

Julian Kunkel

Visual Analytics & Large-Scale Data Analysis

Learning Objectives

Visual Data Analysis

- Sketch the visual analytics workflow
- List optical illusions
- List 5 goals of graphical displays
- Discuss the 4 guidelines for designing graphics on examples
- Describe the challenges when analyzing data
- Discuss the benefit of in-situ and in-transit data analysis

 Julian M. Kunkel
 HPDA22
 2/45

Outline

- 1 Visual Data Analysis
- 2 Visual Perception
- 3 Designing Graphics
- 4 Large Scale Data Analytics
- 5 Climate/Weather IO
- 6 Summary

Julian M. Kunkel HPDA22 3/45

Statistical Graphics [44]

Definition: Graphics in the field of statistics used to visualize quantitative data

Objectives

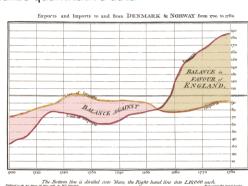
Visual Data Analysis

•000000

- The exploration of the content of a data set
- The use to find structure in data
- Checking assumptions in statistical models
- Communicate the results of an analysis

Plots (Excerpt)

- Scatter, box, histograms
- Statistical maps
- Probability plots
- Spaghetti plots
- Residual plots



Summary

Figure: Source: William Playfair's Time Series of Exports and Imports of Denmark and Norway [44]

Visual Analytics [32]

Definition [33]

The science of **analytical reasoning** facilitated by **interactive visual interfaces**.

Objective

Visual Data Analysis

000000

- Solve complex questions/time critical problems applying the scientific method
- Present gained insight / communicate it visually

Analytical tasks

- Understanding past situations; trends and events that caused current conditions
- Monitoring events for indicators for an emergency
- Identifying possible alternative future scenarios and their warning signs
- Determining indicators of the intent of an action or an individual
- Supporting decision makers in times of crisis

Julian M. Kunkel HPDA22 5/45

Visual Analytics Workflow

Visual Data Analysis

0000000

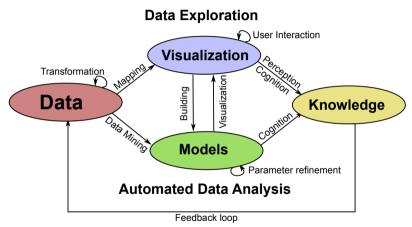


Figure: Figure based on [48]

Motto: Analyse First - Show the Important; Zoom, Filter and Analyse Further - Details on

Julian M. Kunkel HPDA22 6/45

Fields of Visual Analytics

Visual Data Analysis

0000000

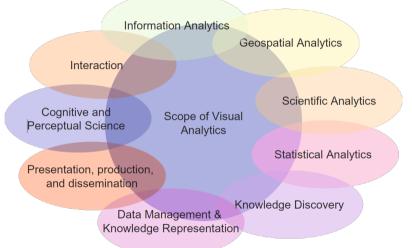


Figure: Source: Visual analytics: Scope and challenges [48]

Julian M. Kunkel HPDA22 7/45

Human-Computer Interaction

Visual Data Analysis

0000000

Why do we team humans and computers using a visual interface?

Comparing capabilities of humans and computers

- Human brain processing power is enormous
 - ▶ 100 billion neurons, linked together by many synapses
 - ▶ Synapses fire with $4.3 \cdot 10^{15}$ spikes/s; data rate of $1.1 \cdot 10^{16}$ bits/s = 125 TiB/s; 20 Watt [6]
 - ▶ The supercomputer Sunway TaihuLight [7]: 125 TFlop/s, 15 MW
 - ▶ Estimation: Simulating one second of human brain activity requires 83k processors
- Strength of humans and computers:

Human	Computer
Pattern recognition	Execution of algorithms
Creative thinking	Accuracy
Processing new infos	

- Visual perception and analysis capabilities exceed computers, e.g., computer vision
 - ▶ Vision uses 30-50% of the brain's capabilities
 - ⇒ Visual representation and analytics is key for efficiency

Iulian M, Kunkel HPDA22 8/45

Example Analysis Session: Demo

Based on a real case [35]

- 1854. Broad Street, London
- Within a few days people died mysteriously
- Dr. John Snow investigated the cause to stop "disease"
 - ▶ He analyzed data visually with the scientific method
- We will follow his analysis steps
 - Using modern data analytics tools

Interactive lab notebook

- Record notes/hypothesis, type code, store it together with results
- The notebook is prepared using Jupyter with Python

Iulian M. Kunkel HPDA22 9/45

Analysis Results

- John found the source of the Cholera: The pump
 - ▶ He claimed the disease is spread by the water
 - ▶ John is one of the founders of our Germ theory
- They unmounted the pump handle
 - ▶ But could not proof theory
- Board of health did not believe his analysis
 - ► They believed "Miasma" is the cause
 - ⇒ Convincing documentation is important!

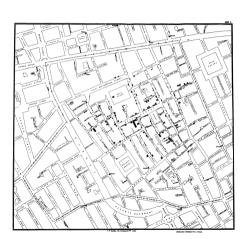


Figure: Original map made by John Snow in 1854. Cholera cases are highlighted in black.

Julian M. Kunkel HPDA22 10/45

Outline

Visual Data Analysis

- 1 Visual Data Analysis
- 2 Visual Perception
 - Cognition
 - Visual Perception
 - Optical Illusions
- 3 Designing Graphics
- 4 Large Scale Data Analytics
- 5 Climate/Weather IC
- 6 Summary

 Julian M. Kunkel
 HPDA22
 11/45

Cognition

Definition: The mental action or process of **acquiring knowledge** and **understanding** through thought, experience, and the senses [46]

- Communicated information and interpretation is biased by humans due to:
 - ► Perception
 - Information processing
 - Subjective knowledge
- Psychology knows many cognitive biases [40]
- Categories of cognitive biases:
 - ▶ Limits of memory
 - Too much information
 - Not enough meaning
 - Need to act fast
- Categories serve as guidelines for visual analytics
- We will focus on visual perception

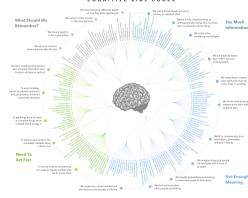


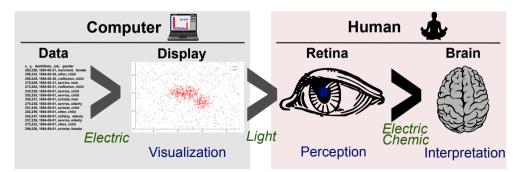
Figure: Source: Wikipedia's complete (as of 2016) list of cognitive biases, beautifully arranged and designed by John Manoogian III (jm3). Categories and descriptions originally by Buster Benson. [40]

Visual Perception: Information Pipeline

Information Communication

Visual Data Analysis

- Information is transformed several times from digital data to human
- The retina and brain interprets visual information
- Efficient communication requires to understand human perception



Optical Illusions [38]

Visual Data Analysis

- Definition: visually **perceived images** that differ from **objective reality**
 - ► They are caused by the **visual system**
- They are many different types of illusions
 - Perceived colors and contrasts
 - Size and shapes of objects
 - Interpretation of objects
 - Depth perception
 - Moving of objects
 - Afterimages
 - **.**..

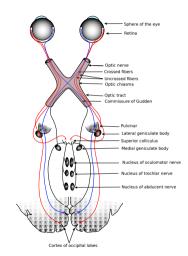


Figure: Source: Gray's Anatomy depiction of the optic nerves & nuclei... KDS444 [39]

Color Illusion

Visual Data Analysis

Field A and B have the same gray tone

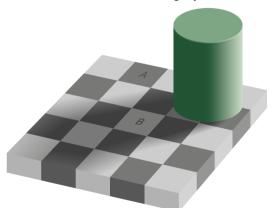


Figure: Source: The checker shadow illusion. Edward H. Adelson [38]

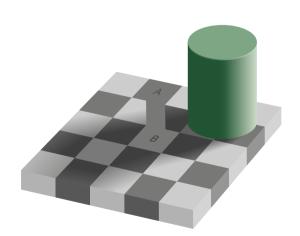


Figure: Proof: Breaking the illusion. Source: Edward Adelson [38]

Color Illusion (2)

Visual Data Analysis

Form that seems to be filled in yellow instead of white

Figure: Source: Blue-bordered cookie that misleadingly seems to be filled with light yellow water-color. Jochen Burghardt. [38]

Iulian M. Kunkel HPDA22 16/45

Shapes of Objects

Visual Data Analysis

Both orange circles are the same size

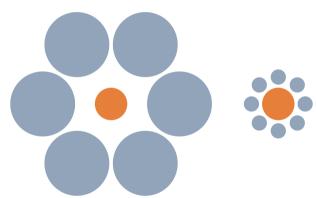


Figure: Source: Optical illusion: The two orange circles are the same size. [38]

Julian M. Kunkel HPDA22 17/45

Shapes of Objects (2)

Visual Data Analysis

Vertical and horizontal lines have the same length

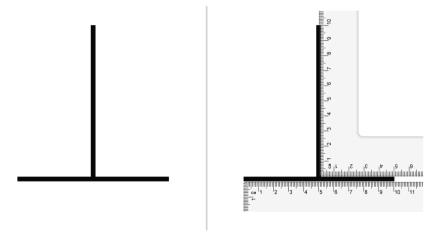


Figure: Source: Vertical-horizontal illusion, S-kay [38]

Julian M. Kunkel HPDA22 18/45

Climate/Weather IO

Summary

Shapes of Objects (3)

Visual Data Analysis

Imaging a white triangle in the center

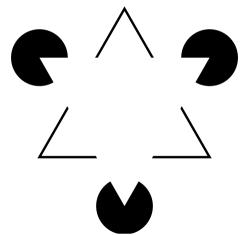


Figure: Source: Kanizsa triangle. Fibonacci [38]

Julian M. Kunkel HPDA22 19/45

Interpretation of Images

Vase or two faces

Visual Data Analysis

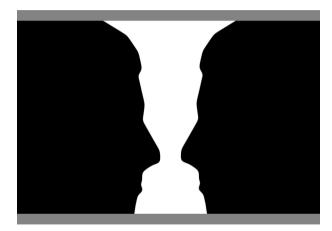


Figure: Source: Two silhouette profiles or a white vase?, Brocken Inaglory [38]

 Julian M. Kunkel
 HPDA22
 20/45

Interpretation of Images (2)

Duck or rabbit

Visual Data Analysis

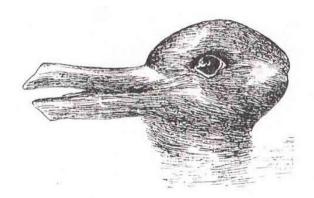


Figure: Source: Jastrow, J. (1899). The mind's eye. Popular Science Monthly, 54

Julian M. Kunkel HPDA22 21/45

Climate/Weather IO

Summary

Visual Data Analysis

Visual Perception

- 2 Visual Perception
- 3 Designing Graphics
 - Introduction
 - Guidelines
 - Infographics
 - Interactive
- 4 Large Scale Data Analytics
- 5 Climate/Weather IC
- 6 Summary

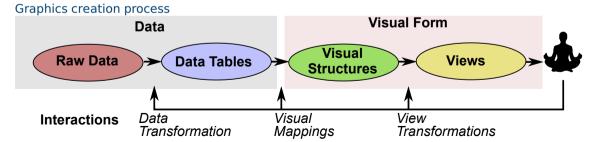
Julian M. Kunkel HPDA22 22/45

Design of (Interactive) Graphics

- Designing a good visualization is non-trivial
- There exist many guidelines and languages to "program" graphics
- Considerations: limitations of the visual system and cognitive biases
 - ▶ Limits of memory

Visual Data Analysis

- ▶ Too much information
- Not enough meaning
- ▶ Need to act fast



Julian M. Kunkel HPDA22 23/45

Components of Visual Mappings / Encodings [43]

- Spatial substrate: mapping variables to space (and axes)
 - ▶ Depends on the type of data: structured, unstructured
 - ▶ Values: nominal, ordinal, quantitative
- Marks: visible elements: points (0D), lines, areas, volumes (3D)
- Connection: uses points and lines to show relationships
- Enclosure: boxes around elements; useful to encode relationships
- Retinal properties:

Visual Data Analysis

- ► Spatial: Size, orientation
- ▶ Object: Gray scale, color, texture, shape
- Temporal encoding: Animations

Julian M. Kunkel HPDA22 24/45

Guidelines

Visual Data Analysis

Goals of **graphical displays** according to [42]

- show the data
- induce the viewer to think about the substance rather than about methodology, graphic design, the technology of graphic production, or something else
- avoid distorting what the data have to say
- present many numbers in a small space
- make large data sets coherent
- encourage the eye to compare different pieces of data
- reveal the data at several levels of detail, from a broad overview to the fine structure
- serve a reasonably clear purpose: description, exploration, tabulation, or decoration
- be closely integrated with the statistical and verbal descriptions of a data set

Julian M. Kunkel HPDA22 25/45

Information Graphics (Infographics) [41]

Definition: Graphic visual representations of information, data or knowledge intended to present information **quickly and clearly**

Figure: Source: Gartner Hype Cycle for Emerging Technologies, leff McNeil [41]

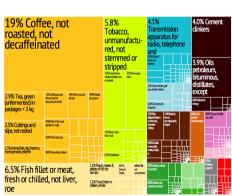


Figure: Source: Uganda Export Treemap from MIT Harvard Economic Complexity Observatory. R. Haussmann, Cesar Hidalgo, et.al. [41]

 Visual Perception
 Designing Graphics
 Large Scale Data Analytics

 ○○○○○○○○
 ○○○○○

Guidelines

Visual Data Analysis

Simple rules

- Use the right visualization for the for data types
- Use building blocks for graphics (known plot styles)
- Reduce information to the essential part to be communicated
- Consistent use of building blocks and themes (retinal properties)

Promising concepts in expressing graphics

- ggplot2 (for R)
 - ► Follows the "Grammar of graphics"
 - Aesthetics define data used for the plot
 - Geometry are visual elements organizing the data
 - Faceting generates multiple subplots based on properties
- Vega https://vega.github.io/vega/
 - ▶ Declarative language for interactive graphics
 - ▶ Specified in JSON format; suitable for browser visualization
- GoJS https://gojs.net/latest/samples/seatingChart.html

Summary

Climate/Weather IO

Interactive Data Visualization

Typical interactions with a view [50]

Visual Data Analysis

- **Brushing**: selecting elements individually/with a lasso
- **Painting**: create a group from selected elements
 - ▶ Allows to perform subsequent operations with the group
- Identification: cursor/mouse provides details about marked element(s)/groups
- Scaling: navigate plots, re-scale, zoom, drill-up/down aggregated data
- Linking: interactions are performed on all connected plots
 - ► An element/group marked in one plot is highlighted on other plots
 - Scaling operations affect connected plots

Julian M. Kunkel HPDA22 28/45

- 4 Large Scale Data Analytics

Julian M. Kunkel HPDA22 29/45

Large Scale Data Analytics for Scientific Computing

Scientific Computing

- Large-scale computing on the frontier of science
- Traditional workflow: execute scientific application, store results, analyze results

Challenges

Visual Data Analysis

- Large data volumes and velocities
 - How can we analyze 1 PByte of data?
 - ▶ How can we manage 100 M files?
- Complex system (and storage) topologies
- Understanding/optimization of system behavior is difficult
- Data movement between CPU and even memory storage is costly
 - 5000x more than a DP FLOP¹
 - ▶ 10 pl per Flop (2018), 2000 pl for DRAM access

Julian M. Kunkel HPDA22 30/45

http://www.fatih.edu.tr/ esma.yildirim/DIDC2014-workshop/DIDC-parashar.pdf

31/45

In-situ and in-transit Analysis/Processing

- In-situ: analyze results while the application is still computing
 - ▶ How: define computation (e.g. data flow graph) of data a-priori
 - Runtime deploys them with application execution
 - ▶ Typically on either the same nodes as the application or dedicated servers
- In-transit: analyze/post-process data while it is on the I/O path
 - Extend in-situ idea with means to deploy parts of the processing across system
- Computational steering: interact with the application while it runs
 - e.g., modify simulation parameters, modify objects
- Example solutions that support analysis
 - ▶ DataSpaces²
 - ► ADIOS³

Visual Data Analysis

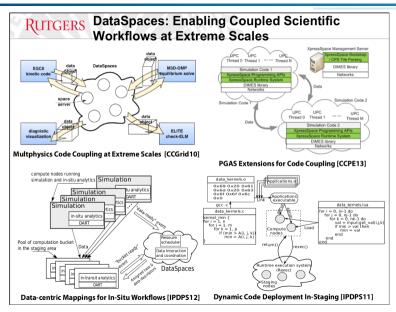
Paraview (with Catalyst)

Iulian M. Kunkel HPDA22

http://www.fatih.edu.tr/ esma.yildirim/DIDC2014-workshop/DIDC-parashar.pdf

Paper: Combining in-situ and in-transit processing to enable extreme-scale scientific analysis, 2012

Visual Data Analysis



Paraview

Features

Visual Data Analysis

- Interactive and remote visualization of scientific data
 - ▶ Just requires adaptor for file formats
- Generates level-of-detail models for interactive frame rate
- Catalyst: in-situ use case library
 - ► Catalyst scripts implement analysis/visualization tasks
 - User must push data via API

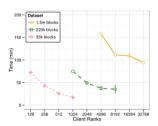


Figure: Classical workflow

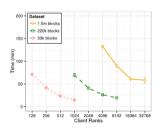


Figure: Catalyst workflow

 Julian M. Kunkel
 HPDA22
 33/45

Outline

Visual Data Analysis

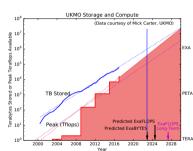
- 1 Visual Data Analysis
- 2 Visual Perception
- 3 Designing Graphics
- 4 Large Scale Data Analytics
- 5 Climate/Weather IO
- 6 Summary

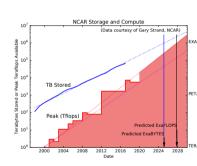
 Julian M. Kunkel
 HPDA22
 34/45

The Exabyte Challenge in Climate and Weather



Visual Data Analysis



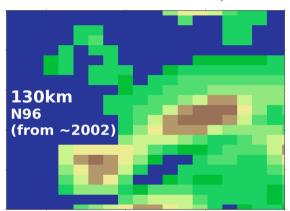


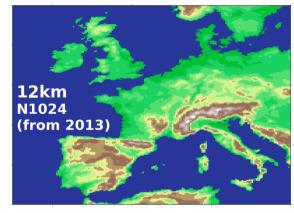
Long-term predictions uses historical data (before 2000)

Volume: A Modest (?) Step ...

Visual Data Analysis

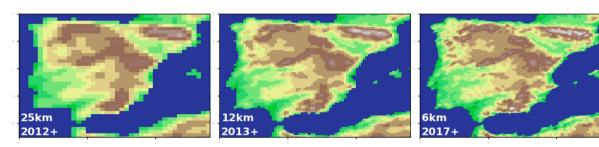
Iulian M. Kunkel





One "field-year": 26 GB 1 field, 1 year, 6 hourly, 80 levels 1 x 1440 x 80 x 148 x 192 One "field-year": 6 TB 1 field, 1 year, 6 hourly, 180 levels 1 x 1440 x 180 x 1536 x 2048

Volume — The Reality of Global 1km Grids



1 km is the current European Network for Earth System Modelling (ENES) goal!

Consider N13256 (1.01km, 26512x19884):

1 field, 1 year, 6 hourly, 180 levels

Visual Data Analysis

■ 1 x 1440 x 180 x 26512 x 19884 = 1.09 PB

■ but with 10 variables hourly: > 220 TB/day!

Can no longer consider serial diagnostics

 Julian M. Kunkel
 HPDA22
 37/45

Climate/Weather Workflows

General Challenges Related to IO

- Programming of efficient workflows
- Efficient analysis of data
- Organizing data sets

Visual Data Analysis

- Ensuring reproducability of workflows/provenance of data
- Meeting the compute/storage needs in future complex hardware landscape

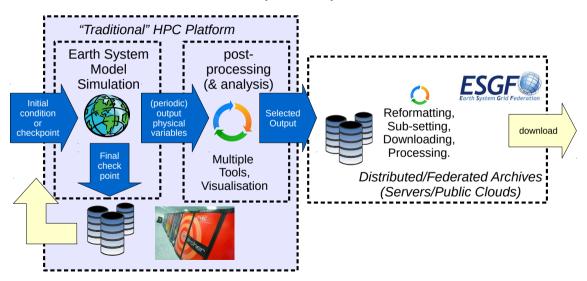
Expected Data Characteristics in 2020+

- Velocity: Input 5 TB/day (for NWP; reduced data from instruments)
- Volume: Data output of ensembles in PBs of data
- Variety: Various file formats, input sources
- Usability: Data products are widely used by 3rd parties

Julian M. Kunkel HPDA22 38/45

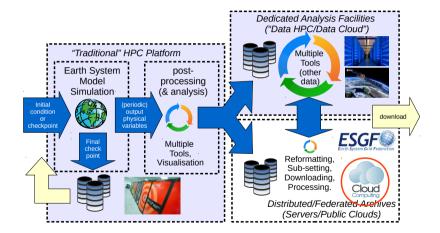
Visual Data Analysis

How we used to do it: From Supercomputer to Download



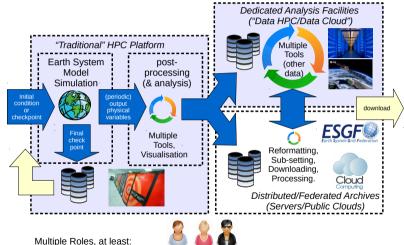
Many different supercomputing environments

Visual Data Analysis



Visual Data Analysis

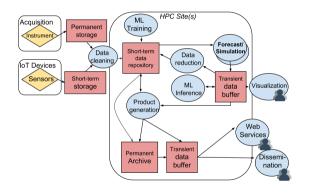
Many different supercomputing environments



Model Developer, Model Tinkerer, Runner, Expert Data Analyst, Service Provider, Data Manager, Data User

Visual Data Analysis

Smarter Climate/Weather Workflows in the Future



- IoT (and mobile devices)
 - Additional data provider
 - Improves short-term weather prediction
- Machine learning support
 - Localize known patterns
 - Interactive use Visual analytics
- Data reduction
 - Output is triggered by events (ML)
 - ▶ Compress data of ensembles

Julian M. Kunkel HPDA22 41/45

Personal Long Term Vision: Separation of Concerns

Decisions made by scientists

Scientific metadata

Visual Data Analysis

- Declaring workflows
 - ▶ Covering data ingestion, processing, product generation and analysis
 - ▶ Data life cycle (and archive/exchange file format)
 - ► Constraints on: accessibility (permissions), ...
 - ► Expectations: completion time (interactive feedback human/system)
- Modifying workflows on the fly
- Interactive analysis, e.g., Visual Analytics
- Declaring value of data (logfile, data-product, observation)

Julian M. Kunkel HPDA22 42/45

Separation of Concerns

Visual Data Analysis

Programmers of models/tools (e.g., Ophidia)

- Decide about the most appropriate API to use (e.g., NetCDF + X)
- Register compute snippets (analytics) to API
- Do not care **where** and **how** computation is done

Decisions made by the (compute/storage) system

- Where and how to store data, including file format
- Complete management of available storage space
- Performed data transformations, replication factors, storage to use
- Including scheduling of compute/storage/analysis jobs (using, e.g., ML)
- Where to run certain data-driven computations (**Organic HPC**)
 - ► Client, server, in-network, cloud, your connected laptop

Julian M. Kunkel HPDA22 43/45

Summarv

Summary

Visual Data Analysis

Visual Analytics

- Visual perception is efficient for communication of information
- Understanding limitations of cognition (the visual system) is important
- Visual analytics follows the scientific method
 - Interactive data exploration, modeling & experimentation
 - Extends exploratory data analytics
- Graphics design follows principles

Large Scale Data Analysis

- Analyzing large volumes/velocities of science data is difficult
- In-Situ and In-transit workflows enable large-scale data analysis

 Julian M. Kunkel
 HPDA22
 44/45

Climate/Weather IO

Summary

Bibliography I

Visual Data Analysis

- 31 https://en.wikipedia.org/wiki/Scientific_method
- 32 https://en.wikipedia.org/wiki/Visual_Analytics
- 33 James Thomas, Kristin Cook. 2005. Illuminating the Path: The R&D Agenda for Visual Analytics National Visualization and Analytics Center
- 34 Keim D. A. Mansmann F. Schneidewind I. Thomas I. Ziegler H. 2008. Visual analytics: Scope and challenges. Visual Data Mining
- 35 https://en.wikipedia.org/wiki/1854_Broad_Street_cholera_outbreak
- 36 Martins N., Erlhagen W., Freitas R. 2011. Non-destructive Whole-brain Monitoring using Nanorobots
- 37 http://www.top500.org (Nov. 2016)
- 38 https://en.wikipedia.org/wiki/Optical_illusion
- 39 https://en.wikipedia.org/wiki/Visual_system
- 40 https://en.wikipedia.org/wiki/List_of_cognitive_biases
- 41 [https://en.wikipedia.org/wiki/Infographic]
- 42 Edward Tufte. 1983. The Visual Display of Quantitative Information.
- 43 Scott Card. 2009. Information visualization. In A. Sears & J. A. Jacko (Eds.), Human-Computer Interaction: Design Issues, Solutions, and Applications
- 44 https://en.wikipedia.org/wiki/Statistical_graphics
- 45 https://en.wikipedia.org/wiki/Exploratory_data_analysis
- 46 https://en.oxforddictionaries.com/definition/cognition
- 47 https://de.wikipedia.org/wiki/Visual_Analytics
- 48 D. A. Keim, F. Mansmann, J. Schneidewind, J. Thomas, H. Ziegler. 2008. Visual analytics: Scope and challenges. Visual Data Mining
- 49 Comparison of Open Source Visual Analytics Toolkits, http://www.sandia.gov/~pjcross/papers/Part1.pdf
- 50 https://en.wikipedia.org/wiki/Interactive_data_visualization

Julian M. Kunkel HPDA22 45/45