GEORG-AUGUST-UNIVERSITAT
=)\ GOTTINGEN &/ o

Seminar Report

On Demand File Systems with BeeGF'S

Zoya Masih

MatrNr: 19034321

Supervisor: Prof. Dr. Julian Kunkel

Georg-August-Universitdat Gottingen
Institute of Computer Science

April 3, 2023

Abstract

BeeGF'S, originally released as FhGFS in 2005, is a parallel file system, specifically de-
signed for HPC, which aggregates the capacity and performance of many servers in a
single namespace. It therefore can scale up performance and capacity to a required level.
BeeGFS splits metadata from user’s stored data, and provides an on demand file system
too, BeeOND, which integrates with cluster batch systems to create temporary parallel
file system instances on a per-job basis on the internal SSDs / NVMe of compute nodes,
which are part of a compute job.

In this report, an overview and theoretical concepts of the parallel file system BeeGFS
are presented. Additionally, the setup procedure and use of some other tools of BeeGFS
on virtual machine are described to help others know it works and start it.

Contents

List of Tables
List of Figures

List of Listings

List of Abbreviations

1 Introduction

1.1 Usagein HPCo
1.2 Literature Review L
1.3 Goals of the project

2 Architecture
2.1 Overview . .

2.2 Management Serviceo

2.3 Metadata Service

2.4 Storage Service

2.5 Client Service e e e

2.6 More about the Architecture

2.7 BeeOND e
3 Setup

3.1 Installation
4 Getting Started
5 Conclusion

References

i

iii

iii

iii

iv

10

12

List of Tables

List of Figures

© 00 1O Ui W N

Architecture Lo 3
Striped files)
apt search beegfs o 8
list of client nodes 8
beegfs-met 9
StorageBench 10
list storage pools 10
Mirroring 11
A file information 11

List of Listings

1l

List of Abbreviations

AT Artificial Intelligence

GWDG Gesellschaft fiir wissenschaftliche Datenverarbeitung mbH Gé&ttingen
HPC High-Performance Computing

I/O Input/Output

BeeGFS Bee Global File System

NFS Network File System

extd4 fourth extended filesystem

POSIX Portable Operating System Interface for uniX

v

On Demand File Systems with BeeGFS

1 Introduction

BeeGF'S is a hardware-independent POSIX parallel file system, developed with a strong
focus on performance and designed for ease of use, simple installation, and management.
BeeGF'S is widely seen as an easy-deployable alternative to other parallel file systems and
is deployed at thousands of sites around the globe. It is created on an Available Source
development model. BeeGFS is designed for all performance-oriented environments in-
cluding HPC, AI and Deep Learning, Media & Entertainment, Life Sciences, and Oil &
Gas.

The BeeGFS user space architecture is “state-of-the-art” allowing users to manage any
IO profile requirements without performance restrictions and provides the scalability &
flexibility that is required to run the most demanding HPC, Al or business-critical appli-
cations. BeeGFS allows customers to invest in scalable HPC and AT infrastructures, that
deliver from small sites to large scale-out environments, relieving the full bandwidths of
their hardware components. BeeGFS increases productivity by delivering faster results,
enabling new data analysis methods without changing workflows or applications.

By increasing the number of servers and disks in the system, users can simply scale per-
formance and capacity of the file system to the level that they need, seamlessly from
small clusters up to enterprise-class systems with thousands of nodes. Therefore, BeeGFS
is being used on diverse computer clusters, ranging from installations with only a few
machines to several systems of the Top500 of the world’s fastest supercomputers. Fur-
thermore, the file system is a fundamental component of lots of research projects led by
different research organizations and governmental institutions.

1.1 Usage in HPC

In 2005, the founders came to the idea that available parallel file systems neither meet
the users’ expectation, nor were as easy to use and maintain as system administrators
demand it. This motivated them to develop a new parallel file system.

It became soon clear that the file system quickly evolved to a state which made it useful
for HPC users. BeeGFS was developed at the Fraunhofer Institute for industrial mathe-
matics (ITWM)!. It was originally released as “FhGFS”, but was later labelled as BeeGFS
in 2014 [Janl14].

A spin-off of Fraunhofer ITWM, ThinkparQ, supplies worldwide commercial support for
BeeGFS and manages further development from a customer perspective. BeeGFS is an
important part of three European HPC projects, which develop specialized computer ar-
chitectures for the exa-scale regime: DEEP-ER, EXANODE and EXANEST. For the
DEEP-ER project, which proposes a cluster-booster architecture, the parallel file system
BeeGFS is extended to use the different hierarchy levels of the storage systems efficiently.
The EXANODE and EXANEST projects, use energy-efficient processors and nanotech-
nologies. The projects use a system-wide, uniform memory concept. Many of the pre-
sented ideas will be used for the first time in high performance computing.

BeeGF'S is used worldwide these days. NASA Ames Research Center, and FEuropean
Organization for Nuclear Research are two organizations which use this file system in
HPC.

Thttps:/ /www.itwm.fraunhofer.de/

Section 1 Zoya Masih 1

On Demand File Systems with BeeGFS

1.2 Literature Review

In the following, a brief review of papers on BeeGFS is presented. In [PC21|, the impact
of some parameters such as the transfer size and the number of processes on optimizing
I/O performance of geophysical applications are studied. A comparison between different
parallel file systems is provided by [FL18|, in which BeeGFS shows the best throughput
performance. The paper concludes that BeeGFS could be part of a solution for maxi-
mizing the performance of scientific data transfer between different clusters. In another
research, Chowdhury et al. [Fah+19] evaluated the impact of the number of storage tar-
gets and concluded that increasing the stripe count has limited benefits for application
performance. Although, the results of a related study on the impact of the stripe count
in write performance [PT22|, conflict with some recommendations of [Fah-+19].

1.3 Goals of the project

The current document is a report for a project in the practical seminar course 'High-
Performance Computing System Administration’. The goals which were expected to be
fulfilled during this project are as follows.

1. Study the architecture and all theoretical features of BeeGFS

2. Setting up the file system in virtual machines to allow testing of the features and
providing a replicable environment for code developers

The outline of the report is as follows. In Section two, the architecture and theoretical
features of the file system are described. In section 3 the procedure of setting up the file

system on virtual machines is presented. Section four provides some practical executions
on the VMs.

2 Architecture

In this section, the architecture and theoretical features of the file system are studied.

2.1 Overview

The BeeGFS architecture is composed of four main services:
1. Management service: A registry and watchdog for all other services
2. Storage service: Stores the distributed user file contents
3. Metadata service: Stores access permissions and striping information
4. Client service: Mounts the file system to access the stored data

The figure 1 shows main services of the system and how they connect to each other.

The optional monitoring service collects performance data from the servers and feeds it
to a time series database, for example InfluxDB. From this, real time monitoring and
statistical analysis of the system is possible with tools like Grafana. For high flexibility,
it is possible to run multiple services instances with any BeeGFS service on the same

Section 2 Zoya Masih 2

On Demand File Systems with BeeGFS

Metadata Servers

—
— TS
direct,
parallel
file access q
Storage Servers

Management Host Graphical Administration
and Monitoring System

E= ey 00 EE gy

Figure 1: Architecture [Bee|

machine. These instances can be part of the same BeeGFS file system instance or as
well of different file system instances. For example, client service can mount two different
BeeGFS file systems (e.g., an old one and a new one) on the same compute node. The
flexibility is also seen in the sense of hardware. The software-based approach, without
any strict requirements for the hardware, provides the possibility to choose from a very
wide range of hardware components.

2.2 Management Service

The management service can be figured as a joint for the BeeGFS metadata, storage, and
client services. It is very lightweight and typically not running on a dedicated machine, as
it is not critical for performance and stores no user data. It observes and checks how all the
components are working and manages the relations between every two parts. Therefore,
it is the first service, which needs to be set up in a newly deployed environment. The
management service maintains a list of all other BeeGFS services and their state.

2.3 Metadata Service

The metadata service stores information about the data, e.g., directory information, file
directory ownership, and the location of user file contents on storage targets. It provides
information about the stripe pattern for an individual user file. The metadata service is
not involved in data access, i.e., for file read and write operations.

There can be one or many metadata services in a BeeGFS file system. Each metadata
service is responsible for its exclusive fraction of the global namespace, so that having
more metadata servers improves the overall system performance. Adding more metadata
servers later is always possible. Each metadata service instance has exactly one metadata

Section 2 Zoya Masih 3

On Demand File Systems with BeeGFS

target to store its data. On the metadata target, BeeGFS creates one metadata file per
user-created file.

Usually, not necessarily, a metadata target is an ext4 file system based on a RAID1 or
RAID10 of flash drives, as low metadata access latency improves the responsiveness of
the file system. BeeGFS metadata is very small and grows linear with the number of
user-created files. 512 GB of usable metadata capacity are typically good for about 150
million user files. Normally, 0.5 percent of all data stored is recommended for metadata,
however, obviously it may differ in different systems based on the system specific features.

2.4 Storage Service

The storage service is the main service to store striped user file contents. There can be
one or multiple storage services per BeeGFS file system instance, so that each storage
service adds more capacity and especially also more performance to the file system. A
storage service instance has one or multiple storage targets. While such a storage target
can generally be any directory on a local file system, and storage service works with any
local Linux POSIX file system, a storage target typically is a hardware RAID-6 or zfs.
As BeeGF'S uses all the available RAM on the storage servers automatically for caching,
it can also aggregate small 10s requests into larger blocks before writing the data out to
disk. Furthermore, it is able to serve data from the cache if another client has already
recently requested it. The capability to quickly write bursts of data into the server RAM
cache or to quickly read data from it is also the reason it makes sense to have a network
that is significantly faster than the disk streaming throughput of the servers. By default,
BeeGF'S picks the storage targets for a file randomly, as this has shown to provide best
results in multi-user environments where the different users are also concurrently creating
a random mix of large and small files. If necessary, different target choosers are available
in the metadata service configuration file. To prevent storage targets running out of
free space, BeeGFS has three different labels for free target capacity: normal, low and
emergency. The target chooser running on the metadata service will prefer targets labeled
as normal. As long as such targets are available, and it will not pick any target labeled
as critical before all targets entered that state. With this approach, BeeGFS can also
work with storage targets of different sizes. The thresholds for low and emergency can be
changed in the management service configuration file.

2.5 Client Service

The BeeGFS client is implemented as a Linux kernel module which provides a normal
mount-point so that your applications can directly access the BeeGFS storage system and
do not need to be modified to take advantage of BeeGFS. The module can be installed
on all supported Linux kernels without the need for any patches.

2.6 More about the Architecture

When a file arrives to the storage service, it gets split up into chunks of fixed size and
those chunks are distributed across multiple storage targets. The chunk size and number
of targets per file is decided by the responsible metadata service when a file gets created.
This information is called the stripe pattern. The stripe pattern can be configured per
directory or even for individual files. The files on the storage targets containing the user

Section 2 Zoya Masih 4

On Demand File Systems with BeeGFS

{ /beegfs/mirrored } [/beegfs/unmirrored }
File #1

Target 1 Target 2 Target 3

BuddyGroup 2 BuddyGroup 2

s @ EEEE =EEEE
BRI
3 4]
|

Target 4

Figure 2: Striped files

data are called chunk files. For each user file, there is exactly one chunk file on the corre-
sponding storage targets. To not waste space, BeeGFS only creates chunk files when the
client actually writes data to the corresponding target. And also, for not wasting space,
the chunk size is not statically allocated, meaning when the user writes only a single byte
into the file, BeeGFS will also create only a single chunk file of 1 byte in size.

BeeGF'S also provides support for metadata and file contents mirroring. Mirroring capa-
bilities are integrated into the normal BeeGF'S services, so that no separate services or
third-party tools are needed. Both metadata mirroring and file contents mirroring can be
used independently of each other. Mirroring also provides some high availability features.
Storage and metadata mirroring with high availability is based on so-called buddy groups.
In general, a buddy group is a pair of two targets that internally manage data replication
between each other. The buddy group approach allows one half of all servers in a system
to fail while all data is still accessible. It can also be used to put buddies in different
failure domains or different fire domains, e.g., different racks or different server rooms.
Note that mirroring is not a replacement for backups. If files are accidentally deleted
or overwritten by a user or process, mirroring will not help to bring the old file back.
Mirroring is not activated by default, and needs to be set up manually, or one can tell
BeeGFS to create them automatically. Figure 2 may help to understand the concepts of
mirroring and buddy groups.

Another option in BeeGF'S is storage pools. This allows the cluster admin to group targets
and mirror buddy groups together in different classes. For instance, there can be one pool
consisting of fast, but small solid state drives, and another pool for bulk storage, using
big but slower spinning disks. When a file is created by an application or user, they can
choose which storage pool the file contents are stored in. Since the concept of storage
pools is orthogonal to the file system’s directory structure, even files in the same directory
can be in different storage pools.

2.7 BeeOND

BeeOND, BeeGFS On Demand, enables easy creation of one or multiple BeeGFS in-
stances on the fly. This ability can be useful in many use-cases, for example, in cloud
environments, but especially to create temporary work file systems. BeeOND is typically

Section 2 Zoya Masih 5

On Demand File Systems with BeeGFS

used to aggregate the performance and capacity of internal SSDs or hard disks in compute
nodes for the duration of a compute job. This provides additional performance and a very
elegant way of burst buffering.

BeeOND, dislike most of the HPC file systems, creates a shared parallel file system for
each job across all compute nodes which are involved in the job, to provide the advantage
of a single name space across multiple machines, and the flexibility and performance of
a shared parallel file system. This way, the internal compute node drives are turned into
a shared parallel file system, which can easily be used for distributed applications. Here
applications can complete faster, because with BeeOND, they can be running on SSDs or
a RAM-disk, while they might only be running on spinning disks on a normal persistent
global file system. Combining the SSDs of multiple compute nodes not only gets to high
bandwidth easily, it also gets to a system that can handle very high IOPS.

3 Setup

In this section, we describe how to set up the File system on virtual machines.

3.1 Installation

In this project, Management, storage, and metadata services are set up on one virtual
machine and two client services are also installed on two other machines. All the operating
systems in this test system are Ubuntu 20.04. node recognition among the service nodes
is a vital point here, and therefore all the virtual machines must be set on bridge mode,
and ’Allow All’ for the promiscuous. To set up the file system, follow the steps described
as follows.

1. Get the Sources

$git clone https://git.beegfs.io/pub/v7 beegfs-v7
$cd beegfs-v7

2. Install the dependencies
$less README.md

In Debian distribution, for instance:$ sudo apt install build-essential autoconf
automake pkg-config devscripts debhelper libtool libattrl-dev xfslibs-dev
lsb-release kmod librdmacm-dev libibverbs-dev default-jdk ant dh-systemd
zliblg-dev libssl-dev libcurl4-openssl-dev libblkid-dev uuid-dev

3. Build
$make

4. Add the public BeeGFS GPG key to your package manager:
https://www.beegfs.io/release/beegfs 7.3.3/gpg/GPG-KEY-beegfs

In Debian distribution, for instance: $wget -q -0 -
https://www.beegfs.io/release/beegfs_7.3.2/gpg/GPG-KEY-beegfs | apt-key add -

Section 3 Zoya Masih 6

On Demand File Systems with BeeGFS

5. Download the repository from https://www.beegfs.io/release/beegfs 7.3.2/dists/

In Debian distribution, for instance:

$wget https://wuw.beegfs.io/release/beegfs_7.3.2/dists/beegfs-focal.list
-0 /etc/apt/sources.list.d/beegfs.list

$ apt install apt-transport-https

$ apt update

6. Install the following BeeGF'S services
beegfs-mgmtd
beegfs-storage
beegfs-meta
beegfs-client
beegfs-helperd

7. Configurations: Save repository files in an appropriate path in all nodes, referring to:
https://doc.beegfs.io/latest /advanced _topics/manual _installation.html

In Debian distribution, and for the metadata service for instance:
On node02: /beegfs/sbin/beegfs-setup-meta -p /data/beegfs/beegfs_meta -s 2 -m nodeOl

Here Node0O1 to Node04 are the nodes with Management, Metadata, Storage, and Client services
in order. The term 'node 0x’ in the configuration command line must be replaced to the ip address
of the node.

8. Connection authentication

o Create a file which contains a shared secret
$ dd if=/dev/random of=/etc/beegfs/connauthfile bs=128 count=1

e Ensure the file is only readable by the root user
$ chown root:root /etc/beegfs/connauthfile
$ chmod 400 /etc/beegfs/connauthfile

e Copy the file to all hosts in the cluster (mgmtd, meta, storage, client, mon).

o Edit connAuthFile=/etc/beegfs/connauthfile on configuration files of all services. Note
that Configuration files are in /etc/beegfs/beegfs-*.conf.

This step can be skipped by changing ’connDisableAuthentication = true’ in all configuration files,
however, it is highly recommended not to do so. By disabling this authentication part, the services
may not work for many operations. Also note that after adding the authentication file to a new
node, all the services must be restarted by systemctl restart beegfs-*.

9. Start the services

$systemctl start beegfs-mgmtd
$systemctl start beegfs-meta
$systemctl start beegfs-storage
$systemctl start beegfs-helperd
$systemctl start beegfs-client

Now everything is ready to start working with the file system.

Section 4 Zoya Masih 7

On Demand File Systems with BeeGFS

4 Getting Started

Before starting, or whenever needed, all available services for being installed can be
checked by apt-search beegfs. As shown in Figure3, two services, beegfs-client and
beegfs-client-dkms are provided. The latter package allows building the client kernel
module using the DKMS infrastructure. The two packages are mutually exclusive, and
only one of them can be installed on a system at any given time.
:~$ apt search beegfs
Sorting... Done
Full Text Search... Done
Junknown,now 20:7.3.2 all [installed]
BeeGFS client

Junknown 20:7.3.2 all
client compat module, allows one to run two different client versions.

Junknown 28:7.3.2 amd64

BeeGFS client development files

Junknown 20:7.3.2 all
client (DKMS version)
Junknown,now 28:7.3.2 amd64 [installed,automatic]

common files

Junknown,now 20:7.3.2 amd64 [installed]
BeeGFS helper daemon

Figure 3: apt search beegfs

BeeGFS provides a set of tools that can be used to manage and monitor the file system.
In this section, some of the tools are described and illustrated by screenshots.
Checking the connectivity can be a good start point. To use that, beegfs-utils is needed
to be installed on the client nodes, for example, in Debian distribution we may use:
$apt install beegfs-utils. Then the following command may help to consider the
connection net.

e beegfs-net # connections the client is using
e beegfs-check-servers # possible connectivity of the services
e beegfs-df # free space & inodes of storage & metadata

:~5% beegfs-ctl --listnodes --nodetype=client --nicdetai

1s
339-641C0435-client-VirtualBox [ID: 2]

Ports: UDP: 8004; TCP: 0O

Interfaces:

+ enpO@s3[ip addr: 192.168.0.105; type: TCP]
A96-641C2071-hadoop-VirtualBox [ID: 3]

Ports: UDP: 8004; TCP: 0O

Interfaces:

+ enpO@s3[ip addr: 192.168.0.81; type: TCP]

Number of nodes: 2

N |

Figure 4: list of nodes

As we can see in Figure 5, in our case the three management, metadata, and storage
services are installed on a same VM. Here the ID for each node is defined automatically
by default, however it can be defined manually as an option. BeeGFS clients establish
connections only when they are needed, and drop them after some idle time. Therefore,

Section 4 Zoya Masih 8

On Demand File Systems with BeeGFS

the command beegfs-net can be here used on a client to see the number of currently
established connections to each of the servers.
:~5 beegfs-net
mgmt_nodes

beegfs rtualBox [ID: 1]
Connections: TCP: 1 (192.168.0.189:8008);

tualBox [ID: 2]

Connections: TCP: 1 (192.168.0.189:8005);
storage_nodes

beegfs-VirtualBox [ID: 3]
Connections: TCP: 1 (192.168.0.189:8003);

e D

Figure 5: beegfs-net

In Figure 4, we can see that there are two client nodes in our small net. In a same way,
storage and metadata nodes can be listed by following commands.

e $beegfs-ctl - -listnodes - -nodetype=meta - -nicdetails
o $beegfs-ctl - -listnodes - -nodetype=storage - -nicdetails
o $beegfs-ctl - -listnodes - -nodetype=client - -nicdetails

BeeGFS includes a built-in storage targets benchmark (StorageBench) and a built-in
network benchmark (NetBench). The storage benchmark is started and monitored with
the beegfs-ctl tool. For instance, the following example starts a write benchmark on all
targets of all BeeGF'S storage servers with an IO blocksize of 512 KB, using 10 threads per
target, each of which will write 100 GB of data to its own file, see Figure 6, $ beegfs-ctl
-storagebench -alltargets -write -blocksize=512K -size=100G -threads=10

In Figure 6, it can be seen that before invoking the benchmark command, the benchmark
status is 'Not Run’. Additionally, IOR is a benchmark tool to measure the performance of
a single or multiple clients with one or more processes per client. To use this benchmark,
installing beegfs-client-devel is needed. Another provided tool for benchmarking is
mdtest, which is a metadata benchmark tool, it needs MPI for distributed execution and
can be used to measure values like file creations per seconds or stat operations per second
of a single process or of multiple processes.

To add a new node to the net, it suffices to repeat all setup steps in the new node, and
the system does not need a downtime.

In a case of problem in adding a node, make sure that in /etc/beegfs/beegfs-mgmtd.conf
you have sysAllowNewServers = true and sysAllowNewTargets = true.

The storage services can be run on different machines and/or multiple storage targets
on a same node, e.g., multiple RAID volumes. For having a second storage target on a
same node, one can use the configuration command with replacing myraid2 to myraidl.

Section 4 Zoya Masih 9

On Demand File Systems with BeeGFS

:~$ beegfs-ctl --storagebench --alltargets --status
This mode requires root privileges.

:~$ sudo -1i
[sudo] password for hadoop:
root@hadoop-virtualBox:~# beegfs-ctl --storagebench --alltargets --status

Server benchmark status:
Didn't run: 1

root@hadoop-VvirtualBox:~# beegfs-ctl --storagebench --alltargets --write --bloc
ksize=512k --size=100G --threads=10

Write storage benchmark was started.
You can query the status with the --status argument of beegfs-ctl.

Server benchmark status:
Running: 1

root@hadoop-virtualBox:~# I

Figure 6: StorageBench

In this sense, data transferring from one to all other targets is possible by $beegfs-ctl
-migrate -targetid=<targetID> /mnt/beegfs/. This can free up storage targets, to
allow the removal of a target.

There is also another concept, Storage pools, which can be considered a template for
the stripe pattern BeeGF'S uses to assign file chunks to specific storage targets. Instead
of directly assigning a stripe pattern, a user can now assign a storage pool. The tool
beegfs-ctl can be used to check the target assignments and also for migrating files from
one to another storage pool. Figure 7.

: /S beegfs-ctl --liststoragepools
Pool Description Targets

Default 301

Figure 7: 1liststoragepool

The tool mirroring was explained in 2.6. Mirroring is disabled by default and can be
enabled for both meta and storage separately. In figure 8, mirroring is activated for
meta service. Before that, we have added meta service to a new node. The command
here defines Buddy Groups automatically which suffices for our small system, however
by adding -primary= -secondary= -groupid=, we can define the buddy targets and a
group ID manually.

For retrieving information about a certain file or directory, such as entry ID and striping
details, the command line $ beegfs-ctl getentryinfo /mnt/beegfs/filename can be
used. For more details and other options of the command, $ beegfs-ctl getentryinfo
- -help is useful. This mode is shown in Figure 9. In this example, the desired storage
target is 4, which means if we have 4 storage targets, the file will be striped across them,
in this experiment, we had just one storage target and therefore the actual number of
storage targets is 1.

5 Conclusion

The parallel file system BeeGFS was provided to deal with the slow growth in IO per-
formance, in the era of HPC emergence, in which compute-intensive applications spent a
large portion of their execution time on I/O operations. A BeeGFS file system is a parallel

Section 5 Zoya Masih 10

On Demand File Systems with BeeGFS

root@hadoop-VirtualBox:~# beegfs-ctl --addmirrorgroup --au
tomatic --nodetype=meta

New mirror groups:
BuddyGroupID Node type Node

primary 2 @ beegfs-meta hadoop-Vir

tualBox [ID: 2]
secondary 4 @ beegfs-meta client-Vir

tualBox [ID: 4]

Mirror buddy group successfully set: groupID 1 -> target I
Ds 2, 4
root@hadoop-VvirtualBox:~# |}

Figure 8: Mirroring

S beegfs-ctl --getentryinfo /mnt/beegfs/vid

eo.mp4 --verbose
Entry type: file
EntryID: ©0-6421BC57-2
Metadata node: hadoop-VirtualBox [ID: 2]
Stripe pattern details:
+ Type: RAIDO

Chunksize: 512K

+
+ Number of storage targets: desired: 4; actual: 1
+ Storage targets:

+ 301 @ hadoop-VirtualBox [ID: 3]
Chunk path: u®/0/r/root/©-6421BC57-2
Dentry path: 38/51/root/

s i

Figure 9: A file information

cluster file system managed with the BeeGF'S software. BeeGFS architecture is composed
of four main services: Management, Storage, Metadata, and Client services. BeeGFS ON
Demand is one of many efficient tools in the file system which easily removes 1/O load
and nasty I/0 patterns from a persistent global file system. By increasing the number of
servers and disks in the system, it is possible to scale performance and capacity of the file
system to the level that you need, seamlessly from small clusters up to enterprise-class
systems with thousands of nodes.

In the current report, The architecture and some features of the file system were studied.
The file system in this project was set up on virtual machines of Ubuntu OS. Finally,
some start use of BeeGFS’ tools were provided.

Section 5 Zoya Masih 11

On Demand File Systems with BeeGFS

References

[Bee] Official BeeGFSPage. In: URL: http://doc.beegfs.io/latest/architecture/
overview.html.

[Fah+19| Fahim Chowdhury et al. “I/O Characterization and Performance Evaluation
of BeeGFS for Deep Learning”. In: (2019).

[FL18] Nicholas Mills. Alex Feltus and Walter Ligon. “Maximizing the performance of
scientific data transfer by optimizing the interface between parallel file systems
and advanced research networks”. In: (2018).

[Jan14] Jan Heichler. “An Introduction to BeeGFS”. In: (2014).

[PC21| Jared Brzenski. Christofer Paolini. and Jose Castillo. “Improving the 1/0O of
large geophysical models using PnetCDF and BeeGFS”. In: (2021).

[PT22] Francieli Boito. Guillaume Pallez and Luan Teylo. “The role of storage target
allocation in applications’ I/O performance with BeeGFS”. In: (2022).

Section 5 Zoya Masih 12

http://doc.beegfs.io/latest/architecture/overview.html
http://doc.beegfs.io/latest/architecture/overview.html

	Contents
	List of Tables
	List of Figures
	List of Listings
	List of Abbreviations
	Introduction
	Usage in HPC
	Literature Review
	Goals of the project

	Architecture
	Overview
	Management Service
	Metadata Service
	Storage Service
	Client Service
	More about the Architecture
	BeeOND

	Setup
	Installation

	Getting Started
	Conclusion
	References

