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Abstract

Edge computing has emerged as a response to the increasing growth of data producers and
consumers, offering a promising solution to the challenges posed by the sheer volume of data
that needs to be processed in real-time or most efficiently. However, the distributed nature
of the infrastructure, heterogeneity of devices and variability of the network make it difficult
to manage and optimize resources. In this context, modeling becomes a key component
in edge computing to facilitate the allocation of tasks and resources. This work presents
an overview of the different modeling aspects of edge computing, including task modeling,
resource modeling, communication modeling, and resource orchestration. Overall, this work
aims to provide insights into the modeling aspect of edge computing and its significance in
optimizing the performance of edge systems.
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1 Introduction1

In today’s digital age, data has become a crucial asset for many organizations and even business models.2

Collecting, processing, and analysis of data are essential drivers in business decisions. As a result, cloud3

computing has become increasingly popular1 as a means of managing and processing large volumes of data.4

However, as the volume of data grows, processing and analyzing it in real-time becomes more challenging too.5

Real-time applications where a single machine or device might not be able to compute a task in a reasonable6

time or the device might not be powerful enough are especially challenging. For instance in cloud computing,7

the latency might be too high. In such cases, an alternative solution is needed to offload the computation or8

to schedule it on additional hardware with lower response times. This is where edge computing comes into9

play, as it enables data processing and analysis to be performed closer to the source of the data, rather than10

in a centralized cloud infrastructure.11

Edge computing is a distributed computing paradigm that brings computation and data storage closer to12

the location where it is needed and used. For instance, when running a web application there might be13

responsive elements that fetch data from a server. This might happen in real time based on user interactions,14

such as searching for products or updating a shopping cart. Instead of sending all responses to a centralized15

cloud the closest server is used. In this case, edge computing can be used to improve the user experience16

by reducing latency and improving the responsiveness of the web application. Further, this paradigm might17

be applied in the manufacturing industry. Thereof, edge computing can be used to improve operational18

efficiency and reduce downtime by enabling real-time monitoring and control of equipment and processes19

without the need for a central data processing facility. By leveraging edge computing, organizations can20

make more informed and timely decisions based on real-time data, leading to improved efficiency, reduced21

downtime, and ultimately, increased profitability.22

As edge computing is a term coined mainly by the industry there are multiple definitions and interpretations23

of its implementation. One of the key aspects of edge computing is the orchestration of computational24

tasks across the available hardware i.e. multiple edge devices and the cloud or servers. However, there is25

no universal agreement on the terminology used in edge computing, and different sources use a range of26

technical jargon, often inspired by cloud computing. Terms such as mist, fog, and cloud are used to define27

different parts of the proposed infrastructure [2]. Despite the lack of uniformity in the terminology, the28

underlying principles of edge computing remain the similar.29

While edge computing offers many benefits, there are also several challenges associated with its30

implementation [3]. One of the main challenges is ensuring data security and privacy. With edge computing,31

data is processed and stored across a distributed network of devices, which can increase the risk of security32

breaches and data leaks [4]. Another challenge associated with edge computing is device interoperability. As33

edge computing involves heterogeneous devices across a network, these devices must be able to communicate34

and share data effectively. This requires standardization of protocols and interfaces, which can be a complex35

and time-consuming process [5]. Finally, resource allocation is another critical consideration when deploying36

1As of 2019 enterprise spending on cloud infrastructure has overtaken Data Center Hardware & Software
spending [1]
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an edge computing infrastructure. Edge devices typically have limited processing power and storage capacity,37

so it is important to allocate these resources effectively to ensure optimal performance [6].38

In the following, we will focus on the orchestration aspect of edge computing, with a specific emphasis on39

lower power devices. In detail, we will look into the trade-off between communication and compute latency40

and power consumption [7]. In other words, how can we optimize the distribution of computing tasks across41

the available hardware with subject to the optimal latency and power consumption while still ensuring42

efficient use of computational resources? To address this, we will explore different modeling approaches that43

help us to understand the trade-offs involved in edge computing orchestration.44

Generally, we identify four parts of edge computing. These include computational tasks, computing devices,45

communication, and orchestration. In the following, we want to establish each part more rigorously.46

2 Compute tasks47

The computational task refers to the operation that has to be performed by the edge infrastructure2. A task48

can come in a variety of forms, for instance machine learning or real time data processing. For some tasks it49

might be beneficial to perform them perform them on the edge infrastructure, while for others it might be50

more suitable to perform them on a centralized cloud server. The properties of the task determine the type51

of compute that is used for it in the network as not every task has the same requirements. For instance a52

task that displays a result to a user can’t be offloaded, as it has to be done on the current device. On the53

other hand, a background task that performs data analysis could be offloaded to a another device.54

Not only the type of the task, the size and complexity of it can impact the choice of the compute device.55

Tasks might require high computational power, such as those involving large data-sets or complex algorithms.56

Thus these tasks may require higher-power devices such as servers. In contrast, less demanding tasks can be57

performed on lower-power devices.58

Let’s consider a task A. In general, a task might be described by its properties and requirements. For59

simplicity consider that a task might depend on its input data size l, computational intensity x and an60

arbitrary deadline τ , thus forming the task A(l, τ, x). To put this into different words, we might collect some61

data of size l perform some computation on this data with intensity x and want the computation to finish at62

least in τ seconds. These properties are independent of the computing device i.e. they will stay the same if63

computing on a high performance server or low-power devices. The deadline τ is formulated as hard deadline64

but might also be formulated as a soft deadline, where the task can still be executed after the deadline, but65

with a penalty on the overall performance.66

It is important to note that this task definition is not fixed. Tasks may have additional properties and67

requirements. For example, a task might require certain levels of accuracy or precision, or it might have68

constraints on the amount of energy or memory that can be used during its execution. Moreover, a task69

might have dependencies on other tasks or data sources, which can impact its execution and performance.70

2Edge infrastructure refers to the full stack of connected devices including lower power edge devices and higher
power servers and their respective connectivity.
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Further, the computational intensity of a task may not always be known beforehand. This is particular71

true for machine learning tasks. Machine learning tasks often involve training or tuning models, which can72

require significant computational resources and time. Moreover, the computational intensity of these tasks73

can vary depending on the complexity of the model, size of the data set, and the optimization algorithm74

being used.75

In such cases, it is important to monitor the progress and performance of the task during its execution, and76

adjust the computational resources allocated to it accordingly. This can involve dynamically scaling the77

compute resources, such as by adding or removing devices from the edge infrastructure, or optimizing the78

algorithms or parameters being used.79

Especially for heavy tasks, it might be beneficial to split them into smaller sub-tasks. This can be done80

using a Directed Acyclic Graph (DAG), which allows to represents the dependencies between the sub-tasks.81

These sub-tasks can be used similarly to the previous defined tasks but might depend on results of different82

sub-tasks, thus the between task dependencies have to be kept in mind. For instance if we can split the task83

A into four sub-tasks a, b, c, d with dependencies A = a◦b◦(c, d). Here we can compute c and d independently84

but need the results to compute b and a respectively. Although, tasks can be split into smaller sub-tasks, it85

is important to keep in mind the associated overhead cost. A high number of smaller tasks might impede86

the overall performance of the system due to the added communication and synchronization overhead.87

In summary, tasks in edge computing networks can come in different forms, and their properties and88

requirements determine the type of compute device that is suitable for their execution. Factors such as89

data size, computational intensity, and deadline can impact the choice of compute device. Additionally,90

tasks may have dependencies on other tasks or data sources, and their computational intensity may not91

always be known beforehand. In such cases, it is important to monitor the progress and performance of the92

task during its execution and adjust the compute resources allocated to it accordingly. Furthermore, heavy93

tasks can be split into smaller sub-tasks using a DAG, but it is important to consider the associated overhead94

cost. Overall, understanding the properties and requirements of tasks is crucial for efficient execution in an95

edge infrastructure.96

3 Compute devices97

Compute devices or simply devices in the edge computing paradigm refer to the hardware components that98

are responsible for performing the computational tasks. These devices can range from low-power devices, e.g.99

micro-controller to high-performance servers located in data centers. Depending on the distance of these100

devices concerning a data producer or the highest power device in the infrastructure (typically a server),101

people tend to group them into categories. For instance, devices that are close to the data producers/source102

tend to be called edge devices, synonymous with devices close to the edge of the network.103

Edge devices are often characterized by their limited processing power, memory, and energy resources.104

Examples of such devices include sensors, smartphones, IoT devices, and microcontrollers. Due to their105

limited resources, edge devices may not be able to perform computationally intensive tasks, and may rely on106
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more powerful devices, such as servers or cloud infrastructure. However, edge devices can still perform some107

local processing, such as data filtering or preprocessing, before sending the data to a more powerful device108

for further processing. On the other hand, more powerful devices, such as servers are typically located in109

data centers and are characterized by their high computational power, memory, and storage capacity. These110

servers can handle complex and computationally intensive tasks, such as machine learning and big data111

analytics. However, the latency involved in transmitting data to and from cloud servers can be a major112

bottleneck in certain applications, such as real-time data processing and control systems. Thus some people113

tend to deploy local computing infrastructure, which is closer to the edge devices, to reduce latency and114

improve response time 3.115

Intermediately, if thinking about executing a task A on a specific device d, the question of how long it116

takes for a given task to be finished on the device or how much power it takes to run this task on this117

device arises. Let’s consider a device d, very simplified we can think about a device in terms of its CPU118

frequency fd, normally given in Hz. This tells us how many CPU cycles are completed in a second. Using119

this simplification, we are now able to compute the time it takes to complete a task on a given device td.120

td = lx

fd
= ω

fd
(1)

Here l is the input data size of the task and x is the computational intensity of the task. Additionally, the121

measure ω is a derived task metric and can be thought of as the required number of CPU cycles to complete122

the task.123

This simplification might hold for some devices but generally, the CPU frequency of a device might not be124

static or might change depending on the load of the device or the general power consumption policy. Thus,125

more considerations are needed to get a more accurate measure of the execution time of a task but this is126

an initial first-order approximation. In a practical setting, one might want to create a more detailed model127

for each device depending on the desired accuracy.128

As edge computing is mostly interested in low-power and also mobile and/or wireless devices, the power129

consumption of each task for each device is also of interest. E.g. a mobile device might not be able to130

compute a task because of the limited battery capacity or because of thermal limitations. Again we use a131

simplification to determine the power consumption, for low-power devices we disregard contributions to the132

energy consumption such as the memory and network interfaces. We only consider the CPU contribution as133

it is the dominant factor.134

It can be shown using circuit theory and experimental validation, that the power consumption of a CPU is135

roughly proportional to the frequency squared [8]. Introducing a device-specific constant κ (Js2) the energy136

required for computation is then given by137

Ed = κlxf2
d = κωf2

d . (2)

The constant κ can be acquired using experiments on the specific device. In contrast, as servers are normally138

multi-core devices, this simple power consumption model has to be adjusted to incorporate multiple running139

3This intermediate infrastructure part between edge devices and the data center/cloud is sometimes called fog.
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tasks. For instance, we can just choose to sum all contributions.140

Es =
∑
i≤k

κwif
2
s,i (3)

Whereby, fs,i is the CPU frequency allocated for the task i and wi the required number of CPU cycles141

to complete the task i. This might not be very realistic for all kinds of devices. In reality, the power142

consumption of a device depends on various factors, including the type of processor, the workload, and the143

operating conditions such as temperature and voltage. Therefore, a more comprehensive model of power144

consumption would need to take into account these factors and their interactions. Especially for a server,145

which can still consume up to 70% [9] of its maximum energy consumption when idle, an alternative model146

is needed. Using a utilization-based approach to model the power consumption of a server might be more147

realistic. Energy consumption is roughly linear to CPU utilization ratio [10]. Given a server maximum148

energy consumption Emax and a fraction α for the idle energy consumption, we can define an alternate149

energy consumption model.150

Ēs = αEmax + (1 − α)Emaxu (4)

This does not directly make use of our previously defined tasks, but we might be able to define the utilization151

of the server u as a sum of all currently running tasks. For instance, assuming each task Ai increases the152

utilization by ∆ui we can compute the increase of energy consumption of the server Es.153

Es = (1 − α)Emax∆ui (5)

1 ≥ u + ∆ui (6)

Again this is highly simplified. For example, the efficiency of the server’s power supply and cooling system154

can also affect energy consumption at different utilization levels.155

Concluding, to determine the execution time and power consumption of a task on a given device one can156

use models based on CPU frequency, computational intensity, and energy consumption per CPU cycle. In157

practice, more detailed models may be necessary if more accurate estimations of execution time and power158

consumption are required. Depending on the device these models may include other metrics such as memory159

access latency, cache size, disk access speed, the network controller, and more. Moreover, software-level160

optimizations can also greatly impact the performance and energy efficiency of a device.161

4 Communication between devices162

In addition to execution time and power consumption of devices the network used in communication or163

offloading tasks also plays a crucial role in overall performance and energy consumption. Communication164

between devices can be achieved using different types of protocols, such as cellular networks, Wi-Fi,165

Bluetooth, Zigbee, etc. Each of these protocols has its characteristics, such as data rate, latency, reliability,166

and energy consumption (see [11]).167

Generally, communication is a crucial aspect to consider in edge computing, as it also impacts the168

performance and energy consumption of the system. Especially for evaluating if a task should be offloaded to169

a more powerful device, it is important to consider the impact of transmitting to the tasks compute time and170
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energy consumption. For instance, a single task allocating most of the network’s data rate can bottleneck171

other currently running tasks.172

The energy impact and time delay of communication can be significant, especially when dealing with large173

data amounts or tasks requiring low latency. For instance, in scenarios where robots in a factory need to174

react in real-time to human interactions, delays in communication could potentially result in dangerous or175

even deadly situations.176

Therefore, it is essential to carefully consider the communication infrastructure and protocol used for177

communication, to ensure optimal performance and energy efficiency of the system. This includes factors178

such as data compression, message prioritization, and error-handling mechanisms.179

It’s worth noting that the type of communication used can also affect the determinism of the system. Wired180

networks, such as Ethernet or fiber-optic cables, typically provide deterministic and reliable communication181

with low latency and negligible packet loss. On the other hand, wireless networks, such as Wi-Fi, cellular182

networks, or satellite, are inherently stochastic in nature due to interference, noise, and varying signal183

strengths. This stochastic behavior can lead to packet loss, delay, and higher energy consumption due to the184

re-transmission of lost packets. Additionally, wireless technologies normally have significantly higher power185

requirements than their wired counterparts. On the other hand, wireless networks offer more flexibility, are186

generally less expensive in the acquisition, and require less maintenance. Therefore, the choice of network187

for communication between devices should be carefully considered, taking into account the desired level of188

determinism, energy efficiency, and reliability of the system.189

To simplify the communication between devices, let’s interpret the communication between devices as a190

simple data transfer between two endpoints, abstracting away the details of the underlying network and191

protocols. Additionally, latency is disregarded as the transfer times are normally significantly bigger. A192

connection between two endpoints can be established with a mean bandwidth b. The time to communicate193

a task tc with data size l is then given by194

tc = l

b
(7)

Overall, this abstraction might hold well for wired communication but is too simplified and inaccurate195

for wireless communication. This is due to the stochastic nature of wireless networks. Typical problems196

can include but are not limited to atmospheric ducting, reflection, and refraction from scattering objects197

in the environment. Additionally, other broadcast signals can lead to interference. This might introduce198

unpredictable delays and packet loss and cannot be captured by a simple bit pipe model. Therefore, more199

sophisticated models and protocols are required to predict communication speeds in wireless networks [12].200

In addition to effective task execution or timings of the network, the choice of communication infrastructure201

might also impact power consumption. Wireless networks generally consume more energy than wired202

networks due to the need for radio frequency transmission and reception, which can be energy-intensive.203

In addition, wireless networks may require more frequent re-transmissions of lost packets, which further204

increases energy consumption. To reduce the consumption of the communication, the data size can be205

decreased through compression or low-power communication technologies with the trade-off of range or206

bandwidth.207
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Approximating, the energy impact of communication is among other dependent on the transferred amount208

of data, the bandwidth, the type of communication, the number of routers on the path, and their209

utilisation [13, 14]. One common approach to approximating communication energy consumption is to210

use mathematical models based on the physical characteristics of the communication channel, such as211

signal propagation, attenuation, and noise [15]. For instance, the Friis transmission equation might be212

used to approximate wireless transmissions [16]. Other approaches involve using empirical measurements or213

simulations to estimate the energy consumption of different communication protocols [17, 18, 19]. Taking214

into account factors such as packet size, transmission rate, modulation scheme, error correction, and network215

topology.216

Security is another critical aspect to consider when it comes to communication between devices in edge217

computing. With the increasing number of devices and the complexity of the network, the potential218

attack surface also increases. In addition, the distributed nature of edge computing means that data is219

often transmitted over untrusted and heterogeneous networks, which makes it vulnerable to interception,220

tampering, and other types of attacks. To ensure the security of communication in edge computing, it221

is essential to implement robust security measures such as encryption, authentication, access control, and222

intrusion detection. Furthermore, it is important to stay up to date with the latest security threats and223

vulnerabilities and apply security patches and updates on time.224

In summary, communication in edge computing should factor data rate, latency, reliability, and energy225

consumption of the selected communication protocol. Communication can significantly impact the226

performance and energy consumption of the system, especially for tasks requiring low latency or dealing227

with large amounts of data. The choice of a wired or wireless network also affects the determinism,228

energy efficiency, and reliability of the system. In addition, communication infrastructure can impact229

power consumption, and sophisticated models and protocols are required to predict communication speeds230

in wireless networks. Security is also a critical aspect that must be considered, and robust security measures231

must be implemented to ensure the security of communication in edge computing.232

5 Task and resource orchestration233

Using the previously defined tasks, compute resources, and communication we are now able to design specific234

algorithms to allocate tasks to specific devices. This is called resource orchestration. Here resource refers to235

the process of allocating and scheduling computational tasks across the hardware and infrastructure while236

considering the constraints and requirements of each task and device. This is a critical component of edge237

computing, as it enables efficient use of computational resources and ensures that tasks are executed in a238

timely and/or effective manner.239

Resource orchestration is essential in edge computing environments due to the distributed nature of the240

infrastructure, the heterogeneity of devices, and the variability of the network. Resource orchestration241

algorithms aim to minimize a variety of metrics depending on the specific use case. For instance, in a242

real-time video analytics application, the objective could be to minimize the latency of the system, while243

in a smart home automation system, the goal could be to minimize the energy consumption of the devices.244
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Metrics might include but are not limited to latency, energy efficiency, throughput, bandwidth usage, resource245

utilization, reliability, and security. But most predominantly and also considered earlier are latency and246

energy consumption.247

Latency is especially important for time-critical applications, such as real-time monitoring, control systems,248

and autonomous vehicles, where even a small delay can have serious consequences. Energy consumption,249

on the other hand, is crucial for battery-powered or energy-sensitive devices, such as IoT sensors, and250

wearable, and mobile devices, where minimizing energy usage is critical to extending battery life and reducing251

operational costs.252

Apart from these two metrics, other factors like throughput, bandwidth usage, reliability, and security can253

also be important in certain applications. For instance, high throughput can be important for applications254

that handle a large number of concurrent users or high-volume data streams, while bandwidth usage can be255

a constraint in networks with limited bandwidth or high costs. Reliability and security, on the other hand,256

can be critical for applications that handle sensitive data or require high levels of privacy and protection257

against cyber-attacks.258

Overall, the choice of metrics to optimize for resource orchestration depends on the specific use case and259

application requirements. Careful consideration of all the relevant factors can help ensure that the edge260

computing system is optimized for its intended purpose while balancing performance, efficiency, and cost-261

effectiveness.262

Let’s consider an energy-constrained example using a single device d, a server s. The device has a limited263

battery capacity, thus it might be beneficial to offload computations to increase the device’s lifetime. For264

instance, we can introduce a decision boundary to decide if we should offload the task. If the Energy needed265

to compute a task on the device Ed is greater than the total energy needed to communicate Ec and the idle266

energy consumption of the device Ei
d we offload the task.267

Ed > Ec + Ei
d (8)

Further, one might introduce additional factors, depending on the application and metrics of interest. As a268

note, the decision boundary does not have to be linear and might follow more complex functions depending269

on the specific use case and requirements.270

Let’s also consider the latency of the task as a factor in the decision-making process. If the latency of271

offloading the task and waiting for the server to complete it exceeds a certain threshold, it might be more272

efficient to perform the computation locally, even if it consumes more energy. This can be written as follows273

Ed > Ec + Ei
d if td > ts + tc (9)

Ed ≤ Ec + Ei
d otherwise (10)

where td is the time to perform the computation locally, ts is the time to perform the computation on the274

server, and tc is the time to communicate the task data to the server and receive the results back4.275

Additionally, stochastic factors such as varying network conditions, device workload, and energy availability276

can also affect the decision to offload a task. To account for these stochastic factors, one can use277

4These contributions might be split but for simplicity let’s consider them as a single contribution
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the probabilistic models or machine learning algorithms to predict the expected energy consumption or278

latency, and other performance metrics of different offloading strategies, based on historical data and real279

measurements [20].280

For instance, let’s consider a varying wireless connection and a device with variable CPU frequency. For281

simplicity let’s say both of these are independent random variables and we observe a normal distribution for282

the frequency distribution and the additional energy consumption for the communication. We infer this by283

performing some test measurements on the proposed infrastructure.284

fd ∼ Normal(µd, σd) (11)

Ec ∼ Normal(µc, σc) (12)

Given a fixed task A, we can still calculate the time needed to compute the task on the device td as in eq. 1.285

Additionally, we can see the energy as in eq. 2 is now similar to a squared normal distribution. Obtaining286

closed-form solutions of the decision boundaries as in e.g. eq. 8, for this example, might still be possible but287

generally speaking, this is rarely the case. Here one might want to use a more general measure to compare288

different distributions, for instance, the KullbackLeibler divergence or if metric properties are desired the289

Wasserstein distance.290

In conclusion, resource orchestration is a critical component of edge computing, as it enables efficient use of291

computational resources and ensures that tasks are executed in a timely and/or effective manner. The choice292

of metrics to optimize for depends on the specific use case and application requirements. Apart from latency293

and energy consumption, other factors like throughput, bandwidth usage, reliability, and security can also294

be important. Additionally, stochastic factors such as varying network conditions, device workload, and295

energy availability can also affect the decision to offload a task and probabilistic models or machine learning296

algorithms [21] can be used to predict the expected performance metrics of different offloading strategies.297

6 Conclusion298

The edge paradigm has emerged as a response to the increasing growth of data producers and consumers.299

Its ability to bring compute closer to the data is a major advantage, particularly for real-time applications.300

However, the terminology surrounding edge and related concepts can be inconsistent, making it difficult301

to distinguish between them. In general edge computing is concerned with the processing and analysis of302

data by offering a promising solution to the challenges posed by the sheer volume of data that needs to be303

processed in real-time or most efficiently.304

In this context, modeling has a crucial role in enabling the effective implementation of edge computing305

systems or designing them from scratch for a specific use case. By modeling the tasks, resources, and306

communication infrastructure, we can create algorithms and frameworks that optimize resource orchestration,307

data processing, and analytics. This allows us to develop efficient, scalable, and adaptive edge computing308

systems that can respond to the changing demands of data processing.309
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Furthermore, modeling enables us to study the performance of different edge computing architectures,310

evaluate their limitations and identify areas of improvement. This helps us to continuously refine and311

enhance the design of edge computing systems to meet the evolving needs of users.312

In conclusion, modeling is a critical component of edge computing, allowing us to design, develop and evaluate313

systems that can process and analyze data in real time or in the most efficient manner. The ability to model314

tasks, resources, and communication infrastructure enables us to optimize resource orchestration, develop315

effective algorithms and frameworks, and design efficient edge computing architectures. As such, modeling316

will continue to play a vital role in the advancement of edge computing, paving the way for innovative317

solutions in various fields, including IoT, smart cities, healthcare, and beyond.318
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