
Seminar Report

I/O Analysis using Darshan

Zoya Masih

MatrNr: 19034321

Supervisor: Prof. Dr. Julian Kunkel

Georg-August-Universität Göttingen
Institute of Computer Science

April 3, 2023



Abstract
The need for powerful, on demand, scalable storage systems in the area of HPC, has been
increasingly growing. To meet such a requirement, profiling tools with the capability of
capturing detailed application-level behavior are essential. Darshan is such a tool which
simplify the task of understanding and tuning I/O behavior. It helps to get an accurate
picture of application I/O by showing access patterns, sizes, number of operations etc.
with minimum overhead.

In this report, Darshan profiling tool is introduced, and the setup steps are described.
IO500 benchmark is also shortly introduced and instrumented for Darshan. The results of
capturing details of the benchmark are then presented and analyzed. In this experiment,
IO500 is run on two working nodes of GWDG clusters, and the Darshan log files are
presented for both regular and extended tracing (DXT) configurations.

i



Contents

List of Tables iii

List of Figures iii

List of Listings iii

List of Abbreviations iv

1 Introduction 1

2 Introduction to Darshan 2
2.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Instrumenting IO500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 The Test System 3
3.1 The Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Benchmark IO500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 IO500 Analysis by Darshan 4
4.1 darshan-parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4.1.1 Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 PDF Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.2.1 Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.3 DXT: Darshan eXended Tracing . . . . . . . . . . . . . . . . . . . . . . . . 8

4.3.1 DXT Explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.4 IO500 output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Conclusion 10

References 11

ii



List of Tables

List of Figures
1 The IO500 job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 log file generated by darshan-parser, part 1 . . . . . . . . . . . . . . . . . . 4
3 log file generated by darshan-parser, part 2 . . . . . . . . . . . . . . . . . . 5
4 PDF output - part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5 PDF output - part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6 PDF output - part 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
7 PDF output - part 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
8 PDF output - part 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
9 PDF output - part 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
10 PDF output - part 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
11 IO500 output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
12 ior-easy-write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

List of Listings

iii



List of Abbreviations
DXT Darshan eXtended Tracing

GWDG Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen

HPC High-Performance Computing

IO Input/Output

MPI Message Passing Interface

POSIX Portable Operating System Interface for uniX

iv



I/O Analysis using Darshan

1 Introduction
In the field of High Performance Computing (HPC), we deal with powerful computing
systems and software applications to solve complex computational problems that require
significant amounts of processing power, memory, and storage. The applications in this
field demand robust storage systems. Storage systems must meet the concurrent I/O
requirements, e.g., accessing to hundreds of thousands of compute elements. In such a
situation, analyzing application characteristics is an important aspect of HPC because it
helps to identify the computational requirements of an application and ensure that the
hardware and software infrastructure can meet those requirements. In other words, under-
standing storage access characteristics of computational science applications is critical in
storage optimization to increase the efficiency of the storage system. In HPC, applications
can be highly parallel and may require large amounts of memory, storage, and network
bandwidth. Therefore, analyzing the characteristics of an application is essential to select
the appropriate hardware and software infrastructure to support the application’s need.

In 2009, in the areas of memory and communication subsystem behavior, many analyzing
tools, Jumpshot [WD99] as an example, were available that provided insight into how an
application is interacting with the subsystem. Unlikely, similar tools were not available
for I/O. In fact, there were an overall lack of understanding of how computational science
applications interact with the storage system. This shortage was a main motivation for
providing an I/O characterization tool named Darshan, developed at Argonne National
Lab [LR09]. Darshan is designed to capture an accurate picture of application I/O be-
havior, including properties such as patterns of access within files, with the minimum
possible overhead. This characterization can shed important light on the I/O behavior of
applications at extreme scale. Darshan also can enable researchers to gain greater insight
into the overall patterns of access exhibited by such applications, helping the storage
community to understand how to best serve current computational science applications
and better predict the needs of future applications. Darshan captures MPI-IO routines
using the profiling (PMPI) interface to MPI. POSIX routines are captured by inserting
wrapper functions via the GNU linker’s - -wrap argument. Darshan invokes no com-
munication or storage routines until the end of the job. It therefore reduces the scope of
the scalability challenge to a single shutdown routine.

The current report is describing all the procedures done for a project in the seminar course
’Newest Trends in High-Performance Data Analytics’. The goals which were expected to
be fulfilled during this project are as follows.

1. Setting up Darshan

2. Instrumenting IO500 benchmark

3. Obtaining text and PDF results of profiling IO500 for regular and DXT configuration

4. Analyzing the results

The outline of the report is as follows. In Section two, the process of setting up Darshan
on the compute nodes of GWDG and instrumenting the benchmark IO500 is defined. The
test system then is defined in section 3. Finally, The outputs of Darshan are analyzed

Section 2 Zoya Masih 1



I/O Analysis using Darshan

in section 4. At the end of some subsections, challenges, and some points are discussed
under the title Note. As usual, the report is closed with a conclusion and references.

2 Introduction to Darshan
In this section, we will explain how to set up Darshan and how to instrument the bench-
mark we are going to analyze.

2.1 Installation

For the first steps, one can start with downloading.

1. wget https://ftp.mcs.anl.gov/pub/darshan/releases/darshan-3.4.1.tar.gz

2. tar -xvzf darshan-3.4.1.tar.gz

3. cd darshan-3.4.1/

4. ./prepare.sh

The Darshan source tree is divided into two parts. The first one is darshan-runtime, which
is installed on systems where you intend to instrument MPI applications. To install that,
one need the following steps.

1. cd darshan-runtime/

2. ./configure - -with-log-path=/path/file/ - -with-jobid-env=SLURM _JOB
_ID –prefix=/scratch/users/zmasih/darshan/ CC=mpicc

3. make & make install

The second one is darshan-util, which is installed on systems where you intend to analyze
log files produced by darshan-runtime.

1. cd ../darshan-util/

2. configure - -prefix=/scratch/users/zmasih/darshan/

3. make & make install

2.1.1 Note

After the first installation, the following error occurred. Error: WARNING: The POSIX
module contains incomplete data! This happens when a module runs out of memory
to store new record data. Solutions to this problem could be by changes to allow the
Darshan per-module memory limit configurable using the following methods:

1. at runtime, using the ’DARSHAN_MODMEM’ environment variable, which should
be set to the desired memory limit in MiB The commits for this enhancement are
98c93e0f (darshan-runtime changes) and 40d1dc03 (darshan-util changes).

2. –with-max-records=<max _record _count>’ to change the default maximum num-
ber of records to track (2048 currently).

In my experience, adding –with-mod-mem=500 to the configuration line solved the prob-
lem.

Section 2 Zoya Masih 2



I/O Analysis using Darshan

2.2 Instrumenting IO500

When the installation is complete, one may need to instrument the application which
needs to be analyzed. In the following experiment, the IO500 benchmark is instrumented
in the following steps.

1. Add CC =/path/to/darshan-3.4.1/mpicc.darshan to Makefile in io500 directory

2. ldd io500

3. export PATH=$ PATH:/darshan/bin/path

4. make a directory for the log files, in the path you defined in the configuration time.

5. export DARSHAN_LOGPATH=/log file/path

6. in the submission script file, put export DARSHAN _CONFIG _PATH=darshan.config

7. make

After the aforesaid steps are done, running the application as normal generates a logfile
which is used for analyzing the performance of the instrumented application.

3 The Test System
In this section we will describe the system of the experiment, and also will briefly describe
the application which is instrumented for Darshan.

3.1 The Hardware

The compute cluster in GWDG is divided into frontends and compute nodes. To run a
program on one or more of the compute nodes, it is needed to interact with the batch
system, or scheduler, Slurm. Nodes are also grouped in fat, medium and gpu partitions.
In this experiment, we ran IO500 benchmark on the SCC clusters of GWDG, with 10
tasks per node, and set the job to run for 10 minutes in medium partition, see fig. 1.

Figure 1: The IO500 job

Section 3 Zoya Masih 3



I/O Analysis using Darshan

3.2 Benchmark IO500

In this project, the application which is instrumented for Darshan is IO500.
The IO-500 benchmark consists of data and metadata benchmarks to identify perfor-
mance boundaries for optimized and suboptimal applications. IO500 provides five main
measurement scenarios using IOR and mdtest as follows [KT21].

• IOR Easy: For the applications with well optimized I/O patterns. Free to tune
IOR parameters. Typically, file-per-process, large, aligned chunks to get the best
possible bandwidth performance

• IOR Hard: For the applications that require a random workload- Limited options to
tune. Forced to use small unaligned I/O to a single shared file for the worst possible
bandwidth performance.

• MDtest Easy: For Metadata and small objects. Free to tune mdtest parameters
with zero size files in separate directory per process to represent best case scenario
for metadata rate

• MDtest Hard: For Small files (3901 bytes) in a shared directory- Limited options to
tune. Forced all processes to write on a single shared directory. Representing worst
case scenario for metadata rate

• Find: Finding a specific subset of files from those created by the four scenarios.

4 IO500 Analysis by Darshan
4.1 darshan-parser

Each time a darshan-instrumented application is executed successfully, a log file is au-
tomatically generated in the path defined by with-log-path in the configuration time.
The command line utility darshan-parser can be used to obtain a human-readable, text-
format output of all information contained in a log file.

Figure 2: log file generated by darshan-parser, part 1

Figure 2 shows the first part of output of this command in the current experience. This
part of the output displays a summary of overall job information. Additional options

Section 4 Zoya Masih 4



I/O Analysis using Darshan

can also be used to produce more information. For instance, - -perf generates job
performance information. The second part of the output reports the size of each region
contained within the given log file, Figure 3.

Figure 3: log file generated by darshan-parser, part 2

The next part shows a table of all general purpose file systems that were mounted while
the job was running. Each line uses the format <mount point> <fs type>.
The remainder of the output will show characteristics for each file that was opened by
the application. Each line uses the following format: <module> <rank> <record id>
<counter name> <counter value> <file name> <mount point> <fs type>. These parts
are not presented in this report due to their length.

4.1.1 Note

If the error darshan-parser command not found appears, export PATH=$PATH:/bin/path/
is required.
In the previous versions, the log file was provided directly to the defined log directory,
however, in the latest versions, in the log directory two directories with name 2023 and
2024 are generated, and inside directory 2023, you can follow the subdirectories according
to the date of job execution.

4.2 PDF Output

Figure 4: PDF output - part1

The tool darshan-parser generates a complete, human-readable output, however it is
lengthy and challenging to understand and analyze. Therefore, a visualization may help

Section 4 Zoya Masih 5



I/O Analysis using Darshan

to analyze more conveniently. The command darshan-job-summary.pl generates a PDF
result file.
As shown in Figure 4, total data transferred and I/O bandwidth observed at POSIX layer
are 5636192.9 MiB and 259.24 MiB/s. In this experiment, read took smaller fraction of
the total execution time rather than write at POSIX layer. From the right side picture
also, we notice that read, write, and seek operations are performed using POSIX, and
POSIX read operation count is equal to POSIX write operation count, and the number
is far smaller than the seek operations.

Figure 5: PDF output - part2

The next histogram, 5, represents the number of POSIX operations and their associated
sizes. In our example, most of the I/O operations are of 10-100 kilo Bytes, and the
reminder of the operations are of size 1-4 mega Bytes. In total, there are approximately
4.5× 106 operations for both read and write.

Figure 6: PDF output - part 3

In the next picture, 6 shows the most common I/O sizes at POSIX layer. There is also a
second table which provides the number of created files, read/write-only and read/write
files. Here we have 18 created files with the average size 22 GiB, whereas we have 15 write
only files with avg/max size 18 GiB.
Figure 7 shows the timespan for individual files from the first to the last access. It is seen
that each file was accessed for around 25 minutes. Figure 8 is the same as the previous
one, however, it represents the timespan for shared files.

Section 4 Zoya Masih 6



I/O Analysis using Darshan

Figure 7: PDF output - part 4

Figure 8: PDF output - part 5

Cumulative time spent and the amount of I/O functions are shown in the Figure 9. In this
execution, for instance, we have 262.3 GiB independent reads with around 21.6 minutes
timespan, whereas the numbers for shared file reads are 12.88 GiB and 4.6 minutes.
Figure 10 shows the I/O pattern (type of offsets) for each file opened by the application.
In our benchmark, for all 4.2 million operations, the offsets are sequential, and around
1.3 million of them have simultaneously consecutive access.

Figure 9: PDF output - part 6

4.2.1 Note

The darshan-job-summary tool depends on a few LATEXpackages including lastpage, sub-
figure, and threeparttable. The packages are not currently available on the GWDG clus-
ters, therefore one may need to copy the log file to another system, in which darshan-util
is already installed on, to be able to generate the PDF outputs. To copy the log file,

Section 4 Zoya Masih 7



I/O Analysis using Darshan

Figure 10: PDF output - part 7

command cp <log file name> destinationpath is used.

It is possible that an older version of Darshan is not able to make the PDF for a log
file generated by a newer version. In such a case, make sure that you are using the new
version’s library, to check that, the command which darshan-parser may be of a help.

4.3 DXT: Darshan eXended Tracing

Darshan’s default characterization mechanism records information at a fixed granularity.
In 2017, Darshan was augmented by proposing Darshan eXtended Tracing (DXT) for
more detailed profiling of I/O software stacks [SC17]. DXT enables users and adminis-
trators to vary the level of fidelity captured by Darshan at run time without modifying or
recompiling applications. This capability facilitates systematic analysis of the I/O behav-
ior of applications and can provide useful application kernel I/O traces to help advance
parallel I/O research.

DXT may exhibit higher runtime and memory overheads, so it is disabled by default
in Darshan. By setting the environment to export DXT_ENABLE_IO_TRACE=1 in the
runtime, a DXT log file is generated. After the application is successfully executed,
darshan-dxt-parser provides the DXT output.

4.3.1 DXT Explorer

DXT Explorer [Bez+21] is an interactive log analysis tool. Using this tool requires a
Darshan log file collected with tracing data. To use DXT Explorer, Python 3 and R
are also needed to be installed. In the first execution ever, DXT Explorer automatically
downloads any missing, required R packages. the command dxt-explore then generates
an explore.html file with an interactive plot that you can open in any browser to explore.

4.4 IO500 output

The output of IO500 job in the current experiment is shown in Figure 11. As we can see
in the picture, the total time spending for ior-easy/hard write, is around 2000 seconds,
whereas the time for ior-easy/hard read is 1700 seconds. The comparison supports the

Section 4 Zoya Masih 8



I/O Analysis using Darshan

Figure 11: IO500 output

results in figure 4, which showed 60 percent of total runtime for write, in comparison to
5 percent for read.
More details on all IO500 scenarios can also be reached in the path /io500/results.
In the current execution, the results on ior-easy write are shown in Figure 12. In this
figure, for instance, we can see that the ordering in a file is sequential, which was already
discussed in Figure 10 of Darshan output. We also noticed in Figure 5 that there is no
file larger than 4 MB. In the support of that info, we can see that the xfersize is 2 MiB.
This parameter refers to the size of the I/O operations that are being performed by the
benchmark, and as regards to the point that ior-easy is referring to large files, we have
the approval.

Figure 12: ior-easy-write

Section 5 Zoya Masih 9



I/O Analysis using Darshan

5 Conclusion
The profiling tool Darshan was introduced in 2009, in order to help to understand and
tuning I/O behavior on extreme-scale systems. Darshan can produce a log file for each
successful execution of an IO application. The log file then can be provided in a text or
PDF format, for a regular or more detailed log file (DXT).
In this project, Darshan was installed on GCC cluster of GWDG and then IO500 bench-
mark was instrumented for it. The job was run on two compute nodes, and with 10
processes per node. This report described the installation and instrumentation steps, and
then presented and analyzed the results.
Most of the operations in this experiment were of read, write, and seek in POSIX standard,
and the majority of the run time, almost 60 percent, was related to the write operations.
There were sequential access to all the files during the job was running, and all the files
were of size 10-100 KB, or 1-4 MB.

Section 5 Zoya Masih 10



I/O Analysis using Darshan

References
[Bez+21] Jean Luca Bez et al. “I/O Bottleneck Detection and Tuning: Connecting the

Dots using Interactive Log Analysis”. In: 2021 IEEE/ACM Sixth International
Parallel Data Systems Workshop (PDSW). 2021, pp. 15–22. doi: 10.1109/
PDSW54622.2021.00008.

[KT21] Radita Liem. Dmytro Povaliaiev. Jay Lofstead. Julian Kunkel and Christian
Terboven. “User-centric system fault identification using IO500 benchmark”.
In: 2021 IEEE/ACM Sixth International Parallel Data Systems Workshop
(PDSW) (2021), pp. 35–40.

[LR09] Philip Carns. Robert Latham. Robert Ross. Kamil Iskra. Samuel Lang and
Katherine Riley. “24/7 Characterization of Petascale I/O Workloads”. In: 2009
IEEE International Conference on Cluster Computing and Workshops 13.2
(2009), pp. 1–10.

[SC17] Cong Xu. Shane Snyder. Vishwanath Venkatesan. Philip Carns. Omkar Kulka-
rni. Suren Byna. Roberto Sisneros and Kalyana Chadalavada. “Dxt: Darshan
extended tracing”. In: Argonne National Lab.(ANL), Argonne, IL (United
States) (2017).

[WD99] O.Zaki. E.Lusk. W.Gropp and D.Swider. “Toward scalable performance visu-
alization with Jumpshot”. In: High Performance Computing Applications 13.2
(1999), pp. 277–288.

Section 5 Zoya Masih 11

https://doi.org/10.1109/PDSW54622.2021.00008
https://doi.org/10.1109/PDSW54622.2021.00008

	Contents
	List of Tables
	List of Figures
	List of Listings
	List of Abbreviations
	Introduction
	 Introduction to Darshan
	Installation
	Note

	Instrumenting IO500

	The Test System
	The Hardware 
	Benchmark IO500

	IO500 Analysis by Darshan 
	darshan-parser
	Note

	PDF Output
	Note

	DXT: Darshan eXended Tracing
	DXT Explorer

	IO500 output

	Conclusion
	References


