
SH

∞

Seminar Report

Profiling tree species classification with
synthetic data and deep learning

Hauke Kirchner

Supervisor: Dorothea Sommer

March 31, 2023

Abstract
Recent developments in artifical inteligence (AI) (Rombach et al. 2022; OpenAI 2023) were
achieved with increasingly complex models (Schwartz et al. 2019). These achievements
lead to the increasing usage of AI in a broad range of industries and research (Zhang
et al. 2022), which results in high demand for compute power and a growing energy
consumption (Dodge et al. 2022). Especially in environmental research, such as forest
science, sustainability is fundamental, and the emerging use of AI should not lead to the
opposite effect by increasing the researcher’s carbon footprint. Further, most researchers
depend on fast training and inference. For example, the model should predict tomorrow’s
weather before tomorrow. Therefore, the optimization of deep learning models is essential.
The efficient profiling and evaluation of profiling outputs must be done as a first step of
optimization. This project will evaluate tools and metrics for profiling a PyTorch model’s
training process. Here the use case of pre-training the PointNet model (Qi et al. 2016)
with synthetic light detection and ranging (lidar) data for tree species classification will
be used. It will be shown how a simple bottleneck can slow down the training process
by factor 14 and how the profilers can help to identify this bottleneck. Further, standard
profiling metrics for the given example will be shown and discussed.

i

Contents

List of Tables iii

List of Figures iii

List of Listings iii

List of Abbreviations iv

1 Introduction 1

2 Methods 2
2.1 Tree species classification based on synthetic lidar data 2
2.2 Fundamentals of software profiling . 2
2.3 Profiling tools . 3

2.3.1 Overview of profiling tools . 3
2.3.2 TensorBoard . 4
2.3.3 PyTorch - Profiler . 4
2.3.4 Deepspeed - FlopsProfiler . 4

2.4 Experiments . 5

3 Results 6
3.1 Optimization of the data loading process 6
3.2 Effect of the accelerators and profiling tools on the runtime 7
3.3 Results of the profiling tools . 9

3.3.1 TensorBoard . 9
3.3.2 PyTorch - Profiler . 9
3.3.3 DeepSpeed - FlopsProfiler . 12
3.3.4 Usability of the different tools . 14

4 Discussion 14

5 Conclusion 15

References 16

A Code samples A9

ii

List of Tables
1 Overview of performance metrics . 3
2 Overview of profiling tools . 4
3 Overview of all runs . 6

List of Figures
1 Workflow for generating synthetic lidar data 2
2 Overview of the runs . 5
3 Effect of the data loading optimization . 7
4 Runtime of the experiments . 8
5 Runtime of the experiments (GPU-only) 8
6 PyTorch - Profiler: Overview . 10
7 PyTorch - Profiler: Performance Recommendation 10
8 PyTorch - Profiler: Trace View of data input 11
9 PyTorch - Profiler: Trace View of data input for run 18 11
10 TensorBoard - Accuracy and Loss . A1
11 PyTorch - Profiler: Overview - Increased batch size (64) A2
12 PyTorch - Profiler: Overview - Increased batch size (128) A2
13 PyTorch - Profiler: Trace View . A3
14 PyTorch - Profiler: Operator View . A3
15 PyTorch - Profiler: Operator View (CallStack) A4
16 PyTorch - Profiler: GPU Kernel View . A4
17 PyTorch - Profiler: Memory View . A5
18 PyTorch - Profiler: Module View . A5

List of Listings
1 DeepSpeed - FlopProfiler: Summary . 12
2 DeepSpeed - FlopProfiler: Aggregated Profile per GPU 13
3 DeepSpeed - FlopProfiler: Detailed Profile per GPU 13
4 Sacct output . A1
5 DeepSpeed - FlopProfiler: Full output . A9
6 Sacct command . A9
7 Code example for Tensorboard . A9
8 Code example for PyTorch - Profiler . A10
9 Code example for Deepspeed - FLOPSProfiler A10

iii

List of Abbreviations
AI artifical inteligence

API application programming interface

CPU central processing unit

FLOPS floating point operations per second

GPU graphics processing unit

HPC high-performance computing

MACs multiply-accumulate operations

SCC scientific compute cluster

lidar light detection and ranging

iv

Profiling tree species classification with synthetic data and deep learning

1 Introduction
Recent advances in deep learning, such as image (Rombach et al. 2022) and text gen-
eration (OpenAI 2023), lead to an increase in the number of AI publications in the
world (Zhang et al. 2022). Most of the accuracy gains of these models result from increas-
ingly complex models (Schwartz et al. 2019). From 2013 to 2019, the required compute
power for training deep learning models increased by a factor of 300, 000 (Amodei and
Hernandez 2018). This also leads to an increase in required energy and results in signifi-
cant carbon dioxide emissions. Dodge et al. 2022 showed that the training process of a 6
billion parameter transformer model (trained for approximately 13% of the total training
time) consumes ∼ 10M CO2 grams. That is equivalent to a US household’s yearly home
energy demands per year. Further, this massive computing capacity is exclusively acces-
sible by a few organizations, making the developed state-of-the-art models inaccessible to
many researchers. To make AI more environmental-friendly and inclusive, Schwartz et al.
(2019) proposed "Green AI" as an alternative to the accuracy-focused "Red AI". Besides
accuracy as a measurement of performance, "Green AI" includes the cost of this model.

Also, in forest science, deep learning approaches gained popularity for diverse tasks
and data sets (Hamedianfar et al. 2022), such as tree species classification based on lidar
data (Liu et al. 2021, Seidel et al. 2021). Further, network architectures optimized for
point cloud classification and segmentation were proposed (Qi et al. 2016). Often training
data is a bottleneck for the application of neural networks. Especially in the field of
environmental research, collecting data requires substantial effort. Therefore, Helios++
was developed by Esmorís et al. (2022) to generate synthetic lidar data. This synthetic
lidar data can then be used for pre-training a model. In that way, valuable field data
can be used for fine-tuning. As forest science inherently focuses on sustainability, the
application of "Green AI" is obvious.

Here, a PyTorch workflow for tree species classification with PointNet and synthetic
lidar data will be analyzed. Different profiling tools will be evaluated and tested to identify
performance bottlenecks. Therefore, the following research objectives will be considered:

• Identification of profiling tools that can help to optimize an existing PyTorch
workflow.

• As this tool should help scientists, the usibility is highly important. The most
straightforward tool for doing the job is preferred.

• Unlike training benchmark suites like MLPerf, it will not be focused on benchmark-
ing hardware but on optimizing an existing PyTorch workflow.

The code and documents produced during this course can be found in the accompa-
nying GitHub repository1.

1https://github.com/haukekirchner/scap/, accessed on:31.3.2023

Section 1 Hauke Kirchner 1

https://github.com/haukekirchner/scap/

Profiling tree species classification with synthetic data and deep learning

2 Methods
2.1 Tree species classification based on synthetic lidar data

The use case for testing profiling options for PyTorch is lidar-based tree species classi-
fication. Several applications of deep learning approaches for analyzing lidar data were
recently proposed (Qi et al. 2016; Krisanski et al. 2021). As the computation cost for 3D
convolutions is high, analyzing a workflow for lidar data processing is an ideal real-world
example exploring the capabilities of PyTorch profilers.

In the project ForestCare2, a pre-training workflow based on synthetic lidar data was
developed to overcome the lack of available pre-trained neural networks for tree species
classification. A detailed description of this workflow can be found in Figure 1. The code
for pre-training the pointnet model can be found in the accompanying GitHub repository3.

Figure 1: The workflow for generating synthetic lidar data starts with generating tree
models. This is done with the software Arbaro4 (Weber and Penn 1995). Based on these
models, Helios++ (Esmorís et al. 2022) is used to simulate lidar data which is similar
to data capture with the Zenmuse L1 sensor from DJI5. This generated data is used to
pre-train a PointNet model proposed by Qi et al. (2016). The figure is adapted from
Esmorís et al. (2022).

2.2 Fundamentals of software profiling

Software profiling is "a form of dynamic program analysis (as opposed to static code
analysis), is the investigation of a program’s behavior using information gathered as the
program executes" (Wikibooks 2018). Metrics commonly of interest to identify perfor-
mance bottlenecks are the number and elapsed time per function call and the memory
consumption.

2https://hps.vi4io.org/research/projects/forestcare/start, accessed on: 13.03.2023
3https://github.com/haukekirchner/scap/, accessed on: 22.02.2023

Section 2 Hauke Kirchner 2

https://github.com/haukekirchner/scap/

Profiling tree species classification with synthetic data and deep learning

Metrics traditionally used for software profiling are execution time and floating point
operations per second (FLOPS) (Table 1). Execution time is a simple measure that reports
a function call’s total time. FLOPS refers to the number of floating point operations that
can be executed per second and can be used to evaluate the model’s efficiency.

With the advent of graphics processing unit (GPU)’s throughput and multiply-accumulate
operations (MACs) gained importance (Verma and Radhakrishnan 2019). Throughput is
essential as deep learning models need to analyze massive amounts of data to find gen-
eralizable patterns and can report on the model’s speed. Analog to FLOPS MACs do
report on the software’s efficiency. "Most modern hardware architectures use FMA [fused
multiply-add] instructions for operations with tensors. FMA computes a ∗ x + b as one
operation. Roughly GMACs = 0.5 ∗GFLOPs"6.

Further, profiling memory consumption is critical, as deep learning applications depend
on massive amounts of data. Therefore, efficiently using GPU’s internal memory is critical
to the overall performance.

Other important profiling measures in deep learning, which are not considered in
this report, are Time to Accuracy (TTA) and Average Time to Multiple Thresholds
(ATTMT) (Verma and Radhakrishnan 2019). These metrics were out of scope as the
tested tools (Section 2.3.1) do not provide this information. However, setting up a work-
flow to measure these metrics based on the tools tested here is possible by combining
them with early stopping approaches.

metric purpose

Execution time traditionallyFLOPS

Throughput: images
sec with the advent of GPUsMACs

Table 1: Overview of performance metrics that were used for profiling.

2.3 Profiling tools

2.3.1 Overview of profiling tools

Many different profiling tools can be used to gain insights into the PyTorch workflow
presented in Section 2.1. Table 2 lists some of the considered options. General profiling
tools such as Intel’s Vtune7 or the open-source software LIKWID8 can be used to collect
valuable metrics of any software.

However, tools were developed specifically to the needs one needs to profile PyTorch
workflows. One popular tool is the in-build PyTorch profiler, which can be combined
with Tensorboard9. This graphical visualization can be used for beginners and experts
to optimize their workflows, as it provides automatic performance recommendations and
detailed views such as the call stack or the trace view. Another tool specifically designed

6https://github.com/sovrasov/flops-counter.pytorch/issues/16#issuecomment-518585837 ,
accessed on: 22.11.2022

7https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html,
accessed on: 22.11.2022

8https://github.com/RRZE-HPC/likwid, accessed on: 22.11.2022
9https://www.tensorflow.org/tensorboard/, accessed on: 16.03.2023

Section 2 Hauke Kirchner 3

https://github.com/sovrasov/flops-counter.pytorch/issues/16#issuecomment-518585837
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://github.com/RRZE-HPC/likwid
https://www.tensorflow.org/tensorboard/

Profiling tree species classification with synthetic data and deep learning

for PyTorch is DeepSpeed10. The FlopsProfiler was used here, as the Pytorch Profiler
lacks the option to analyze FLOPS.

General profiling tools could not provide automatic recommendations or useful visu-
alizations to highlight critical aspects and bottlenecks, as they do not have insights into
PyTorch. Consequently, more expert knowledge is required to use tools like LIKWID
or Vtune. As this project’s research goal was identifying easy-to-use tools, this report
focuses on the PyTorch Profiler and DeepSpeed’s FlopsProfiler.

tool metrics scope

PyTorch Profiler With TensorBoard performance metrics
(e.g. time, memory) PyTorch

Deepspeed/FlopsProfiler FLOPS

Vtune general
performance metrics

Intel-only
likwid general

Table 2: Ovierview of tools used for profiling.

2.3.2 TensorBoard

Tensorboard is "TensorFlow’s visualization toolkit"11 and is commonly used to visualize
the loss and accuracy during the training process of a neural network. For most people
starting with deep learning, Tensorboard is one of the first tools to get insights into
the deep learning workflow. Unlike the name implies, this tool is not limited to using
TensorFlow but can also be used with PyTorch.

2.3.3 PyTorch - Profiler

A more advanced option to get insights into a PyTorch Workflow is the PyTorch - Profiler,
which is "a simple profiler API that is useful when user needs to determine the most
expensive operators in the model"12. With the help of this tool, one can collect general
performance metrics, identify expensive operators, and track kernel activity. The PyTorch
- Profiler can be used with Tensorboard to visualize the profiling outputs13.

2.3.4 Deepspeed - FlopsProfiler

DeepSpeed is a collection of tools that can help to optimize deep learning workflows14.
This project’s primary interest was on the FlopsProfiler15. As the name implies, the
FlopsProfiler can measure the efficiency (FLOPS) for both the training and inference of
a deep learning model. Further, it can profile the model’s speed (latency, throughput).
Contrary to the PyTorch Profiler, the output is text-based without a visualization tool.

10https://www.deepspeed.ai/tutorials/flops-profiler/, accessed on: 16.03.2023
11https://www.tensorflow.org/tensorboard, accessed on: 20.3.2023
12https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html, accessed on:

20.3.2023
13https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html, ac-

cessed on: 20.3.2023
14https://www.deepspeed.ai/, accessed on: 20.3.2023
15https://www.deepspeed.ai/tutorials/flops-profiler/, accessed on: 20.3.2023

Section 2 Hauke Kirchner 4

https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html
https://www.deepspeed.ai/tutorials/flops-profiler/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://github.com/RRZE-HPC/likwid
https://www.deepspeed.ai/tutorials/flops-profiler/
https://www.tensorflow.org/tensorboard
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html
https://www.deepspeed.ai/
https://www.deepspeed.ai/tutorials/flops-profiler/

Profiling tree species classification with synthetic data and deep learning

2.4 Experiments

For the design of the experiments, two main questions were considered. What is the
benefit of using different accelerators? What is the cost/overhead of using profilers?

Therefore, the three presented tools (Section 2.3.1) were tested on all available GPUs
of the scientific compute cluster (SCC)16. The main focus is on comparing the PyTorch -
Profiler and DeepSpeed’s Flops Profiler, as these tools are promoted primarily to optimize
the performance of deep learning workflows. In addition, Tensorboard was included to
analyze the overhead of this relatively simple and commonly used tool and to have a
baseline for simple profiling tools.

Figure 2: In total, 16 different runs were planned by testing all possible combinations of
tools with available GPUs and one central processing unit (CPU). Four more runs were
performed by adding experiments according to the data loader process and different batch
sizes (Table 3).

Based on this experiment design, 16 different runs were executed (Table 3). Two more
runs were included to test the performance recommendations of the PyTorch Profiler (runs
17 and 20). Another two runs show the effect of an unoptimized data loading process,
where the raw point cloud is loaded every time, and the point sampling process happens
afterward (runs 18 and 19) (more details can be found in Section 3.1).

16https://www.gwdg.de/web/guest/hpc-on-campus/scc

Section 2 Hauke Kirchner 5

https://www.gwdg.de/web/guest/hpc-on-campus/scc

Profiling tree species classification with synthetic data and deep learning

run node tool job_id is_valid experiment

1 scc_cpu no-tool 14629421 TRUE
2 scc_cpu tensorboard 14629426 TRUE
3 scc_cpu profiler-torch 14650740 TRUE
4 scc_cpu deepspeed 14617521 FALSE
5 scc_gtx1080 no-tool 14619617 TRUE
6 scc_gtx1080 tensorboard 14615343 TRUE
7 scc_gtx1080 profiler-torch 14650076 TRUE
8 scc_gtx1080 deepspeed 14615344 TRUE
9 scc_rtx5000 no-tool 14619618 TRUE
10 scc_rtx5000 tensorboard 14617172 TRUE
11 scc_rtx5000 profiler-torch 14650079 TRUE
12 scc_rtx5000 deepspeed 14617171 TRUE
13 scc_v100 no-tool 14619619 TRUE
14 scc_v100 tensorboard 14617203 TRUE
15 scc_v100 profiler-torch 14650080 TRUE
16 scc_v100 deepspeed 14617202 TRUE
17 scc_gtx1080 profiler-torch 14650758 TRUE batch-size-64
18 scc_gtx1080 profiler-torch 14650750 TRUE sample-points
19 scc_cpu profiler-torch 14657599 TRUE sample-points
20 scc_gtx1080 profiler-torch 14650759 TRUE batch-size-128

Table 3: In total, twenty different experiments were performed. The first 16 experiments
are directly derived from the experiment design presented in Figure 2. Experiments 18
and 19 were preliminary work to optimize the data loading process before all experiments
were performed (Section 3.1). Experiments 17 and 20 were done based on the PyTorch
- Profiler’s performance recommendations(Section 3.3.2).

3 Results
3.1 Optimization of the data loading process

As we were aware that due to the massive amount of data we want to process, the data
loading process is a bottleneck, it was decided to optimize this aspect before doing all
remainig runs presented in Section 2.4. This way, it was possible to run more experiments
without wasting valuable GPU hours for all users on the SCC. The idea is to speed up the
data-loading process by migrating the point sampling to a pre-processing workflow. Point
sampling means selecting the number of points per tree the neural network architecture
pointnet expects as input. Thus, it is possible to reduce the data size by a factor of
1714.55, from 931GB to 543MB.

As the data loading process was the major bottleneck, reducing data that needs to
be loaded during the training process significantly speeds up the whole training workflow
(Figure 3). For example, while it still took 4hours to train the network on the GTX 1080
in the unoptimized version, it only took 16minutes for the optimized version. Similarly,
the training process on the CPU was decreased from 14 hours and 15 minutes to 2 hours
and 49 minutes. This means a speed up for the CPU by a factor of 5 and for the GPU

Section 3 Hauke Kirchner 6

Profiling tree species classification with synthetic data and deep learning

(GTX 1080) a speed up by a factor of 14.
So far, the optimization problem has been solved by expert knowledge about the

workflow and the data. Simultaneously the PyTorch - Profiler was tested to identify the
bottleneck in the data loader. Unfortunately, the overview did not help identify the issue.
Only an analysis of the trace view revealed that the function for reading the data takes
up a large part of the time and thus slows down the workflow (Figure 8). More details
on the PyTorch - Profiler can be found in Section 3.3.2.

Figure 3: By migrating the point sampling process from the data loader to a pre-processing
step, the elapsed time for the training runs was decreased significantly.

3.2 Effect of the accelerators and profiling tools on the runtime

The simplest method to get a first estimate for the performance of all different runs is to
look at the elapsed time for each analysis. On the SCC jobs are executed via SLURM17

which provides the tool sacct18 for analyzing accounting information, such as elapsed
time of a job. The raw output and the command to get this information can be found in
the Appendix (Listing 4, Listing 6).

Most apparent is the difference between runs on the CPU and the GPUs (Figure 4).
The mean runtime for jobs on CPUs is 161.16 minutes, and for runs on the GPUs, 8.55
minutes. Further, it is notable that DeepSpeed is not compatible with CPUs. A more
detailed view on runs using the GPUs (Figure 5) shows that the GTX 1080 node is slower
(mean runtime of 13 minutes) than the RTX 5000 node (mean runtime of 7.65 minutes).
The fastest node is the V100, with a mean runtime of 5.02 minutes.

No clear trend can be observed regarding the overhead of the different profiling tools.
Generally, the PyTorch - Profiler creates the highest overhead. However, on nodes GTX

17https://slurm.schedmd.com/, accessed on: 21.3.2023
18https://slurm.schedmd.com/sacct.html, accessed on: 21.3.2023

Section 3 Hauke Kirchner 7

https://slurm.schedmd.com/
https://slurm.schedmd.com/sacct.html

Profiling tree species classification with synthetic data and deep learning

1080 and RTX 5000, runs using DeepSpeed’s FlopsProfiler or TensorBoard are faster than
baseline runs without any tools.

Figure 4: The runtime of all runs testing the combination of tools and GPU and CPU
partitions (Figure 2).

Figure 5: The runtime of all runs testing the combination of tools and GPU partitions -
excluding CPU partitions (Figure 2).

Section 3 Hauke Kirchner 8

Profiling tree species classification with synthetic data and deep learning

3.3 Results of the profiling tools

Following the results and outputs from all tested profilers are described individually.

3.3.1 TensorBoard

The minimal example for using a TensorBoard to keep track of the model’s training
process provides information about the model’s accuracy, the loss per epoch, and the
loss per minibatch (Figure 10). It can be seen that over the training time, the accuracy
constantly increases, and the loss decreases.

3.3.2 PyTorch - Profiler

When visualizing the profiling results of the PyTorch Profiler with Tensorboard, the first
view visible is the "Overview". This view is one of six different views, showing different
details of the profiler output. If not labeled differently here, the output of the PyTorch
- Profiler run on the GTX 1080 with optimized batch size of 64 (run 17 Table 3) will be
discussed.

The "Overview" (Figure 6) gives "a high-level summary of the model performance"19.
It can be subdivided into five different panes. On top, there are the panes "Configura-
tion", "GPU Summary", and "Execution Summary". In "Configuration", information
about the number(s) of workers and device type (CPU or GPU) are listed. The "GPU
Summary" provides information about the GPU utilization by showing different metri-
ces20, such as "GPU Utilization" and the "Estimated Stream Multiprocessor Efficiency".
Details on the metrics can be found in the corresponding Github repository21. Here the
metrics indicate that the utilization of the GPU is relatively low for the tested workflow.
The same can be seen in the "Execution Summary", where the time spent on the kernel
is low. Here, the profiler misses detecting the DataLoader operations and sums up most
of the time spent for the workflow in the category "Other". The "Step Time Break-
down" visualizes the same information as the "Execution Summary" per step. However,
in the tested example, just the first step was visualized. The last pane, "Performance
Recommendation", provides hints for optimizing the PyTorch workflow. Here, the pro-
filer detected a low GPU utilization where a common strategy is to increase the batch
size. Testing this recommendation showed that increasing the batch size from 32 to 64
improved the GPU utilization by 10% (Figure 7). As the utilization is still low, the
performance recommendation remains the same. Nevertheless, increasing the batch size
to 64 lead to a decrease in GPU utilization.

19https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html, ac-
cessed on: 20.3.2023

20https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html, ac-
cessed on: 22.3.2023

21https://github.com/pytorch/kineto/blob/main/tb_plugin/docs/gpu_utilization.md, ac-
cessed on: 27.22023

Section 3 Hauke Kirchner 9

https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html
https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html
https://github.com/pytorch/kineto/blob/main/tb_plugin/docs/gpu_utilization.md

Profiling tree species classification with synthetic data and deep learning

Figure 6: Visualizing the profiling results of the PyTorch - Profiler with Tensorboard
provides an overview page. This page summarizes important metrics of the workflow,
such as GPU utilization. Further, it offers performance recommendations on how to
adress potential bottlenecks. This "Overview" shows the result for run 17 in Table 3.

Figure 7: For the tested training workflow the performance recommendations of the Py-
Torch - Profiler suggest to increase the batch size. The effect of the batch size on the GPU
utilization can be seen for a batch size of 32 (run 7 in Table 3), 64 (run 17 in Table 3),
128 (run 20 in Table 3). The full view for these experiments can be seen in Figure 6,
Figure 11, and Figure 12.

The "Trace View" of the PyTorch - Profiler shows the usage of operators and GPU

Section 3 Hauke Kirchner 10

Profiling tree species classification with synthetic data and deep learning

kernels on a timeline (Figure 13). By clicking on operators, details, such as start time
or end time, can be seen (Figure 8). Further, this view provides insights into operator
connections ("incoming flow"). As already stated in the "Overview", it can be seen that
the GPU is most of the time waiting for other operators on the CPU to finish. That way,
a significant part of the GPU time is wasted. The operator identified as a bottleneck
is the data reading operation. This is even worse for the not optimized workflow (run
18 Table 3) where the raw point cloud is loaded and afterward, the point sampling is done
(Figure 9). For one reading operation, the optimized data loading strategy takes 3, 023
milliseconds, and the unoptimized variation requires 58, 064 milliseconds.

Figure 8: The "Trace View" provides insights into the operators and GPU kernels over
time. Here the read operation of the lidar data based on pre-sampled point clouds is
analyzed.

Figure 9: The "Trace View" of the unoptimized workflow (run 18 Table 3), loading the
raw lidar data, shows that a significant part of the time is spend on the reading opertions.

Further views provided by the PyTorch - Profiler are "Operator", "GPU Kernel",
"Memory", and "Module". The "Operator" view provides insights into the profiling
results of PyTorch’s operators (Figure 14). Self-time refers to the duration of the operator
without child operators, which are included in the total time. For example, it can be seen

Section 3 Hauke Kirchner 11

Profiling tree species classification with synthetic data and deep learning

that the operator aten::copy_ is expensive. Also, the View CallStack can be shown in
this view (Figure 15). The "GPU Kernel" view shows for all kernels the time that was
spent on the GPU (Figure 16). More information about the metrics used in this view
can be found on the official tutorials website22. The "Memory" view gives information
about memory usages, such as allocation and release events. This view consists of a
"memory curve graph, memory events table, and memory statistics table"23 (Figure 17).
The "Module" view shows profiling results (occurrences, time) per PyTorch module, such
as the whole PointNet or the submodule Transform (Figure 18).

3.3.3 DeepSpeed - FlopsProfiler

The output of the DeepSpeed - Flops Profiler is a textfile (Listing 5), which provides
metrics on different levels of the network. The first part summarizes metrics for the
whole neural network, such as the model parameters, MACs, number of floating-point
operations (flops), floating-point operations per second (FLOPS), and latency. Precise
definitions of these metrics can be found in the output file (Listing 5). For this example
run (run 8 Table 3), a total of 14.07 GMACs (29.04 Gflops) was measured. Dividing this
by the forward propagation latency shows that for the whole model, the floating-point
operations per second are 349.1 GFLOPS.

2 Profile Summary at step 5:
3 Notations:
4 data parallel size (dp_size), model parallel size(mp_size),
5 number of parameters (params), number of multiply-accumulate

operations(MACs),↪→

6 number of floating-point operations (flops), floating-point operations per
second (FLOPS),↪→

7 fwd latency (forward propagation latency), bwd latency (backward propagation
latency),↪→

8 step (weights update latency), iter latency (sum of fwd, bwd and step
latency)↪→

9

10 params per gpu: 3.46 M
11 params of model = params per GPU * mp_size: 3.46 M
12 fwd MACs per GPU: 14.07 GMACs
13 fwd flops per GPU: 29.04 G
14 fwd flops of model = fwd flops per GPU * mp_size: 29.04 G
15 fwd latency: 83.19 ms
16 fwd FLOPS per GPU = fwd flops per GPU / fwd latency: 349.1 GFLOPS

Listing 1: DeepSpeed - FlopProfiler: Summary

The second part of the DeepSpeed - FlopsProfiler’s output (Listing 2) reports on the
top modules in different depths of the model. Top modules are defined based on the
number of parameters, MACs, and forward propagation latency. In-depth 0 the whole

22https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html, ac-
cessed on: 20.3.2023

23https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html, ac-
cessed on: 20.3.2023

Section 3 Hauke Kirchner 12

https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html
https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html

Profiling tree species classification with synthetic data and deep learning

PointNet model is considered so that the profiling results are the same as in the first part
of the output (Listing 1). In depth 1 it can be seen that most of the resources are spent
on the Transform module. For example, 14.05 GMACs out of 14.07 GMACs are spent on
this module. The top module in depth 2 is the Tnet with 9.34 GMACs.

19 Top 1 modules in terms of params, MACs or fwd latency at different model
depths:↪→

20 depth 0:
21 params - {'PointNet': '3.46 M'}
22 MACs - {'PointNet': '14.07 GMACs'}
23 fwd latency - {'PointNet': '83.19 ms'}
24 depth 1:
25 params - {'Transform': '2.8 M'}
26 MACs - {'Transform': '14.05 GMACs'}
27 fwd latency - {'Transform': '82.08 ms'}
28 depth 2:
29 params - {'Tnet': '2.66 M'}
30 MACs - {'Tnet': '9.34 GMACs'}
31 fwd latency - {'Tnet': '58.43 ms'}

Listing 2: DeepSpeed - FlopProfiler: Aggregated Profile per GPU

In the detailed profile, the metrics are reported for all submodules of the model (List-
ing 3). Besides the metrics given for higher-level summarization before, e.g., metrics for
the whole PointNet, all metrics for submodules are listed. The order of the metrics is
params, percentage of total params, MACs, percentage of total MACs, fwd latency, per-
centage of total fwd latency, fwd FLOPS (Listing 5). For example, it can be seen that
the second convolution of the Tnet is a 1D convolution24 with 268.44 MMACs.

41 PointNet(
42 3.46 M, 100.00% Params, 14.07 GMACs, 100.00% MACs, 83.19 ms, 100.00%

latency, 349.1 GFLOPS,↪→

43 (transform): Transform(
44 2.8 M, 80.94% Params, 14.05 GMACs, 99.85% MACs, 82.08 ms, 98.67% latency,

353.28 GFLOPS,↪→

45 (input_transform): Tnet(
46 803.08 k, 23.19% Params, 4.59 GMACs, 32.63% MACs, 27.06 ms, 32.53%

latency, 350.87 GFLOPS,↪→

47 (conv1): Conv1d(256, 0.01% Params, 6.29 MMACs, 0.04% MACs, 313.28 us,
0.38% latency, 46.86 GFLOPS, 3, 64, kernel_size=(1,), stride=(1,))↪→

48 (conv2): Conv1d(8.32 k, 0.24% Params, 268.44 MMACs, 1.91% MACs, 374.32
us, 0.45% latency, 1.45 TFLOPS, 64, 128, kernel_size=(1,),
stride=(1,))

↪→

↪→

Listing 3: DeepSpeed - FlopProfiler: Detailed Profile per GPU

24https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html, accessed on: 23.3.2023

Section 3 Hauke Kirchner 13

https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html

Profiling tree species classification with synthetic data and deep learning

3.3.4 Usability of the different tools

The tools provide different application programming interface (API)s, such as a context
manager, a decorater, or a Python module25. For example, the DeepSpeed Flops Profiler
can be activated in DeepSpeed’s runtime, which would not require to adapt the Python
code at all. However, for this project all tools were used as Python packages. This requires
to insert a few lines of code. The important parts of the code and their placement in the
training code is shown in Listing 7, Listing 8, and Listing 9.

4 Discussion
Generally, the used profilers, PyTorch Profiler and DeepSpeed’s FlopsProfiler, provide
interesting and valuable insights into the training process of a PyTorch model, which
can be used for optimization purposes. Nevertheless, also with the beginner-friendly
TensorBoard approach, tracking the accuracy and loss, details of the training process can
be analyzed.

The data loading process was the most apparent bottleneck for the PointNet workflow
analyzed for this report. This bottleneck could be seen in the PyTorch Profiler’s logging
output or using expert knowledge about the size of the input data and the point data
sampling technique within the data loader. In Figure 3, two essential aspects for opti-
mizing the PointNet workflow can be seen. First, the speedup for each compute node by
migrating the point sampling process to a pre-processing step of the workflow. Second,
there is a substantial difference between the runtimes of the CPU and GPU. Here it
can be seen how important the use of accelerators, such as GPUs, is for training deep
neural networks. Further, Figure 5 shows the performance gain one can get by using
faster GPU nodes on the cluster and the compute overhead each tool is generating due to
its measurement activities and the writing of logging files. The overhead created by the
PyTorch Profiler seems to be the highest. Interestingly, the runs without any tool on the
GTX 1080 and RTX 5000 are slower than those profiled with DeepSpeed’s FlopsProfiler
and TensorBoard. However, the mean of several identical runs would be required for a
reliable performance comparison. Additionally, a performance comparison between nodes
on the SCC is more complicated because the compute nodes are shared resources, and
computations by other users could affect the measurements.

An easy starting point for profiling the training process of a PyTorch model is Ten-
sorBoard. Most will be familiar with this tool as it is commonly used in beginner intro-
ductions to deep learning. In addition, the user-friendly visualization as a dashboard and
the interactivity increases the accessibility. For example, the loss and accuracy curves
shown in TensorBoard make overfitting visible, and the training process could be stopped
manually or by early stopping rules. Additionally, checkpoints can prevent the re-training
of models in such a case. These easy strategies for reducing the cost of training neural
networks are also recommended by the authors of the paper Green AI (Schwartz et al.
2019) in their interview at the Practical AI podcast26.

Also, the PyTorch Profiler profits from intuitive visualizations in Tensorboard. Es-
pecially the Overview page, with its performance recommendations, can be handy for

25https://www.alcf.anl.gov/sites/default/files/2022-08/Profiling.pdf, accessed on:
23.3.2023

26https://changelog.com/practicalai/124, accessed on: 30.3.2023

Section 4 Hauke Kirchner 14

https://www.alcf.anl.gov/sites/default/files/2022-08/Profiling.pdf
https://changelog.com/practicalai/124

Profiling tree species classification with synthetic data and deep learning

beginners. Nevertheless, the effect of these recommendations should still be checked, as
shown in Figure 7. Further, the Trace view provided essential insights into the training
workflow, highlighting the most resource intense operators. This helped identify the data
reading as a bottleneck of the workflow. More complicated is the evaluation of the other
views, which report on the model’s performance on a low level and sometimes require
knowledge about the implementation of PyTorch and the model’s architecture to make
good use of it.

As the PyTorch Profiler lacks the feature to measure FLOPS, DeepSpeed’s FlopsPro-
filer was additionally tested. The text-based logging file is easy to interpret for high-level
summarizations of the model’s performance (Listing 5). The "Detailed Profile per GPU"
is less intuitive, which includes the measurements for all submodules in PyTorch. How-
ever, the "Aggregated Profile per GPU" already highlights the most expensive modules
in different depths of the model. The analysis of the details view can then be limited to
those modules. Compared to example outputs in the official tutorial27, some metrics are
unfortunately not reported, such as the model’s throughput. Further, there were issues
about the compatibility with 3D convoultions28, which shows the importance of testing
these tools with models one is interested in and not only the provided examples.

All tested tools were easy to use, and the effort to get them running was relatively
low. However, they have some bugs or unexpected behaviors (just one step in the PyTorch
Profiler, missing metrics in the FlopsProfiler), which could be reasoned by a wrong usage
or actual bugs in the software. Unfortunately, figuring this out was out of the scope of
this report.

5 Conclusion
It is well known that profiling tools help to identify bottlenecks in software. The same was
proven true for the tested tools in profiling the training process of PyTorch models. By
identifying the major bottleneck in the data loading process, it was possible to optimize
this step easily and to achieve a speed up by a factor of 14 on the GTX 1080. Achieving
higher performance requires substantial expert knowledge of PyTorch and the network
architecture. This can be both, a barrier for practitioners or a motivation to learn more
about the technical backgrounds. Because of the given workflow we were interested in,
the focus was on the training process. However, inference can also be measured with
these tools, and due to the potentially higher number of inference runs, this can be even
more important in a real-world example. Further, the DeepSpeed framework provides
many more options for optimizing PyTorch workflows, which are very interesting to test
in future projects.

27https://www.deepspeed.ai/tutorials/flops-profiler/, accessed on: 24.3.2023
28https://github.com/microsoft/DeepSpeed/issues/1467, accessed on: 24.3.2023

Section 5 Hauke Kirchner 15

https://www.deepspeed.ai/tutorials/flops-profiler/
https://github.com/microsoft/DeepSpeed/issues/1467

Profiling tree species classification with synthetic data and deep learning

References
Amodei, Dario and Danny Hernandez (2018). Introduction to Software Engineering —

Wikibooks, The Free Textbook Project. [Online; accessed 30-March-2023]. url: https:
//openai.com/research/ai-and-compute.

Dodge, Jesse et al. (2022). Measuring the Carbon Intensity of AI in Cloud Instances. doi:
10.48550/ARXIV.2206.05229. url: https://arxiv.org/abs/2206.05229.

Esmorís, Alberto M. et al. (2022). “Virtual LiDAR Simulation as a High Performance
Computing Challenge: Toward HPC HELIOS++”. In: IEEE Access 10, pp. 105052–
105073. doi: 10.1109/ACCESS.2022.3211072.

Hamedianfar, Alireza et al. (Feb. 2022). “Deep learning for forest inventory and planning:
a critical review on the remote sensing approaches so far and prospects for further
applications”. In: Forestry: An International Journal of Forest Research 95.4, pp. 451–
465. issn: 0015-752X. doi: 10.1093/forestry/cpac002. eprint: https://academic.
oup.com/forestry/article-pdf/95/4/451/45293980/cpac002.pdf. url: https:
//doi.org/10.1093/forestry/cpac002.

Krisanski, Sean et al. (2021). “Sensor Agnostic Semantic Segmentation of Structurally
Diverse and Complex Forest Point Clouds Using Deep Learning”. In: Remote Sensing
13.8. issn: 2072-4292. doi: 10.3390/rs13081413. url: https://www.mdpi.com/
2072-4292/13/8/1413.

Liu, Maohua et al. (2021). “Tree species classification of LiDAR data based on 3D deep
learning”. In: Measurement 177, p. 109301. issn: 0263-2241. doi: https://doi.org/
10.1016/j.measurement.2021.109301. url: https://www.sciencedirect.com/
science/article/pii/S0263224121003043.

OpenAI (2023). GPT-4 Technical Report. arXiv: 2303.08774 [cs.CL].
Qi, Charles Ruizhongtai et al. (2016). “PointNet: Deep Learning on Point Sets for 3D

Classification and Segmentation”. In: CoRR abs/1612.00593. arXiv: 1612.00593. url:
http://arxiv.org/abs/1612.00593.

Rombach, Robin et al. (2022). “High-Resolution Image Synthesis with Latent Diffusion
Models”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). url: https://github.com/CompVis/latent-diffusionhttps:
//arxiv.org/abs/2112.10752.

Schwartz, Roy et al. (2019). “Green AI”. In: CoRR abs/1907.10597. arXiv: 1907.10597.
url: http://arxiv.org/abs/1907.10597.

Seidel, Dominik et al. (2021). “Predicting Tree Species From 3D Laser Scanning Point
Clouds Using Deep Learning”. In: Frontiers in Plant Science 12. issn: 1664-462X.
doi: 10.3389/fpls.2021.635440. url: https://www.frontiersin.org/articles/
10.3389/fpls.2021.635440.

Verma, Snehil and Ramesh Radhakrishnan (2019). METRICS FOR MACHINE LEARN-
ING WORKLOAD BENCHMARKING. Available online: https://snehilverma41.
github.io/Metrics_ML_FastPath19.pdf (Accessed on: 22.02.2023).

Weber, Jason and Joseph Penn (1995). “Creation and Rendering of Realistic Trees”. In:
Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’95. New York, NY, USA: Association for Computing Ma-
chinery, pp. 119–128. isbn: 0897917014. doi: 10.1145/218380.218427. url: https:
//doi.org/10.1145/218380.218427.

Section 5 Hauke Kirchner 16

https://openai.com/research/ai-and-compute
https://openai.com/research/ai-and-compute
https://doi.org/10.48550/ARXIV.2206.05229
https://arxiv.org/abs/2206.05229
https://doi.org/10.1109/ACCESS.2022.3211072
https://doi.org/10.1093/forestry/cpac002
https://academic.oup.com/forestry/article-pdf/95/4/451/45293980/cpac002.pdf
https://academic.oup.com/forestry/article-pdf/95/4/451/45293980/cpac002.pdf
https://doi.org/10.1093/forestry/cpac002
https://doi.org/10.1093/forestry/cpac002
https://doi.org/10.3390/rs13081413
https://www.mdpi.com/2072-4292/13/8/1413
https://www.mdpi.com/2072-4292/13/8/1413
https://doi.org/https://doi.org/10.1016/j.measurement.2021.109301
https://doi.org/https://doi.org/10.1016/j.measurement.2021.109301
https://www.sciencedirect.com/science/article/pii/S0263224121003043
https://www.sciencedirect.com/science/article/pii/S0263224121003043
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1612.00593
https://github.com/CompVis/latent-diffusionhttps://arxiv.org/abs/2112.10752
https://github.com/CompVis/latent-diffusionhttps://arxiv.org/abs/2112.10752
https://arxiv.org/abs/1907.10597
http://arxiv.org/abs/1907.10597
https://doi.org/10.3389/fpls.2021.635440
https://www.frontiersin.org/articles/10.3389/fpls.2021.635440
https://www.frontiersin.org/articles/10.3389/fpls.2021.635440
https://snehilverma41.github.io/Metrics_ML_FastPath19.pdf
https://snehilverma41.github.io/Metrics_ML_FastPath19.pdf
https://doi.org/10.1145/218380.218427
https://doi.org/10.1145/218380.218427
https://doi.org/10.1145/218380.218427

Profiling tree species classification with synthetic data and deep learning

Wikibooks (2018). Introduction to Software Engineering — Wikibooks, The Free Textbook
Project. [Online; accessed 16-March-2023]. url: https://en.wikibooks.org/w/
index.php?title=Introduction_to_Software_Engineering&oldid=3457910.

Zhang, Daniel et al. (2022). The AI Index 2022 Annual Report. arXiv: 2205 . 03468
[cs.AI].

Section Hauke Kirchner 17

https://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering&oldid=3457910
https://en.wikibooks.org/w/index.php?title=Introduction_to_Software_Engineering&oldid=3457910
https://arxiv.org/abs/2205.03468
https://arxiv.org/abs/2205.03468

Profiling tree species classification with synthetic data and deep learning

1 JobID|Elapsed
2 14615343|00:11:10
3 14615344|00:11:22
4 14617171|00:06:28
5 14617172|00:06:22
6 14617202|00:04:24
7 14617203|00:04:19
8 14617521|00:01:40
9 14618941|00:20:02

10 14619617|00:13:25
11 14619618|00:08:40
12 14619619|00:04:06
13 14629421|02:37:14
14 14629426|02:36:55
15 14650076|00:16:03
16 14650079|00:09:05
17 14650080|00:07:15
18 14650740|02:49:19
19 14650750|04:00:18
20 14650758|00:14:47
21 14650759|00:15:11
22 14657599|14:15:29

Listing 4: Output produced by Listing 4, which provides the elapsed time for each job on
the SCC.

Figure 10: TensorBoard - Accuracy and Loss for run 6 on the GTX 1080 (Table 3)

Section Hauke Kirchner A1

Profiling tree species classification with synthetic data and deep learning

Figure 11: PyTorch - Profiler: Overview - Increased batch size (64)

Figure 12: PyTorch - Profiler: Overview - Increased batch size (128)

Section Hauke Kirchner A2

Profiling tree species classification with synthetic data and deep learning

Figure 13: PyTorch - Profiler: Trace View

Figure 14: PyTorch - Profiler: Operator View

Section Hauke Kirchner A3

Profiling tree species classification with synthetic data and deep learning

Figure 15: PyTorch - Profiler: Operator View (CallStack)

Figure 16: PyTorch - Profiler: GPU Kernel View

Section Hauke Kirchner A4

Profiling tree species classification with synthetic data and deep learning

Figure 17: PyTorch - Profiler: Memory View

Figure 18: PyTorch - Profiler: Module View

1 -------------------------- DeepSpeed Flops Profiler
--------------------------↪→

2 Profile Summary at step 5:
3 Notations:
4 data parallel size (dp_size), model parallel size(mp_size),
5 number of parameters (params), number of multiply-accumulate

operations(MACs),↪→

6 number of floating-point operations (flops), floating-point operations per
second (FLOPS),↪→

7 fwd latency (forward propagation latency), bwd latency (backward propagation
latency),↪→

Section Hauke Kirchner A5

Profiling tree species classification with synthetic data and deep learning

8 step (weights update latency), iter latency (sum of fwd, bwd and step
latency)↪→

9

10 params per gpu: 3.46 M
11 params of model = params per GPU * mp_size: 3.46 M
12 fwd MACs per GPU: 14.07 GMACs
13 fwd flops per GPU: 29.04 G
14 fwd flops of model = fwd flops per GPU * mp_size: 29.04 G
15 fwd latency: 83.19 ms
16 fwd FLOPS per GPU = fwd flops per GPU / fwd latency: 349.1 GFLOPS
17

18 ----------------------------- Aggregated Profile per GPU
-----------------------------↪→

19 Top 1 modules in terms of params, MACs or fwd latency at different model
depths:↪→

20 depth 0:
21 params - {'PointNet': '3.46 M'}
22 MACs - {'PointNet': '14.07 GMACs'}
23 fwd latency - {'PointNet': '83.19 ms'}
24 depth 1:
25 params - {'Transform': '2.8 M'}
26 MACs - {'Transform': '14.05 GMACs'}
27 fwd latency - {'Transform': '82.08 ms'}
28 depth 2:
29 params - {'Tnet': '2.66 M'}
30 MACs - {'Tnet': '9.34 GMACs'}
31 fwd latency - {'Tnet': '58.43 ms'}
32

33 ------------------------------ Detailed Profile per GPU
------------------------------↪→

34 Each module profile is listed after its name in the following order:
35 params, percentage of total params, MACs, percentage of total MACs, fwd

latency, percentage of total fwd latency, fwd FLOPS↪→

36

37 Note: 1. A module can have torch.nn.module or torch.nn.functional to compute
logits (e.g. CrossEntropyLoss). They are not counted as submodules, thus
not to be printed out. However they make up the difference between a
parent's MACs (or latency) and the sum of its submodules'.

↪→

↪→

↪→

38 2. Number of floating-point operations is a theoretical estimation, thus
FLOPS computed using that could be larger than the maximum system
throughput.

↪→

↪→

39 3. The fwd latency listed in the top module's profile is directly captured at
the module forward function in PyTorch, thus it's less than the fwd
latency shown above which is captured in DeepSpeed.

↪→

↪→

40

41 PointNet(
42 3.46 M, 100.00% Params, 14.07 GMACs, 100.00% MACs, 83.19 ms, 100.00%

latency, 349.1 GFLOPS,↪→

43 (transform): Transform(
44 2.8 M, 80.94% Params, 14.05 GMACs, 99.85% MACs, 82.08 ms, 98.67% latency,

353.28 GFLOPS,↪→

Section Hauke Kirchner A6

Profiling tree species classification with synthetic data and deep learning

45 (input_transform): Tnet(
46 803.08 k, 23.19% Params, 4.59 GMACs, 32.63% MACs, 27.06 ms, 32.53%

latency, 350.87 GFLOPS,↪→

47 (conv1): Conv1d(256, 0.01% Params, 6.29 MMACs, 0.04% MACs, 313.28 us,
0.38% latency, 46.86 GFLOPS, 3, 64, kernel_size=(1,), stride=(1,))↪→

48 (conv2): Conv1d(8.32 k, 0.24% Params, 268.44 MMACs, 1.91% MACs, 374.32
us, 0.45% latency, 1.45 TFLOPS, 64, 128, kernel_size=(1,),
stride=(1,))

↪→

↪→

49 (conv3): Conv1d(132.1 k, 3.81% Params, 4.29 GMACs, 30.53% MACs, 2.78
ms, 3.34% latency, 3.1 TFLOPS, 128, 1024, kernel_size=(1,),
stride=(1,))

↪→

↪→

50 (fc1): Linear(524.8 k, 15.15% Params, 16.78 MMACs, 0.12% MACs, 124.45
us, 0.15% latency, 269.61 GFLOPS, in_features=1024,
out_features=512, bias=True)

↪→

↪→

51 (fc2): Linear(131.33 k, 3.79% Params, 4.19 MMACs, 0.03% MACs, 92.27 us,
0.11% latency, 90.92 GFLOPS, in_features=512, out_features=256,
bias=True)

↪→

↪→

52 (fc3): Linear(2.31 k, 0.07% Params, 73.73 KMACs, 0.00% MACs, 94.18 us,
0.11% latency, 1.57 GFLOPS, in_features=256, out_features=9,
bias=True)

↪→

↪→

53 (bn1): BatchNorm1d(128, 0.00% Params, 0 MACs, 0.00% MACs, 238.42 us,
0.29% latency, 43.98 GFLOPS, 64, eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

↪→

↪→

54 (bn2): BatchNorm1d(256, 0.01% Params, 0 MACs, 0.00% MACs, 325.2 us,
0.39% latency, 64.49 GFLOPS, 128, eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

↪→

↪→

55 (bn3): BatchNorm1d(2.05 k, 0.06% Params, 0 MACs, 0.00% MACs, 1.81 ms,
2.17% latency, 92.85 GFLOPS, 1024, eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

↪→

↪→

56 (bn4): BatchNorm1d(1.02 k, 0.03% Params, 0 MACs, 0.00% MACs, 153.3 us,
0.18% latency, 534.37 MFLOPS, 512, eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

↪→

↪→

57 (bn5): BatchNorm1d(512, 0.01% Params, 0 MACs, 0.00% MACs, 130.41 us,
0.16% latency, 314.07 MFLOPS, 256, eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

↪→

↪→

58)
59 (feature_transform): Tnet(
60 1.86 M, 53.62% Params, 4.75 GMACs, 33.78% MACs, 31.37 ms, 37.71%

latency, 312.94 GFLOPS,↪→

61 (conv1): Conv1d(4.16 k, 0.12% Params, 134.22 MMACs, 0.95% MACs, 247.48
us, 0.30% latency, 1.09 TFLOPS, 64, 64, kernel_size=(1,),
stride=(1,))

↪→

↪→

62 (conv2): Conv1d(8.32 k, 0.24% Params, 268.44 MMACs, 1.91% MACs, 371.46
us, 0.45% latency, 1.46 TFLOPS, 64, 128, kernel_size=(1,),
stride=(1,))

↪→

↪→

63 (conv3): Conv1d(132.1 k, 3.81% Params, 4.29 GMACs, 30.53% MACs, 2.77
ms, 3.33% latency, 3.12 TFLOPS, 128, 1024, kernel_size=(1,),
stride=(1,))

↪→

↪→

64 (fc1): Linear(524.8 k, 15.15% Params, 16.78 MMACs, 0.12% MACs, 115.87
us, 0.14% latency, 289.58 GFLOPS, in_features=1024,
out_features=512, bias=True)

↪→

↪→

Section Hauke Kirchner A7

Profiling tree species classification with synthetic data and deep learning

65 (fc2): Linear(131.33 k, 3.79% Params, 4.19 MMACs, 0.03% MACs, 92.51 us,
0.11% latency, 90.68 GFLOPS, in_features=512, out_features=256,
bias=True)

↪→

↪→

66 (fc3): Linear(1.05 M, 30.39% Params, 33.55 MMACs, 0.24% MACs, 118.97
us, 0.14% latency, 564.08 GFLOPS, in_features=256,
out_features=4096, bias=True)

↪→

↪→

67 (bn1): BatchNorm1d(128, 0.00% Params, 0 MACs, 0.00% MACs, 216.01 us,
0.26% latency, 48.54 GFLOPS, 64, eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

↪→

↪→

68 (bn2): BatchNorm1d(256, 0.01% Params, 0 MACs, 0.00% MACs, 312.09 us,
0.38% latency, 67.2 GFLOPS, 128, eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

↪→

↪→

69 (bn3): BatchNorm1d(2.05 k, 0.06% Params, 0 MACs, 0.00% MACs, 1.82 ms,
2.18% latency, 92.43 GFLOPS, 1024, eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

↪→

↪→

70 (bn4): BatchNorm1d(1.02 k, 0.03% Params, 0 MACs, 0.00% MACs, 144.0 us,
0.17% latency, 568.87 MFLOPS, 512, eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

↪→

↪→

71 (bn5): BatchNorm1d(512, 0.01% Params, 0 MACs, 0.00% MACs, 133.51 us,
0.16% latency, 306.78 MFLOPS, 256, eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

↪→

↪→

72)
73 (conv1): Conv1d(256, 0.01% Params, 6.29 MMACs, 0.04% MACs, 231.27 us,

0.28% latency, 63.48 GFLOPS, 3, 64, kernel_size=(1,), stride=(1,))↪→

74 (conv2): Conv1d(8.32 k, 0.24% Params, 268.44 MMACs, 1.91% MACs, 452.52
us, 0.54% latency, 1.2 TFLOPS, 64, 128, kernel_size=(1,),
stride=(1,))

↪→

↪→

75 (conv3): Conv1d(132.1 k, 3.81% Params, 4.29 GMACs, 30.53% MACs, 2.77 ms,
3.34% latency, 3.11 TFLOPS, 128, 1024, kernel_size=(1,), stride=(1,))↪→

76 (bn1): BatchNorm1d(128, 0.00% Params, 0 MACs, 0.00% MACs, 208.14 us,
0.25% latency, 50.38 GFLOPS, 64, eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

↪→

↪→

77 (bn2): BatchNorm1d(256, 0.01% Params, 0 MACs, 0.00% MACs, 319.24 us,
0.38% latency, 65.69 GFLOPS, 128, eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

↪→

↪→

78 (bn3): BatchNorm1d(2.05 k, 0.06% Params, 0 MACs, 0.00% MACs, 1.82 ms,
2.18% latency, 92.32 GFLOPS, 1024, eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

↪→

↪→

79)
80 (fc1): Linear(524.8 k, 15.15% Params, 16.78 MMACs, 0.12% MACs, 111.82 us,

0.13% latency, 300.08 GFLOPS, in_features=1024, out_features=512,
bias=True)

↪→

↪→

81 (fc2): Linear(131.33 k, 3.79% Params, 4.19 MMACs, 0.03% MACs, 93.7 us,
0.11% latency, 89.53 GFLOPS, in_features=512, out_features=256,
bias=True)

↪→

↪→

82 (fc3): Linear(2.57 k, 0.07% Params, 81.92 KMACs, 0.00% MACs, 89.88 us,
0.11% latency, 1.82 GFLOPS, in_features=256, out_features=10,
bias=True)

↪→

↪→

83 (bn1): BatchNorm1d(1.02 k, 0.03% Params, 0 MACs, 0.00% MACs, 145.2 us,
0.17% latency, 564.2 MFLOPS, 512, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

↪→

↪→

Section Hauke Kirchner A8

Profiling tree species classification with synthetic data and deep learning

84 (bn2): BatchNorm1d(512, 0.01% Params, 0 MACs, 0.00% MACs, 133.28 us, 0.16%
latency, 307.33 MFLOPS, 256, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

↪→

↪→

85 (dropout): Dropout(0, 0.00% Params, 0 MACs, 0.00% MACs, 87.02 us, 0.10%
latency, 0.0 FLOPS, p=0.3, inplace=False)↪→

86 (logsoftmax): LogSoftmax(0, 0.00% Params, 0 MACs, 0.00% MACs, 66.04 us,
0.08% latency, 0.0 FLOPS, dim=1)↪→

87)
88 --

Listing 5: DeepSpeed - FlopProfiler: Full output

A Code samples

1 sacct --format=jobid,elapsed -P -j 14657599, 14617521, 14615343,
14650076, 14615344, 14617172, 14650079, 14617171, 14618941,
14617203, 14619619, 14650080, 14619618,14619617, 14617202, 14650750,
14650758, 14629421, 14629426, 14650740, 14650759 -X

↪→

↪→

↪→

Listing 6: The command that is used to collect accounting information for the jobs
executed on the SCC for this project (Table 3). The output of this command can be
found in Listing 4.

1 from torch.utils.tensorboard import SummaryWriter
2 [...]
3 loss_idx_value = 0
4 for epoch in range(num_training_epochs):
5 model.train(); running_loss = 0.0
6 for i, batch in enumerate(train_loader):
7 [...] # Load data, classify data, calculate loss
8 loss.backward(); optimizer.step()
9 running_loss += loss.item()

10 writer.add_scalar("Loss/Minibatches", running_loss, loss_idx_value)
11 loss_idx_value += 1
12 writer.add_scalar("Loss/Epochs", running_loss, epoch)
13 model.eval()
14 if epoch % 5 == 4: # get validation accuracy every 5 epochs
15 [...] # calculate accuracy
16 writer.add_scalar("Accuracy", accuracy, epoch)

Listing 7: Highlighted parts of the code are required to use Tensorboard for profiling
the training process of the neural network. The implementation can be found in the
accompanying GitHub repository: https://github.com/haukekirchner/scap/blob/
main/code/pointnet/train.py

Section A Hauke Kirchner A9

https://github.com/haukekirchner/scap/blob/main/code/pointnet/train.py
https://github.com/haukekirchner/scap/blob/main/code/pointnet/train.py

Profiling tree species classification with synthetic data and deep learning

1 [...]
2 for epoch in range(num_training_epochs):
3 [...]
4 prof = torch.profiler.profile(
5 schedule=torch.profiler.schedule(wait=1, warmup=1, active=3,

repeat=2),↪→

6 on_trace_ready=torch.profiler.tensorboard_trace_handler(logdir +
"/profiler"),↪→

7 record_shapes=True,
8 profile_memory=True,
9 with_stack=True)

10 prof.start()
11 for i, batch in enumerate(train_loader):
12 [...] # Load data, classify data, calculate loss
13 loss.backward(); optimizer.step()
14 prof.step()
15 prof.stop()

Listing 8: Highlighted parts of the code are required to use the PyTorch Profiler for
profiling the training process of the neural network. The implementation can be found
in the accompanying GitHub repository: https://github.com/haukekirchner/scap/
blob/main/code/pointnet/train.py

1 from deepspeed.profiling.flops_profiler import FlopsProfiler
2 [...]
3 flop_prof = FlopsProfiler(model)
4 profile_step = 5; print_profile= True
5 for epoch in range(num_training_epochs):
6 [...]
7 for i, batch in enumerate(train_loader):
8 if i == profile_step:
9 flop_prof.start_profile()

10 [...] # Load data, classify data, calculate loss
11 if i == profile_step: # end profiling and print output
12 flop_prof.stop_profile()
13 flops = flop_prof.get_total_flops()
14 macs = flop_prof.get_total_macs()
15 params = flop_prof.get_total_params()
16 if print_profile:
17 flop_prof.print_model_profile(profile_step=profile_step)
18 flop_prof.end_profile()
19 loss.backward(); optimizer.step()

.

Listing 9: Highlighted parts of the code are required to use Deepspeed - FLOPSProfiler
for profiling the training process of the neural network. The implementation can be found
in the accompanying GitHub repository: https://github.com/haukekirchner/scap/
blob/main/code/pointnet/train.py

Section A Hauke Kirchner A10

https://github.com/haukekirchner/scap/blob/main/code/pointnet/train.py
https://github.com/haukekirchner/scap/blob/main/code/pointnet/train.py
https://github.com/haukekirchner/scap/blob/main/code/pointnet/train.py
https://github.com/haukekirchner/scap/blob/main/code/pointnet/train.py

	Contents
	List of Tables
	List of Figures
	List of Listings
	List of Abbreviations
	Introduction
	Methods
	Tree species classification based on synthetic lidar data
	Fundamentals of software profiling
	Profiling tools
	Overview of profiling tools
	TensorBoard
	PyTorch - Profiler
	Deepspeed - FlopsProfiler

	Experiments

	Results
	Optimization of the data loading process
	Effect of the accelerators and profiling tools on the runtime
	Results of the profiling tools
	TensorBoard
	PyTorch - Profiler
	DeepSpeed - FlopsProfiler
	Usability of the different tools

	Discussion
	Conclusion
	References
	Code samples

