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Abstract
The demand for high-performance networks has significantly increased over time, espe-
cially with the increasing sizes, compute demands, and popularity of big data analytics.
To that end, traditional network architectures and protocols have resulted in limitations
in throughput and efficiency. In-network computing claims to address many of the issues
related to data movement in high-performance computer networks in an efficient manner,
without the need to significantly change workflows for system engineers and users alike.
Existing in-network computing solutions on the market are compared and contrasted with
incumbent options in order to evaluate their merits in high-performance computing tasks,
as well as possible drawbacks.
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In-Network Computing: State-of-the-art

1 Introduction
Traditionally, network hardware has served a simple purpose- to move packets from one
location to another [KR22]. To an end-user, network hardware consists of a series of
black boxes connecting machines to each other and to the wider Internet. However, the
combination of ever-increasing dataset sizes, faster networking, and the end of Moore’s
law have given rise to network hardware with sophisticated capabilities far beyond simple
packet forwarding. This report delves into the history of in-network computing, its uses
in high-performance data analytics, and the current state-of-the-art.

1.1 Performance Issues in HPC

New technologies that improve communication and computation throughput and reduce
latency are often first adopted in HPC. For instance, while many consumer-grade devices
rely on Wi-Fi or gigabit networking [KR22], HPC-focused networking hardware can be as
fast as 800Gbps at the time of writing [NVIg]. Tasks such as weather forecasting require
significant resources which far outstrip those available on a single node. As such, clusters
of computing nodes are used to increase overall compute power. However, because the
datasets involved in HPC can be extremely large, one needs fast networking in order
to reduce message bottlenecks and effectively take advantage of the available processing
power in the cluster. Amdahl’s law [Amd67] states that the maximum speedup of a
workload is limited by what cannot be parallelized- and slow networks can be a significant
part of this equation. In a talk by John D. McCalpin, it is demonstrated that networking
performance has fallen far behind raw compute performance [McC]. In addition, project
budgets, energy, and physical space are not infinite. Getting the most out of the available
hardware is thus beneficial in order to decrease the consumption of these limited resources,
or to increase utilization and the return on investment.

The slowing of processor advancements due to the increased difficulty of shrinking
lithography techniques over time have also forced the industry to look beyond faster
processors alone for performance enhancements [TW17]. Instead, optimization techniques
in networking hardware were explored in an attempt to both increase overall throughput,
but also increase energy and space efficiency. Research and development in this field have
brought technologies such as SHARP, RDMA, and DPUs - which will be further defined
and explored in this report.

1.2 Optimization Targets

According to a profiling study of users of Message Passing Interface (MPI), middleware
libraries designed for communication in High-Performance Computing (HPC) performed
by Rolf Rabenseifner [Rab], collective communication routines were invoked in over 90%
of jobs and consumed a significant majority of CPU time, mostly as a result of waiting
for synchronization to complete. By definition, increasing throughput reduces the time
for data to be transferred, and reducing communication latency also reduces the time
for synchronization to complete, especially for small messages where raw throughput
performance is less important (e.g., a barrier operation).

Section 2 Tim Dettmar 1
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2 Fixed-Function Network Offload
Early network cards can be considered little more than simple signal converters. The host
CPU would construct packets to be sent over the network, and the network adapter han-
dled the encoding and decoding of data at the physical, i.e. electrical signal, layer [Ros13].
As Ethernet-compatible cards grew faster and more popular over time, the overhead of the
host CPU performing the construction, check-summing, and payload handling of every
packet became more apparent, and would reduce application and network performance
under heavy load as resource contention occurred. Network adapters thus became more
advanced to address the demand for higher and more efficient network performance, both
for consumer and professional use cases.

Modern enterprise NICs are typically capable of performing stateless checksum offload,
though many support full-stack protocol offloads.

2.1 Full-Stack Offload

Hgh-level protocols such as Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP) are designed to abstract much of the lower-level functionality of the
network away from the programmer. The primary advantages of this method are that
the Application Programming Interface (API) provided to the programmer is relatively
simple; after connection establishment, the sending or receiving of data can be done in a
single system call. While this has proven to be robust enough to be used on the Internet
in the form of Hypertext Transfer Protocol (HTTP), for instance [NFB96], the demands
of the HPC space have exceeded the limits of what these protocols are able to provide.
Fundamentally, as the user is not required to manage their own buffers and message
queues, this task is left to the kernel and results in unnecessary memory copies, and thus
an increase in consumed memory bandwidth and latency [Cla+89].

Two main approaches appeared in an attempt to address this issue. The most obvi-
ous solution would be to offload the entire TCP/UDP stack to the network card, while
retaining the same socket interface to the programmer. This approach came to be known
as TCP Offload Engine (TOE), which has, for all intents and purposes, failed. Linux has
never integrated TOE code into the upstream kernel, and Microsoft has deprecated their
support for TOE [Wil18]. The specific reasons as to why are numerous; critically, TOE
implementations failed to deliver on performance and scalability promises [Mog03].

The solution now widespread across the HPC space came in the design of new proto-
cols specifically designed to address the limitations of existing networking APIs, moving
more of the computing associated with data transfer onto network adapters. These pro-
tocols are categorized under the general term Remote Direct Memory Access (RDMA).
Compared to TOE and basic networking offloads (e.g., checksum offload), these APIs are
significantly lower-level than incumbents TCP and UDP. Rather than handing off control
to the kernel with every data transfer, RDMA-enabled programs communicate directly
with the Network Interface Card (NIC). This allows for the direct movement of data to
and from user-defined buffers without Central Processing Unit (CPU) involvement, re-
ducing memory bandwidth, CPU utilization, and latency [Ros13]. RDMA-capable tech-
nologies such as InfiniBand and Omni-Path make up the majority of high-performance
interconnects in the TOP500 supercomputer rankings [TOP].

An additional benefit of being able to offload these operations is that, even if the CPU
has an abundance of free cycles, switching between kernel and user space to perform data
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transfer tasks results in context switching. According to Jeffrey C. Moful and Anita Borg,
context switches have a cost of thousands of CPU cycles, and can result in increased
latency due to increased cache miss rates [MB91]. It thus follows that especially for
programs which require high message rates, the number of context switches results in a
significant number of wasted cycles neither performing useful work nor transferring data
in the kernel.

The integration of these offloads into high-level APIs such as MPI [Ope] have allowed
for easy adoption of these technologies despite the difficulty in programming directly to
them. One could consider RDMA to MPI as machine code is to C; few tend to program
directly for the former. In addition, domain-specific libraries such as GROMACS may
abstract communication operations even further on top of MPI. Thus, for end users that
program for these applications, there are little to no changes required to benefit from
RDMA technologies, unless one needs the fine-grained control provided by the underlying
RDMA library (for example, if extreme optimization measures are needed).

2.1.1 Performance

Due to the low overhead and direct communication with the NIC, RDMA excels both in
terms of latency and maximum throughput. On the tested GWDG cluster nodes equipped
with Omni-Path networking, an uplift of up to 10x in terms of throughput, and a reduction
of up to 10x in latency was observed. Crucially, only the use of RDMA offload was able
to bring performance closer to the actual link speed of 100 Gbit/s. TCP achieved a peak
bandwidth of 16.7 Gbps while PSM (Omni-Path) achieved a peak of 93.4 Gbps.
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Figure 1: TCP vs PSM - Bandwidth
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Figure 2: TCP vs PSM - Latency

In addition, the proportion of time spent in kernel space is significantly lower than
that of TCP. A ratio of 0.5, for example, indicates 50% of CPU time is spent not in user
code, but in the kernel - in this case, the only significant task the kernel performs for
the benchmark is data transfer. This leaves the CPU available for more data processing
throughput.
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Figure 3: TCP vs PSM - Kernel Time
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3 Programmable & Smart Switches
Connecting thousands of nodes directly to each others’ network ports, while the highest
bandwidth option, becomes impractical after a handful of compute nodes. Thus the
primary purpose of network switches is moving packets between different devices on the
network quickly and in a scalable fashion. The exact interconnect type, bandwidth, and
speed varies from cluster to cluster.

Network switches are designed to switch traffic as fast as possible between ports. Most
modern switches, especially those designed for the datacenter, feature custom Application-
Specific Integrated Circuit (ASIC) designs for simultaneous, non-blocking, bidirectional
bandwidth between all ports [NVIf]. Adding processing features on the switch allows
for the switch to perform advanced data manipulation operations with full view of all
connected ports, and potentially at up to the combined bandwidth of all ports.

There are two main ways this is realised in practice. Fixed-function acceleration,
such as Mellanox Scalable Hierarchical Aggregation and Reduction Protocol (SHARP),
or a programmable Field-Programmable Gate Array (FPGA) connected directly to the
high-speed switch fabric. SHARP was specifically designed to solve the needs of HPC
customers, while FPGA-based solutions are designed to be adaptable towards a wide
variety of other high-performance networking tasks beyond HPC, such as line rate deep
packet inspection. The latter will not be covered in this report.

3.1 SHARP

SHARP is a technical specification designed to allow for basic in-network computing
functionality. It was first introduced in the Mellanox SwitchIB-2 series of InfiniBand
network switches, and allows for certain operations to be performed on-switch rather
than by compute nodes [Gra+16].

In a traditional data-center network without SHARP support, collective operations are
highly bandwidth- and compute-intensive [Rab]. Performing operations such as finding a
global sum require all participating nodes to send their data to a single root node for final
computation. This leads to a potential bandwidth bottleneck as data converges towards
a single network link. In addition to bandwidth issues, the nodes’ processors are also
(at least partially) occupied performing the necessary computation, slowing down other
computations and thus limiting the amount of possible communication and computation
overlap. Techniques such as recursive doubling, or selecting a node in a switch group to
perform intermediate computations depending on the network topology could alleviate
this problem to some extent by reducing the consumption of slow inter-switch bandwidth
and increasing the amount of parallel I/O occurring in the MPI job [Mat+06; Ara+15;
PY07]. However, the traffic pattern inevitably remains as many-to-one, nodes also receive
disproportionate amounts of traffic, and processors are still occupied performing the actual
reduction tasks.

SHARP’s claimed benefit is to address these bottlenecks by offloading these collective
computation and synchronization operations onto switches. On Mellanox switches, this
is achieved by adding an ALU into the switch. The capabilities are as follows [Gra+16]:

• 32-bit and 64-bit integer and floating point support

• Sum, Min, Max, MinLoc, MaxLoc, Bitwise OR/AND/XOR
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Two types of nodes are defined: Aggregation Node (AN) and End Node (EN). The
AN becomes the target of aggregation operations, and can be either a switch or end-node
itself (i.e., a selected compute node within a switch group). ENs transmit the data to be
aggregated to ANs, which perform any necessary operations before moving to the root
node. The nodes are organized into a tree (exactly how is not defined), which determines
the direction of data flow [Gra+16].

In the following example, a global sum is to be calculated. The thickness of the link
indicates the relative amount of data traffic consumed over the link. N indicates a regular
compute node, while R indicates the root node (i.e., MPI Rank 0).

Figure 4: Global Sum, No SHARP

Depending on the MPI implementation used and the network configuration, some
nodes are used as intermediate compute nodes in order to reduce overall bottlenecks
[NVIa]. I indicates an intermediate node, black lines indicate traffic flow from compute
to intermediate nodes, and red lines indicate traffic flow towards root nodes.

Figure 5: Global Sum, No SHARP, Optimized

In a SHARP network, switches that support the protocol take the place of intermediate
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and root nodes for the purposes of collective communication. The following network
topology is used where certain switches S do not support SHARP offload, while switches
labeled S+ do.

Figure 6: Network with partial SHARP switch support

Combining the previously discussed techniques, both traditional intermediate nodes
and SHARP nodes can be used where possible. Aggregation steps in the global sum
reduces the total inter-switch bandwidth to a single unit of data when SHARP is supported
along the entire data path. Additionally, no node is required to consume CPU resources
to perform summing operations, unless SHARP is unsupported.

Figure 7: Global Sum, SHARP

SHARP has been shown to perform especially well in large-scale clusters, where the
amount of traffic flow for collective operations can be especially high. According to results
published by the MVAPICH2 developers, the latency of MPI_Barrier, a synchronization
primitive, can be up to 9 times lower than in conventional networks (tested on a 7,861
node cluster) [Sub21].
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4 DPUs
The Data Processing Unit (DPU) is currently the most programmable form of network
adapter. Existing in some form as early as 2006 with the Cavium Octeon series of NICs
[Cav06], the fundamental building blocks of a DPU are a base NIC combined with a
custom, typically ARM-based System-on-Chip (SoC) placed in the path of data traffic
[NVId]. Modern DPUs such as the BlueField NIC, run near-standard ARM Linux distri-
butions [NVIb] which are familiar to system administrators and programmers, especially
those in the HPC space where Linux makes up 100% of the TOP500 list [TOP]. In effect,
a modern DPU is a mostly independent, fully-featured computer in a NIC form factor,
connected to the same high-speed, low-latency network as the host machine.

Figure 8: DPU Block Diagram (BlueField-2)

In practice according to NVIDIA, both in HPC and data centers more broadly, DPUs
are used in order to offload ancillary tasks off of the main system processors (i.e., CPUs/GPUs).
As the name suggests, this usually involves the processing of data on-device in ways which
might have previously been performed by the main processors. Theoretically, the offload-
ing of these tasks to the DPU makes more CPU resources available for performing other
tasks [NVIi].

4.1 Vendor-Supplied Offloads

Vendors usually supply premade offloads for their DPU products for common use cases,
as well as SDKs to simplify programming for them. NVIDIA, for instance, supplies an
Open Virtual Switch (OvS) [NVIh] and NVMe over Fabrics (NVMeoF) [NVIe] offload.

4.1.1 OvS Offload

OvS is, essentially, a virtual network switch. It is typically used for firewalling, rate
limiting, and switching of traffic between virtual machines and/or containers, making
it easier and more secure to share a single compute node’s network resources among
multiple users [OVS]. It has been shown that moving these tasks onto the DPU reduces
the overhead of performing these operations and thus leaves more CPU time available
for more application density or lower power consumption. According to benchmarks
performed by Red Hat on a Kubernetes cluster, the BlueField-2 DPU reduced CPU
utilization by 70% at 25Gbps of traffic flow (line-rate). In absolute terms, this resulted in
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approximately 3 cores worth of computing power being made available on the host [GKF].
Up to a 29% energy savings can be achieved at full server load, according to NVIDIA
[NVIc], with 18 cores worth of computing power being saved on the host moving 49Gbps
of traffic. However, the exact hardware details were not stated.

4.1.2 NVMeoF Offload

As data sets grow larger, the demand placed on storage systems and protocols has sig-
nificantly increased. In contrast to its predecessors Advanced Host Controller Inter-
face (AHCI), Small Computer Systems Interface (SCSI), and Integrated Drive Electron-
ics (IDE) which were designed in the era of magnetic hard drive storage, Non-Volatile
Memory Express (NVMe) is a modern storage protocol designed specifically for flash
storage [NVMa]. This results in comparatively low latency and high performance relative
to its predecessors. In order to extend these benefits to network storage, NVMeoF encap-
sulates NVMe commands over the network, rather than only the local machine [NVMb].
So important was this use case for datacenters and HPC, that the NVMeoF protocol was
integrated into the core NVMe 2.0 specification in 2021 [NVMa].

NVMeoF has been implemented over both traditional TCP and RDMA-enabled trans-
ports. When entirely offloaded to the DPU, performance remains high while consuming
little to no system resources. Two benchmarks were evaluated, both using SPDK, a li-
brary designed for high-performance storage applications: one from Intel, and the other
from NVIDIA using the BlueField-2 DPU. Performance was evaluated in these bench-
marks by reading 4KB of random data and measuring the total number of Input/Output
Operations per Second (IOPS).

Host, RDMA

Host, TCP

DPU, RDMA

DPU, TCP
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Figure 9: DPU vs Host I/O Performance

It should be noted that, while host-based TCP slightly outperforms the DPUs in one
specific test, it does so by consuming all the CPU resources on the system (48 cores). All
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benchmarks are close to the theoretical maximum for the networks used in the test (400
Gbit/s = 12.5M 4KB IOPS, less with overhead), however, the DPU solution consumes no
host system resources in doing so.

4.2 Use in Data Analytics

Machine Learning (ML) workloads on HPC can be roughly broken down into a few basic
steps: data must be loaded and pre-processed, the model trained on the pre-processed
slices of data, and results validated after a training epoch is complete [Jai+22]. This is
repeated until a certain threshold of performance is reached. For cutting-edge models,
these steps can take years worth of computing hours [Bro+20], and as such techniques to
reduce overall training time are of great interest to those working with such models.

The use of DPUs to offload these tasks is a relatively new area of research. However,
initial results from DPU-accelerated deep learning have shown up to a 17.5% improvement
in training speed. Three offloading designs were proposed and evaluated in a paper by
Arpan Jain et al. [Jai+22].

4.2.1 Data Preprocessing

By the paper’s definition, data preprocessing offload involves the use of the DPU in the
loading of data from storage (usually a centralized storage server on the network) and
performing user-defined transformations to data (such as normalization) before they are
fed into the model. The data are split into sub-batches for each incoming batch of data by
the DPU, allowing one sub-batch to be processed by the host while the DPU queues up
data for the next batch asynchronously. Theoretically, the increased parallelism allows for
reduced time waiting on new data to arrive. The following diagram shows the parallelism
achieved by this offload: while buffer A is being loaded, buffer B is being processed by
the host, and vice versa.

Figure 10: Data Preprocessing Offload
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4.2.2 Model Validation

Alternatively, the model can be validated asynchronously by transferring model parame-
ters to the DPU after a completed training step, which allows training to continue imme-
diately after without requiring the use of host resources for validation. The host, however,
performs the aforementioned fetching of data from the server.

4.2.3 Combined Offload

The combined (or hybrid) approach described combines both data preprocessing and
validation offloads simultaneously.

4.2.4 Results

According to the researchers’ data, preprocessing offload performs well with smaller mod-
els (in this case: ResNet-20). With larger models, the hybrid approach performs best. The
below graph from the research paper shows the strongest scaling results of the presented
benchmarks.

Figure 11: DPU Acceleration Performance (ResNet-20, Preprocessing Offload)

Part of the benefit of data preprocessing offload demonstrated was the masking of
slower performance of networked filesystems. As the DPU is able to perform data loading
in parallel with host computation, this effectively provides more available time for the
system to load in new data before the next batch is processed. A speedup of up to 17%
was demonstrated when data were loaded from the slower (/scratch) filesystem rather
than host memory (/tmp).
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Figure 12: Preprocessing Offload on Various Filesystems

4.3 MPI offload

MPI provides a collection of high-level functions for data manipulation and transfer be-
tween two nodes (point-to-point) or involving all nodes (collective). For instance, a 100-
length integer array may be sliced and distributed evenly across all nodes for processing
with an MPI_Scatter operation. The MPI implementation then performs the lower-level
communication and shuffling internally, greatly simplifying parallel programming for the
user.

As an alternative or supplement to SHARP support, DPUs can be programmed to
support the acceleration of MPI collective functions as well. However, existing production
implementations are neither publicly available or open-source, as opposed to the many
competing MPI implementations, such as OpenMPI, MPICH, Intel MPI, and more. One
implementation, MVAPICH2-DPU, is based on the MVAPICH library with added DPU-
enabled collective communication offload [X-S22]. According to the developers, up to a
22% reduction in total compute time for collective operations was achieved on a 32-node
cluster, relative to the non-DPU-accelerated version of MVAPICH2. Additionally, full
simultaneous communication and computation was made possible through offloading the
communication routines fully to the DPU.

5 Conclusion
In-network computing has been demonstrated to bring significant potential advantages to
the HPC space. In particular, the offloading capabilities of DPUs and network switches
have been particularly useful in bandwidth-heavy or latency-sensitive workloads, where
they have reduced compute time and total system power consumption at scale in a cost-
effective manner. RDMA has been proven in HPC for years, with fast HPC networks
reliant on its often order-of-magnitude performance improvements over traditional net-
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work transports to achieve their large scales. However, much of the existing literature
on newer technologies, especially with regard to DPUs are relatively recent. Thus, the
adoption of these technologies in HPC are still in their early stages. Given the potential
demonstrated by existing research, it is likely that future advances in DPUs and other
types of speciality network adapters will provide researchers with new possibilities in re-
search, as well as system administrators with increased cluster utilization, space efficiency,
and reduced power consumption. In addition, there is currently limited native integration
for DPU offload into incumbent libraries. What makes RDMA and SHARP successful,
as discussed, was the integration into commonly used libraries making taking advantage
of these offloads often as simple as enabling a toggle on supported hardware. Since many
DPU offloads currently only exist in research or in proprietary applications, applying them
to existing programs is therefore a much more involved and manual process- one which
researchers that are not specialized in HPC programming are unlikely to take.
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