
 - 16GB RAM
- Limited access time

Reference GWDG Nodes

x86 Nodes

- Xeon Server
 - Dual Xeon Platinum 9242 (2x48C)
 - 384GB RAM
 - 100Gbit/s Omni-Path

Preliminary Benchmarks

- Preliminary benchmarks were run using Phoronix Test Suite
 - HPL Linpack
 - GROMACS
- Can compare with other CPUs easily, but more tuning is needed
- Benchmark configuration is not too well optimized
- Core-to-core latency benchmark was also run

GROMACS Performance

- Large discrepancy between x86 and ARM platform
- More investigation needed
 - Possible BLAS library optimization
 - Memory limitations
 - Hybrid OpenMP/OpenMPI

Preliminary Data; PTS GROMACS Benchmark 1.70, GROMACS 2022.1, MPI CPU, water_gmx50_bare, All Cores across All NUMA Nodes

Scalable Computing Systems

Core-Core Latency

CCX = Core Complex, Preliminary Data;

https://crates.io/crates/core-to-core-latency,

exclusive node access

Core-Core Latency

Depends on the CPU design, not necessarily ARM vs x86

- Monolithic die: traditional
- Multi-die
- Chiplet

What the manufacturer chose and how it's implemented matters

Outline

1 Preliminary Evaluation

2 Literature Review

3 Further Evaluation

Existing Benchmarks

- Mostly focused on the older generation ThunderX2
- Some primary drawbacks
 - \blacktriangleright Narrow vector unit (128-bit) \rightarrow Xeon 9242 has 512-bit vector unit
 - Lower overall performance (25%)
 - Around 10% better performance per joule
 - Highly variable compiler performance
 - ARM compiler is **worse** than GCC!
 - Similar scalability performance to x86

Existing Benchmarks

- One report focusing on Ampere Altra processors
- Mostly focused on GPU accelerated workloads
- CPU Hydrodynamics workload (SPH-EXA2 Sedov-Taylor blast wave explosion)
 - ThunderX2 ARM (2S/64C/256T): 6.7 iter/min (0.10/core)
 - Ampere Altra ARM (1S/80C): 9.9 iter/min (0.12/core)
 - EPYC 7762 x86 (2S/128C/256T): 31.9 iter/min (0.25/core)

Burning Questions

- Is ARM falling behind as the preliminary results suggest?
- What about power consumption?
- Is this down to optimization?

Outline

1 Preliminary Evaluation

2 Literature Review

3 Further Evaluation

Software Evaluation

Portability evaluation targeted

- Optimizations are great
 - ... but not if you have to change your entire workflow
 - ... and not if it takes forever to compile
- > Preliminary testing suggests high degree of application portability
- Benchmark data also suggest that default optimizations may be lacking
- Some programs use hand-tuned assembly / intrinsics for critical paths
- Limitations are self-imposed on portability
 - Compile on intended application toolchain (e.g. gcc/clang + cmake) without significant hand-tuning or knowledge
 - Just adding -02 or -march= is probably fine
 - Switching compilers + compiling subdependencies from source, probably not

Software Tuning

- Optimizing Linpack configuration for high performance
- Use ARM-optimized libraries where **reasonably** possible

Scalability Testing

Due to limited nodes, only scaling to all cores on one node

- $\blacktriangleright~$ 1 core \rightarrow 1 core group \rightarrow 1 CPU \rightarrow N CPUs
- Ampere Altra: $1C \rightarrow 80C$
- ▶ Kunpeng 920: $1C \rightarrow 32C \rightarrow 64C \rightarrow 128C$
- $\blacktriangleright \text{ Xeon 9242: } 1C \rightarrow 24C \rightarrow 48C \rightarrow 96C$

Current Concerns

- Limited software availability on NVIDIA ARM nodes
- Mismatched BLAS, OpenMPI, etc. on different clusters
- Older kernel version on GWDG compute cluster
 - Missing optimizations?
 - Benchmark fairness?
- Getting reliable power consumption data is still an issue

Summary

- ARM is still an interesting HPC architecture
- Preliminary benchmarks showed poor performance, reason unknown
- Some issues getting access to the cluster
- Some time investment needed to get software running well
- Further evaluation will be performed
 - Optimized x86 vs Optimized ARM
 - Scalability Benchmarks
 - Power Consumption

References

 [Elw+22] Wael Elwasif et al. Application Experiences on a GPU-Accelerated Arm-based HPC Testbed. 2022. DOI: 10.48550/ARXIV.2209.09731. URL: https://arxiv.org/abs/2209.09731.
[Man+20] Filippo Mantovani et al. "Performance and energy consumption of HPC workloads on a cluster based on Arm ThunderX2 CPU". In: Future Generation Computer Systems 112 (2020), pp. 800–818. ISSN: 0167-739X. DOI: https://doi.org/10.1016/j.future.2020.06.033. URL: https://www.sciencedirect.com/science/article/pii/S0167739X19309781.