
DistributedStorageandProcessing
withHadoop

Julian Kunkel

Department of Computer Science

2022-11-21

)

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Learning Objectives

■ Describe the architecture and features of Apache Hadoop

■ Formulate simple algorithms using the MapReduce programming model

■ Justify architectural decisions made in Apache Hadoop

■ Sketch the execution phases of MapReduce and describe their behavior

■ Describe limitations of Hadoop1 and the benefits of Hadoop2 with TEZ

■ Sketch the parallel file access performed by MapReduce jobs

Julian M. Kunkel HPDA22 2 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Outline

1 Hadoop

2 Map Reduce

3 Hadoop 2

4 TEZ Execution Engine

5 Development

6 Summary

Julian M. Kunkel HPDA22 3 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Hadoop Version 1

■ Apache Hadoop: Framework for scalable processing of data

▶ Based on Google’s MapReduce paper
▶ Still used in (big data) industry
▶ Good example of a distributed system

■ Consists of:

▶ Hadoop distributed file system (HDFS)
▶ MapReduce execution engine: schedules tasks on HDFS

■ Why should we combine storage and execution paradigms?

▶ Execution exploits data locality to avoid network data transfer
▶ Ship compute to data and not (big) data to compute

■ A complete ecosystem has been layered on top of MapReduce

Julian M. Kunkel HPDA22 4 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Hadoop Distributed File System (HDFS)

■ Goal: Reliable storage on commodity-of-the-shelf hardware

■ Implemented in Java

■ Provides single-writer, multiple-reader concurrency model

■ Has demonstrated scalability to 200 PB of storage and 4500 servers [12]

Features

■ Hiearchical namespace (with UNIX/ACL permissions)

■ High availability and automatic recovery

■ Replication of data (pipelined write)

■ Rack-awareness (for performance and high availability)

■ Parallel file access

Julian M. Kunkel HPDA22 5 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Hadoop File System Shell

Overview
■ Invoke via: hadoop fs <command> <args>

▶ Example: hadoop fs -ls hdfs://serverName/

HDFS command overview
■ Read files: cat, tail, get, getmerge (useful!)

■ Write files: put, appendToFile, moveFromLocal

■ Permissions: chmod, chgrp, ..., getfacl

■ Management: ls, rm, rmdir, mkdir, df, du, find, cp, mv, stat, touchz

Special commands

■ distcp: map-reduce parallelized copy command between clusters

■ checksum

■ expunge (clear trash)

■ setrep (change replication factor)

Julian M. Kunkel HPDA22 6 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Architectural Components

■ Namenode: Central manager for the file system namespace

▶ Filenames, permissions
▶ Information about file block (location)
▶ For HA, a secondary NameNode backups data

■ DataNode: Provide storage for objects (data)

▶ Directly communicates with other DataNodes for replication

■ TaskTracker: accept and runs map, reduce and shuffle

▶ Provides a number of slots for tasks (logical CPUs)
▶ A task is tried to be scheduled on a slot of the machine hosting data
▶ If all slots are occupied, run the task on the same rack

■ JobTracker: Central manager for running MapReduce jobs

▶ For HA, a secondary JobTracker backups data

■ Tools to access and manage the file system (e.g., rebalancing)

Julian M. Kunkel HPDA22 7 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

High-Level Perspective

Figure: Source: B. Hedlund. [15]

Julian M. Kunkel HPDA22 8 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

System-Level Perspective of Hadoop Clusters

Figure: Source: B. Hedlund. [15]

Julian M. Kunkel HPDA22 9 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Mapping of In-Memory Data Structures to Streams

(De)Serialization

■ Data structure (in memory) ⇒ byte stream (on storage) ⇒ data structure

■ Serialization is the process of creating a byte stream from a data structure

■ De-serialization creates a data structure in memory from the byte stream

■ Byte streams can be transferred via network or stored on block storage

Serialization frameworks

■ Provide serialization code for basic types

■ Support writing of datatype-specific serializers

■ Examples:

▶ Java: Apache Avro1, Kryo [40]
▶ Python: Pickle
▶ R: serialize(), unserialize() (functions for objects)
▶ Apache Thrift supports multiple languages

■ Requirements: Performance, platform independence

1 https://avro.apache.org/
Julian M. Kunkel HPDA22 10 / 60

https://avro.apache.org/

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Excerpt of File Formats Supported by MapReduce

Mapping to Storage: Files are split into blocks

■ A typical block size is 64 MiB

■ Blocks are distributed across nodes

■ Blocks may be compressed individually

■ Hadoop provides record readers for various file formats

Text files

■ Delimiters can be choosen

■ Splittable at newlines (only decompressed files)

Comma-separated values (CSV)

■ No header supported but JSON records are supported

■ Does not support block compression

This is a simple file.\n
With three lines – \n
this is the end.

’max’, 12.4, 10 \n
’john’, 10.0, 2 \n

Julian M. Kunkel HPDA22 11 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

File Formats (2)
Sequence files

■ Flat binary file for key/value pairs

■ Supports splitting in HDFS using a synchronization marker

■ Optional block compression for values (and keys)

■ Widely used within Hadoop as internal structure

MapFile [21]
■ Extends the sequence file

■ Provides an index for keys

Avro
■ Apache Avro’s serialization system format

■ Self-describing data format2, allows inference of schema

▶ Schema can also be changed upon read

■ Enables exchange of data types between tools

⇒ Popular file format for Hadoop ecosystem
2 A self-describing format contains information (metadata) needed to understand its contained data, e.g.,

variable/field names, data types
Julian M. Kunkel HPDA22 12 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

The HDFS I/O Path

Figure: Source: B. Hedlund. [15]

Julian M. Kunkel HPDA22 13 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

The HDFS Write Path

Figure: Source: B. Hedlund [15]

Julian M. Kunkel HPDA22 14 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

The HDFS Write Path

Figure: Source: B. Hedlund [15]

Julian M. Kunkel HPDA22 15 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

The HDFS Read Path

Figure: Source: B. Hedlund [15]

Julian M. Kunkel HPDA22 16 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Name Node and High Availability

Figure: Source: B. Hedlund. [15]

Julian M. Kunkel HPDA22 17 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Name Node and High Availability

Figure: Source: B. Hedlund. [15]

Julian M. Kunkel HPDA22 18 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Outline

1 Hadoop

2 Map Reduce
Overview
Execution on Hadoop

3 Hadoop 2

4 TEZ Execution Engine

5 Development

6 Summary

Julian M. Kunkel HPDA22 19 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Map Reduce Execution Paradigm

Idea: Apply a processing pipeline consisting of map and reduce operations

1. Map: filter and convert input records (pos, data) to tuples (key, value)

2. Reduce: receives all tuples with the same key (key, list<value>)

■ Hadoop takes care of reading input, distributing (key,value) to reduce

■ Types for key, value & format, records depend on the configuration

Example: WordCount [10]: Count word frequency in large texts

1 map(key, text): # input: key=position, text=line
2 for each word in text:
3 Emit(word,1) # outputs: key/value
4

5 reduce(key, list of values): # input: key == word, our mapper output
6 count = 0
7 for each v in values:
8 count += v
9 Emit(key, count) # it is possible to emit multiple (key, value) pairs here

Julian M. Kunkel HPDA22 20 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Map Reduce Execution: Aggregation of Tables

Example from [17]

Goal: aggregate a CSV file by grouping certain entries

Country State City Population
USA, CA, Su, 12
USA, CA, SA, 42
USA, MO, XY, 23
USA, MO, AB, 10

⇒
Country State Population
USA CA 54
USA MO 33

Algorithm

1 map(key, line):
2 (county, state, city, population) = line.split(’,’)
3 Emit((country, state), population)
4

5 reduce(key, values): # key=(country,state) values=list of populations
6 count = 0
7 for each v in values:
8 count += v
9 Emit(key, count)

Julian M. Kunkel HPDA22 21 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Group Work

■ Sketch the MapReduce algorithm for aggregating at the same time:
Country+State, Country, and summing all !

■ Time: 10 min

■ Organization: breakout groups - please use your mic or chat

Example

Country State City Population
USA, CA, Su, 12
USA, CA, SA, 42
USA, MO, XY, 23
USA, MO, AB, 10
GER, BW, HD, 20

⇒

Country State Population
USA CA 54
USA MO 33
USA ? 87
GER ? 20
? ? 107

■ Think about what the "?" should be, if anything

Julian M. Kunkel HPDA22 22 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Phases of MapReduce Execution

Phases of MapReduce Execution

1 Distribute code (JAR files)

2 Determine files to read, blocks and file splits, assign mappers to splits and slots

3 Map: Invoke (local) map functions

4 Combine: Perform a local reduction by the key

5 Shuffle: Sort by the key, exchange data

6 Partition: Partition key space among reducers (typically via hashing)

7 Reduce: Invoke reducers

8 Write output, each reducer writes to its own file3

3 Use hadoop fs -getmerge <HDFS DIR> file.txt to retrieve merged output
Julian M. Kunkel HPDA22 23 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Parallel Access to Files

■ A MapReduce job processes all files in a directory

▶ Provides parallelism on the file level, each file is read independently

■ MapReduce jobs process records that are grouped in input splits

▶ Input splits == logical organization of blocks
▶ Each input split is processed by one mapper (local processing preferred)
▶ Processing for records spanning blocks

• Skip partial records at the beginning of a split
• For truncated records, read data from a remote

▶ Input splitting (intelligence) depends on the file format

■ File formats that are not splittable must be avoided

▶ e.g., XML, JSON Files, compressed text files
▶ They enforce sequential read by one mapper

■ Usage of file formats depends on the tools to query data

Julian M. Kunkel HPDA22 24 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Mapping of Data Blocks to Input Splits [23]

Figure: Source: [23]

Julian M. Kunkel HPDA22 25 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Execution of MapReduce – the Big Picture

Figure: Source: jcdenton. [16]

Julian M. Kunkel HPDA22 26 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Execution of MapReduce on HDFS – the Combiner

Figure: Source: jcdenton. [16]

Julian M. Kunkel HPDA22 27 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Execution of MapReduce Tasks on Hadoop [14]

Steps in the execution of tasks

1 Client submits a job to the JobTracker

2 JobTracker identifies the location of data via the NameNode

3 JobTracker locates TaskTracker nodes with free slots close to the data

4 JobTracker starts tasks on the TaskTracker nodes

5 Monitoring of TaskTrack nodes

▶ If heartbeat signals are missed, work is rescheduled on another TaskTracker
▶ A TaskTracker will notify the JobTracker when a task fails

6 The JobTracker constantly updates its status

▶ Clients can query this information

Julian M. Kunkel HPDA22 28 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Execution of MapReduce

Figure: Source: B. Hedlund. [15]

Julian M. Kunkel HPDA22 29 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Execution of MapReduce

Figure: Source: B. Hedlund. [15]

Julian M. Kunkel HPDA22 30 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Execution of MapReduce

Figure: Source: B. Hedlund. [15]

Julian M. Kunkel HPDA22 31 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Outline

1 Hadoop

2 Map Reduce

3 Hadoop 2
Overview
System Architecture

4 TEZ Execution Engine

5 Development

6 Summary

Julian M. Kunkel HPDA22 32 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Hadoop 2, the Next Generation [12]

■ Goal: real-time and interactive processing of events
■ Introduction of YARN: Yet Another Resource Negotiator
■ Supports of classical MapReduce and, via TEZ, DAG of tasks
■ Support for NFS access to HDFS data
■ Compatability to Hadoop v1
■ High-availability, federation and snapshots for HDFS

Figure: Source: Apache Hadoop 2 is now GA. Hortonworks. [12]

Julian M. Kunkel HPDA22 33 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

System Architecture

Yarn modularizes JobTracker functionality

1 Resource management

2 Job scheduling/execution inclusive monitoring

Data computation framework

■ Applications are executed in containers

■ ResourceManager component (global daemon)

▶ Partitiones resources and schedules applications
▶ Scheduler: distributes resources among applications
▶ ApplicationsManager: accepts jobs, negotiates execution of AppMaster

■ Per-node NodeManager: manages and monitors local resources

■ Per-application ApplicationMaster

▶ Framework-specific library
▶ Negotiates container resources with ResourceManager
▶ Works with Scheduler/NodeManager to execute and monitor tasks

Julian M. Kunkel HPDA22 34 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

YARN System Architecture

Figure: Source: Apache Hadoop NextGen [18]

Julian M. Kunkel HPDA22 35 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Outline

1 Hadoop

2 Map Reduce

3 Hadoop 2

4 TEZ Execution Engine

5 Development

6 Summary

Julian M. Kunkel HPDA22 36 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

TEZ Execution Engine

■ TEZ: Hindi for “speed”
■ Allow modelling and execution of data processing logic

▶ Directed acyclic graph (DAG) of tasks
▶ Vertex with input (dependencies) and output edges

■ VertexManager defines parallelism and resolves dependencies

Figure: Source: Introducing... Tez. Hortonworks [19]

Julian M. Kunkel HPDA22 37 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

TEZ Example DAG [20]

1 // Define DAG
2 DAG dag = new DAG();
3 // Define Vertex, which class to execute
4 Vertex Map1 = new Vertex(Processor.class);
5 // Define Edge
6 Edge edge = Edge(Map1, Reduce2,
7 SCATTER_GATHER, // Distribution of data from

↪→ source to target(s)
8 PERSISTED, // Persistency of data
9 SEQUENTIAL, // Scheduling: either concurrent

↪→ or sequential execution
10 Output.class, Input.class);
11 // Connect edges with vertex
12 dag.addVertex(Map1).addEdge(edge)...

Figure: Source: Apache Tez. H.
Shah [20]

Julian M. Kunkel HPDA22 38 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

TEZ DAG API

Figure: Source: Apache Tez. H. Shah [20]

Julian M. Kunkel HPDA22 39 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

TEZ Dynamic Graph Reconfiguration

■ Reconfigure dataflow graph based on data sizes and target load
■ Controlled by vertex management modules

▶ State changes of the DAG invoke plugins on the vertices
▶ Plugins monitor runtime information and provide hints to TEZ

Example: Adaption of the number of reducers

Figure: Source: Introducing... Tez. Hortonworks [19]

Julian M. Kunkel HPDA22 40 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

TEZ Resource Management

■ Task and resource aware scheduling

■ Pre-launch and re-use containers and intermediate results (caching)

Figure: Source: Introducing... Tez. Hortonworks [19]

Julian M. Kunkel HPDA22 41 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Outline

1 Hadoop

2 Map Reduce

3 Hadoop 2

4 TEZ Execution Engine

5 Development
Coding
Compilation
Execution
Debugging
Job Information via Web Interface

6 Summary

Julian M. Kunkel HPDA22 42 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Coding

■ Programming Map-Reduce can be done in various languages

▶ Java (beware, it’s very low-level)
▶ Python
▶ ... basically any language nowadays!

■ Process:

▶ Implement map/reduce functions
▶ Main method controls process:

• Define mapper/reducer/combiner
• Define input/output formats and files
• Run the job

■ Programming of TEZ in Java

■ Command line tools to run the “application”

■ There are some tools for debugging / performance analysis

Julian M. Kunkel HPDA22 43 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Coding: Wordcount, Mapper & Reducer

Goal: Count the frequency of each word in a text

1 package org.myorg;
2 import java.io.IOException; import java.util.*; import org.apache.hadoop.fs.Path; import org.apache.hadoop.conf.*;
3 import org.apache.hadoop.io.*; import org.apache.hadoop.mapred.*; import org.apache.hadoop.util.*;
4
5 public class WordCount {
6 public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
7 private final static IntWritable one = new IntWritable(1); // for small optimization of object cleaning, reuse object
8
9 // Mapper splits sentence and creates the tuple (word, 1) for each word

10 public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
11 String line = value.toString();
12 Text word = new Text();
13 StringTokenizer tokenizer = new StringTokenizer(line);
14 while (tokenizer.hasMoreTokens()) {
15 word.set(tokenizer.nextToken());
16 output.collect(word, one);
17 }
18 }}
19
20 // Reducer accumulates tuples with the same key by summing their frequency
21 public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
22 public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException

↪→ {
23 int sum = 0;
24 while (values.hasNext()) {
25 sum += values.next().get();
26 }
27 output.collect(key, new IntWritable(sum));
28 }
29 } // Continued => see the next slide

Julian M. Kunkel HPDA22 44 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Coding: Wordcount, Main Method

The main method configures the Hadoop Job4

1 public static void main(String[] args) throws Exception {
2 JobConf conf = new JobConf(WordCount.class);
3 conf.setJobName("wordcount");
4
5 // Set data types of output
6 conf.setOutputKeyClass(Text.class);
7 conf.setOutputValueClass(IntWritable.class);
8
9 // Set classes for map, reduce and combiner

10 conf.setMapperClass(Map.class);
11 conf.setReducerClass(Reduce.class);
12 conf.setCombinerClass(Reduce.class);
13
14 // Set file input and output format
15 conf.setInputFormat(TextInputFormat.class);
16 conf.setOutputFormat(TextOutputFormat.class);
17
18 // Configure input and output paths
19 FileInputFormat.setInputPaths(conf, new Path(args[0]));
20 FileOutputFormat.setOutputPath(conf, new Path(args[1]));
21
22 JobClient.runJob(conf);
23 }
24 }

See https://github.com/apache/tez/tree/master/tez-examples/src/main/java/
org/apache/tez/examples for examples with TEZ

4 There are more modern interfaces available, you’ll see in the excercise.
Julian M. Kunkel HPDA22 45 / 60

https://github.com/apache/tez/tree/master/tez-examples/src/main/java/org/apache/tez/examples
https://github.com/apache/tez/tree/master/tez-examples/src/main/java/org/apache/tez/examples

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Compilation

Here we compile manually and are not using ant or maven:

1 Prepare the class path for dependencies (may be complex)

2 Compile each Java file

3 Create a JAR package

Example

1 # Java classpath with all required JAR files
2 CP=/usr/hdp/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core.jar:

↪→ /usr/hdp/current/hadoop-hdfs-client/hadoop-hdfs.jar
↪→ :/usr/hdp/current/hadoop/hadoop-common.jar

3

4 # Compile a Java file and output all artifacts to the classes directory
5 # Repeat this step until all required sources are compiled to byte code
6 javac -classpath $CP -d classes AveragePerformance.java
7

8 # Create a JAR package from the classes directory
9 jar -cvf averagePerformance.jar -C classes .

10

11 # Now we are ready to submit the job to HADOOP

Julian M. Kunkel HPDA22 46 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Execution

Syntax: [hadoop|yarn] jar FILE.jar ClassWithMain Arguments

Example

1 > hadoop jar averagePerformance.jar de.wr.AveragePerformance data-energy-efficiency.csv summary
2 STARTUP: Computing average ## NOTE: This is output of the main() method
3 15/10/15 13:49:24 INFO impl.TimelineClientImpl: Timeline service address: http://abu3.cluster:8188/ws/v1/timeline/
4 15/10/15 13:49:25 INFO client.RMProxy: Connecting to ResourceManager at abu3.cluster/10.0.0.65:8050
5 15/10/15 13:49:25 INFO impl.TimelineClientImpl: Timeline service address: http://abu3.cluster:8188/ws/v1/timeline/
6 15/10/15 13:49:25 INFO client.RMProxy: Connecting to ResourceManager at abu3.cluster/10.0.0.65:8050
7 15/10/15 13:49:26 INFO mapred.FileInputFormat: Total input paths to process : 1
8 15/10/15 13:49:26 INFO mapreduce.JobSubmitter: number of splits:8
9 15/10/15 13:49:26 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1444759114226_0016

10 15/10/15 13:49:27 INFO impl.YarnClientImpl: Submitted application application_1444759114226_0016
11 15/10/15 13:49:27 INFO mapreduce.Job: The url to track the job: http://abu3.cluster:8088/proxy/application_1444759114226_0016/
12 15/10/15 13:49:27 INFO mapreduce.Job: Running job: job_1444759114226_0016
13 15/10/15 13:49:37 INFO mapreduce.Job: Job job_1444759114226_0016 running in uber mode : false
14 15/10/15 13:49:37 INFO mapreduce.Job: map 0% reduce 0%
15 15/10/15 13:49:54 INFO mapreduce.Job: map 11% reduce 0%
16 15/10/15 13:50:02 INFO mapreduce.Job: map 100% reduce 100%
17 15/10/15 13:50:02 INFO mapreduce.Job: Job job_1444759114226_0016 completed successfully
18 15/10/15 13:50:02 INFO mapreduce.Job: Counters: 50
19 File System Counters
20 FILE: Number of bytes read=768338
21 FILE: Number of bytes written=2679321
22 FILE: Number of read operations=0
23 FILE: Number of large read operations=0
24 FILE: Number of write operations=0
25 HDFS: Number of bytes read=1007776309
26 HDFS: Number of bytes written=1483856
27 HDFS: Number of read operations=27
28 HDFS: Number of large read operations=0
29 HDFS: Number of write operations=2
30 Job Counters
31 Launched map tasks=8
32 Launched reduce tasks=1
33 Data-local map tasks=7
34 Rack-local map tasks=1
35 Total time spent by all maps in occupied slots (ms)=147022
36 Total time spent by all reduces in occupied slots (ms)=7114
37 Total time spent by all map tasks (ms)=147022
38 Total time spent by all reduce tasks (ms)=3557
39 Total vcore-seconds taken by all map tasks=147022
40 Total vcore-seconds taken by all reduce tasks=3557
41 Total megabyte-seconds taken by all map tasks=752752640
42 Total megabyte-seconds taken by all reduce tasks=36423680
43 Map-Reduce Framework
44 Map input records=112303
45 Map output records=112302
46 Map output bytes=813551356
47 Map output materialized bytes=768380
48 Input split bytes=920
49 Combine input records=112302
50 Combine output records=106
51 Reduce input groups=99
52 Reduce shuffle bytes=768380
53 Reduce input records=106
54 Reduce output records=99
55 Spilled Records=212
56 Shuffled Maps =8
57 Failed Shuffles=0
58 Merged Map outputs=8
59 GC time elapsed (ms)=30257
60 CPU time spent (ms)=247780
61 Physical memory (bytes) snapshot=22776565760
62 Virtual memory (bytes) snapshot=61137965056
63 Total committed heap usage (bytes)=26760183808
64 Shuffle Errors
65 BAD_ID=0
66 CONNECTION=0
67 IO_ERROR=0
68 WRONG_LENGTH=0
69 WRONG_MAP=0
70 WRONG_REDUCE=0
71 File Input Format Counters
72 Bytes Read=1007775389
73 File Output Format Counters
74 Bytes Written=1483856

Julian M. Kunkel HPDA22 47 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Retrieving Output Data

The output is a directory containing one file per reducer

1 # Retrieve the summary directory
2 $ hadoop fs -get summary
3 $ ls -lah summary/
4 -rw-r--r-- 1 kunkel wr 1,5M Okt 15 14:45 part-00000
5 -rw-r--r-- 1 kunkel wr 0 Okt 15 14:45 _SUCCESS
6 $ head summary/part-00000
7 ESM_example_ESM_example_ESM_example_ESM_example 4397 112.69512266727315

↪→ 186388.93997432772 ...
8 EXX_example_EXX_example_EXX_example_EXX_example 4511 118.44219725094219

↪→ 251865.2199417397 ...
9 ...

10

11 # A merged file can be retrieved via getmerge
12 hadoop fs -getmerge summary summary.csv

Julian M. Kunkel HPDA22 48 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Using Arbitrary Tools/Languages via Streaming

■ Hadoop Streaming [22] allows to pipe data through arbitrary tools

■ This allows easy integration of Python code, e.g.,

1 yarn jar /usr/hdp/current/hadoop-mapreduce/hadoop-streaming.jar \
2 -Dmapred.map.tasks=11 -mapper $PWD/mein-map.py \
3 -Dmapred.reduce.tasks=1 -reducer $PWD/mein-reduce.py \
4 -input <input> -output <output-directory>

■ Map/reduce apps receive lines with key value pairs and emit them

▶ ANY other (disturbing) output must be avoided to avoid errors

■ Trivial mapper:

1 #!/usr/bin/python3
2 import sys
3

4 for line in sys.stdin:
5 print("\t".join(line.split(","))) # Split CSV into key (first word) and values

■ Easy testing on the shell:

1 cat Input.csv | ./mein-map.py | sort | ./mein-reduce.py

Julian M. Kunkel HPDA22 49 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Using Arbitrary Tools/Languages via Streaming

■ We can use the streaming also to integrate Rscripts

1 #!/usr/bin/env Rscript
2
3 # WordCount Example
4 # Discard error messages for loading libraries (if needed) as this would be seen as a "tuple"
5 sink(file=NULL, type="message")
6 library(’stringi’)
7 # Remove redirection
8 sink(type="message")
9

10 stdin=file(’stdin’, open=’r’)
11
12 # Batch processing of multiple lines, here 100 elements
13 while(length(lines=readLines(con=stdin, n=100L)) > 0){
14 # paste concatenates all lines (the array) together
15 # stri_extract_all_words() returns an 2D array of lines with words
16 # Instead of paste, we could use unlist() to take care of multiple lines and returns a single array
17 # table() counts number of occurences of factor levels (that are strings)
18 tblWithCounts = table(stri_extract_all_words(paste(lines, collapse=" ")))
19 words = names(tblWithCounts)
20 counts = as.vector(tblWithCounts)
21 cat(stri_paste(words, counts, sep="\t"), sep="\n")
22 }

■ Still: easy testing on the shell, similar execution with streaming

1 cat Input.csv | ./mein-map.R | sort | ./mein-reduce.py

Julian M. Kunkel HPDA22 50 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Debugging of MapReduce and YARN Applications

Runtime information

■ Call: yarn logs -applicationId < ID >

▶ The ID is provided upon startup of the job

■ Provides for each phase of the execution

▶ Log4j output
▶ Node information (logfiles)
▶ Container information
▶ Stdout, stderr of your application

■ Increase log verbosity

1 export YARN_ROOT_LOGGER=DEBUG,console
2 or
3 run yarn --loglevel DEBUG ...

▶ Properties: mapreduce.map.log.level, mapreduce.reduce.log.level

■ Dump the current configuration of (X) by adding the argument:

▶ Parent class: hadoop org.apache.hadoop.conf.Configuration
▶ Yarn: hadoop org.apache.hadoop.yarn.conf.YarnConfiguration
▶ MapReduce: hadoop org.apache.hadoop.mapred.JobConf

Julian M. Kunkel HPDA22 51 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Example Logfile Output

1 > yarn logs -applicationId application_1444759114226_0016
2
3 Container: container_1444759114226_0016_01_000005 on abu3.cluster_45454
4 ===
5 LogType:stderr
6 Log Upload Time:Thu Oct 15 13:50:09 +0200 2015
7 LogLength:243
8 Log Contents:
9 log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2.impl.MetricsSystemImpl).

10 log4j:WARN Please initialize the log4j system properly.
11 log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
12 End of LogType:stderr
13
14 LogType:stdout
15 Log Upload Time:Thu Oct 15 13:50:09 +0200 2015
16 LogLength:751944
17 Log Contents:
18 ...
19 KEY: 134195662 word cpu_idl_idl_idl
20 ACCEPTING LINE
21 KEY: 134204510 word cpu_idl_idl_idl
22 ACCEPTING LINE
23 KEY: 134213460 word cpu_idl_idl_idl
24 ACCEPTING LINE
25 End of LogType:stdout
26 ...

Julian M. Kunkel HPDA22 52 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Job Information via Web Interface

■ The task tracker keeps detailed information about job execution

■ Access via an internal web-server on Port 8088 and 19888

■ An internal web-server on each node provides node information

■ On a firewalled cluster, SSH forwards are required

▶ ssh -L 8080:NODE:8088 -L 19888:NODE:19888 USERNAME@HOST

Example

1 # Output when submitting the job:
2 16/10/21 12:50:27 INFO mapreduce.Job: The url to track the job: http://gwu101:8088/proxy/application_1444759114226_0016/
3
4 # After SSH forward visit localhost:8088, you may need to change the hostname from abu3.cluster to localhost again

Julian M. Kunkel HPDA22 53 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Job Status

Figure: Overview, when using the tracking url

Julian M. Kunkel HPDA22 54 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Job Configuration

Julian M. Kunkel HPDA22 55 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Performance Counters

Julian M. Kunkel HPDA22 56 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Information About Map Tasks

Julian M. Kunkel HPDA22 57 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Logfile

Julian M. Kunkel HPDA22 58 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Node Manager

Figure: The Node Manager provides information about a particular node

Julian M. Kunkel HPDA22 59 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Summary

■ Hadoop provides the file system HDFS and concepts for processing

■ HDFS

▶ Single writer, multiple reader concurrency
▶ Robust and high availability

■ MapReduce: fixed function pipeline, reliable execution

■ Hadoop2 with YARN: refined architecture for resource management

■ TEZ: Execution of DAGs with various configurations

Julian M. Kunkel HPDA22 60 / 60

Hadoop Map Reduce Hadoop 2 TEZ Execution Engine Development Summary

Bibliography

1 Book: Lillian Pierson. Data Science for Dummies. John Wiley & Sons

10 Wikipedia

12 Hortonworks http://hortonworks.com/

13 B. Ramamurthy. Hadoop File System. http://www.cse.buffalo.edu/faculty/bina/MapReduce/HDFS.ppt

14 Hadoop Wiki. https://wiki.apache.org/hadoop/

15 B. Hedlund. Understanding Hadoop Clusters and the Network.
http://bradhedlund.com/2011/09/10/understanding-hadoop-clusters-and-the-network/

16 jcdenton. H-stack Introduction Guide. https://github.com/jcdenton/hadoop-guide/blob/master/hadoop.md

17 http://tutorials.techmytalk.com/2014/11/14/mapreduce-composite-key-operation-part2/

18 http://hadoop.apache.org/docs/

19 http://hortonworks.com/blog/introducing-tez-faster-hadoop-processing/

20 Presentation: H. Shah. Apache Tez. Hortonworks.

21 Hadoop I/O http://blog.cloudera.com/blog/2011/01/hadoop-io-sequence-map-set-array-bloommap-files/

22 http://hadoop.apache.org/docs/current/hadoop-streaming/HadoopStreaming.html

23 http://www.dummies.com/how-to/content/input-splits-in-hadoops-mapreduce.html

Julian M. Kunkel HPDA22 61 / 60

http://hortonworks.com/
http://bradhedlund.com/2011/09/10/understanding-hadoop-clusters-and-the-network/
https://github.com/jcdenton/hadoop-guide/blob/master/hadoop.md
http://tutorials.techmytalk.com/2014/11/14/mapreduce-composite-key-operation-part2/
http://hadoop.apache.org/docs/
http://hortonworks.com/blog/introducing-tez-faster-hadoop-processing/
http://blog.cloudera.com/blog/2011/01/hadoop-io-sequence-map-set-array-bloommap-files/
http://hadoop.apache.org/docs/current/hadoop-streaming/HadoopStreaming.html
http://www.dummies.com/how-to/content/input-splits-in-hadoops-mapreduce.html

	Hadoop
	Version 1
	Architecture
	File Formats
	I/O Path

	Map Reduce
	Overview
	Execution on Hadoop

	Hadoop 2
	Overview
	System Architecture

	TEZ Execution Engine
	Overview

	Development
	Coding
	Compilation
	Execution
	Debugging
	Job Information via Web Interface

	Summary

