
SH

∞

Seminar Report

[Building a reasonable sized Gromacs
container image]

[Winfried Oed]

MatrNr: [21674445]

Supervisor: [Azat Khuziyakhmetov]

Georg-August-Universität Göttingen
Institute of Computer Science

March 29, 2023

Abstract
Containers are a great tool to distribute software into High-Performance Computing
(HPC) systems. Building them and shrink their size can be however cumbersome. In-
stalling the molecular dynamics simulation software GROMACS [Bek+] 1 inside a con-
tainer requires many steps. Azat Khuziyakhmetov facilitated this process by implement-
ing a container image building approach that uses multiple recipes and images. Specific
versions can be defined in these recipes and by calling a shell build script the containers
are subsequently build. Since compiling software needs additional library’s the final con-
tainer image is not optimized in size. During this course the build script was extended to
streamline the building process. Software versions can now easily be defined in one place
inside the build script and a few extra parameters like the builder to use are added. The
container size can be minimized using two different methods and the process generates
a lightweight container image. Finally the image can be used on the HPC system. All
source code is available and further usage instructions can be found in the repository 2.

1https://www.gromacs.org/
2https://gitlab.com/Winnus/gromacs-container-for-hpc

i

https://www.gromacs.org/
https://gitlab.com/Winnus/gromacs-container-for-hpc

Contents

List of Tables iii

List of Figures iii

List of Listings iii

List of Abbreviations iv

1 Introduction 1

2 Background 2

2.1 HPC Container Maker . 2

3 Methodology 3

3.1 build script . 4

3.2 Expected outcome . 5

4 Implementation 5

4.1 Deploy methods . 5

5 Evaluation/Results 6

6 Challenges / Discussion 7

7 Conclusion 8

References 9

A Appendix A1

B Figures A1

C Code samples A1

ii

List of Tables
1 Sizes for the different container images generated during the build steps.

Note that the software column includes the installation or removal of all
needed dependencies -which are not listed-. The root image is not build, in-
stead it is pulled from the Docker library at "docker.io/library/ubuntu:22.04".
. 6

List of Figures
1 Schematic drawing of specific layers in a container image. Whenever a

new run statement is made a new layer is added to the image. myfile is
added into the second layer of the image due to the first run command.
The second run command removes the file and as such it is not present
anymore in the third layer of the image. However it is still present in layer
two of the image and as such contributes to the overall size of the image. . A1

List of Listings
1 HPC Container Maker (HPCCM) definition file which will install Open

Message Passing Interface (MPI). The resulting Docker container defini-
tion file can be seen in the appendix, listing 5. 3

2 Variable section of the build script containing all variables that can be
modified. A2

3 HPCCM recipe to remove the compiler and software garbage with spack.
A shell command is specified which: uses spack to uninstall the compiler
from the system wide packages, doing a garbage collection on the system
wide installed spack files, loads the spack environment in which gromacs is
installed, doing a garbage collection inside that environment. A3

4 HPCCM recipe to remove the compiler and software garbage with spack
and copy the cleaned spack environment into freshly build deploy image.
Spack specific setups are done as well. A4

5 Docker definition file to install openmpi in a container. The definition file
was automatically generated by HPCCM using the recipe listed in 1 . . . A5

iii

List of Abbreviations
HPC High-Performance Computing

HPCCM HPC Container Maker

MPI Message Passing Interface

GCC GNU Compiler Collection

FFTW Fastest Fourier Transform in the West

iv

[Building a reasonable sized Gromacs container image]

1 Introduction
In multi user environments it is not possible for the administrators to provide all software
the users might need. Especially different users might want different versions of the same
software, leading to an unmanageable administration case. Software containers [Heo+18]
[KSB17] provide a solution here because they can be build by the user and ideally contain
all the necessary software within themselves. As such the system administrator has not
to deal with different software stacks. He only needs to maintain the container runtime
library’s and some specific software that can not be shipped within a container such as
message passing interfaces (MPI) like Open MPI 3. These software can not be shipped
inside a container because it needs to be installed and configured on the system wide nodes,
a task the user can not perform due to insufficient rights and knowledge. Containers have
also the benefit of being easily shared among users. Additionally they represent a certain
state of a software stack and as such, if something went wrong, software can be easily
resetted into a clean state. In comparison to virtual machines they are light weight for
the host system. However containers have the drawback that they should not run with
root permissions as any suspicious software would gain root access to the host system.
Here VM’s are better suited as the emulated hardware environment is separated to the
host system. However software running in a VM can not be integrated on HPC nodes as
well as containerized software. Hence rootless containers are the solution and are adapted
in HPC software distribution.

Building containers requires the user to write container definition files and building the
container on their own. To have an easy to use container build scrip for the molecular
dynamic simulation software Gromacs [Bek+] Azat Khuziyakhmetov wrote a container
build script. The script uses the HPCCM 4 to generate Docker definition files that and
building containers from them. To compile and install -inside the containers- software
that is hardware optimized the flexible software manager Spack 5 is used. As software
compilation takes a lot of additional library’s the final container image is not optimized
in size. In this work the final image size was optimized implementing two solutions.
Additionally the build script was adapted to facilitate the container build process even
more. All necessary variables can easily be modified and adapted to ones needs in one
place. In the end building a reasonable sized container image only containing the needed
runtime library’s for Gromacs is not a difficult task with the provided work. The resulting
container image is roughly 51 percent smaller compared to the non optimized one, enabling
efficient use on the HPC system.

Contribution of this work to the already existing solution.

1. shrink the image size of the final container image.

2. improve the overall usability of the container build process

3. provide a documented procedure of how to generate and use a Gromacs container
image on the HPC system 6.

3https://www.open-mpi.org/
4https://github.com/NVIDIA/hpc-container-maker
5https://github.com/spack/spack
6https://gitlab.com/Winnus/gromacs-container-for-hpc

Section 1 [Winfried Oed] 1

https://www.open-mpi.org/
https://github.com/spack/spack
https://gitlab.com/Winnus/gromacs-container-for-hpc

[Building a reasonable sized Gromacs container image]

4. provide a detailed report of how different tools are combined to facilitate a container
build process.

This report is structured as follows. In section 2 basic information about container defi-
nitions and used software are given. Section 3 will describe the container build approach
implemented in this work in more detail and the expected outcome. Next, section 4 will
describe some finer details about the implementation and used commands. In section 5
the achievements and results are discussed. The following section 6 will discuss problems
that occurred and compare the implemented container build-flow with the Spack inbuild
one. Finally the report ends with a conclusion in section 7.

2 Background
Containers need a specification which defines how they are structured and how to the
container daemon should run them. OCI 7 is an open and widely used container standard
in the container world. Most daemons like Docker or Podman work with it. As such
containers compiled by different daemon can run on another. The build instructions of
a container are usually given in form of a container definition file. This file is a text
file containing different sections that describe the container build process. There is no
standard used and as such these files can look slightly different. Mostly they contain the
same sections and some minor differences but are incompatible between daemons, e.g.
Docker vs Singularity. One reason why tools such as HPCCM are usefull.

2.1 HPC Container Maker

HPCCM 8 is developed by NVIDIA as an open source software package. It’s purpose is to
facilitate the process of creating container definition files. Achieved is this goal via a high
level python coding interface. HPCCM provides predefined building blocks for common
container building tasks. Additionally it provides modules for user specific commands
9. The high level python container definition script can be translated into Docker or
Singularity definition files for high flexibility. Container best practices -such as a cleanup
in every run statement- are applied automatically. The usage of python is a benefit when
creating HPCCM recipes as it provides a more programmable interface as pure Docker or
Singularity definition files.

A very simple container definition file which shows the basic usage is shown below in
listing 1.

Supposed the content from listing 1 is saved into a file called mpi.py, to compile it into a
Docker definition file the following command can be used:
hpccm --recipe mpi.py --format docker > Dockerfile.mpi . Note that HPCCM

7https://opencontainers.org/
8https://github.com/NVIDIA/hpc-container-maker
9Via the flexible shell building block in which all commands are put into a usual container run state-

ment it is possible to build arbitrary container definition files even if no HPCCM building block is available
for this task.

Section 2 [Winfried Oed] 2

https://opencontainers.org/

[Building a reasonable sized Gromacs container image]

1 #!/usr/bin/python3
2 Stage0 += baseimage(image='docker.io/library/ubuntu:22.04')
3

4 # add mpi
5 Stage0 += openmpi(version='4.0.3')

Listing 1: HPCCM definition file which will install Open MPI. The resulting Docker
container definition file can be seen in the appendix, listing 5.

outputs a string -usfull for using it inside scripts with variables- which is redirected into
the file Dockerfile.mpi. The glazing content of this file can be viewed in the appendix
(listing 5).

3 Methodology

In order to enable a user to use his own version of GROMACS [Bek+], which does not
come preinstalled on the HPC system, a containerized approach can be chosen. For
this Azat Khuziyakhmetov made a script which builds the container. The approach is a
multi image build which means that to produce a final image not all software installation
steps are made in one build step. Rather four different images are build on top of each
other. The first image contains a installation of Spack. The second image uses the first
image as base image and a specific version of GNU Compiler Collection (GCC), MPI
and Fastest Fourier Transform in the West (FFTW) utilizing Spack is installed. Using
the second image as base image the third image installs a specific version of GROMACS
using Spack. Thus the final image contains a working version of GROMACS with MPI
support. However the final image is relatively large in size as it contains the compiler
libraries. These are not needed to run simulations with GROMACS.

As solution the GCC compiler and all other build dependencies should be removed. Re-
moval is however not trivial in the context of container images and their layers. Each
run statement in a Podman or Docker container definition file will create a new layer in
the image. The layer contains all changes made in respect to the previous layer. Hence
if a file is removed the change -the removal of the file- is reflected in the corresponding
layer. All subsequent layers will not contain the file. But the file is present in earlier
layers. Removing a file in a layer will only affect the following layers it will not change
any previous layers (see figure 1). As such the removed file will be inside the final image
-the final image contains all layers- and contributing to its size. Shrinking the size of a
container image is therefore not possible by simply removing files or uninstall software.

Different solutions exist to overcome the problem. Since a new layer is only made for each
run command in the definition file, one solution is to pull all software installation and
removal commands in one run statement. This would resolve the image size problem as
there will be only one layer in the final image not containing any removed files. Unfor-
tunately making changes or simply read the container definition file will be difficult. If
the build process fails at a later stage in the run command there will be no cached layers

Section 3 [Winfried Oed] 3

[Building a reasonable sized Gromacs container image]

and as such the whole build process has to start from the beginning which can take a lot
of time. As the underlying approach of this work is to build multiple images on top of
each other it is not possible to combine all installation and removal steps into one run
command.

Another approach is to start/run a container from the final image. Though all removed
software is contained inside the image, once a container is instantiated it will have the
state of the final layer of the image. As such all unnecessary software is not present.
The instantiated container can be exported into a tar archive which can be imported as
image again. Thus in the end the imported image will contain only one layer without the
removed software. However exporting and importing a container takes time and space
and is outside of the usual build process, utilizing a feature that war originally build for
a different purpose.

A third option is to use a build and a deploy image. All the required software is build
inside the build image and finally only the software binaries that are really needed will be
copied to the deploy image. In the case of our multi stage build this would mean that the
GCC compiler suite and all its dependencies as well as all other no longer needed software
is removed from the Spack environment. Subsequently a new image is build which contains
only a working Spack installation. In this image the cleaned Spack environment is copied,
resulting in an image only containing the needed parts in its layers.

Since the problem arise from the layer stacking approach a last option is to crush all layers
into one, thus representing only the final state. This can be achieved during the container
build process by an argument that tells the builder to squash all layers. Hence very few
changes need to be made into the build script and it is not necessary to find all relevant
files that need to be copied to a deploy image as in the last approach. However Docker
considers this feature as experimental since 2017 and in my testing it did not always work
-the layers weren’t squashed at all-. In contrast Podman does the job nicely and all layers
are squashed into one final layer.

3.1 build script

Only the last two solutions are considered reasonable. To have the option to switch easily
between them a easily to control build script should be available. Here one should be
able to specify which of the two size reduction methods should be used and the container
build process should be adapted accordingly.

In order to install a different version of the software library’s it was initially necessary
to change the container definition files accordingly. The build script should take care of
this and the corresponding parameters should be changeable very easily at the beginning.
Building a container with a specific version of GCC, MPI, FFTW and GROMACS should
be simple then. Additionally the target architecture should be defined which will build a
hardware optimised software stack.

In the end a reasonable sized container image should be automatically build and can be
transferred to the HPC system for further usage.

Section 3 [Winfried Oed] 4

[Building a reasonable sized Gromacs container image]

3.2 Expected outcome

Without deep diving into containers and their build instructions it should be possible to
generate a working GROMACS container image. It should be only very few knowledge
about Spack install commands needed to define which software versions are be installed.
Beside the usability effects the resulting container image should be as small as possible
for convenient transfer to the HPC system and storage reasons. The performance of
GROMACS should be reasonable compared to a bare metal installation.

4 Implementation
This section will describe some core implementation aspects in more detail. There are
two main parts that are involved in the container build process. First the build script and
secondly the hppcm recipe files. All of the driving logic is implemented in the build script.
Here variables are defined which will control the build process based on their values (see
appendix listing 2 for all variables) The script will copy HPCCM templates -residing in
a folder called templates- into its directory. It will modify them via the sed 10 tool to
add image names, software versions, image shrinkage method and the like. After this
step the HPCCM recipes are ready and are compiled into container definition files. These
definitions files will be then used to build the containers, where depending on the users
setting Docker or Podman is used.

4.1 Deploy methods

In order to shrink the image size the compiler and other not needed software packages are
removed.

Since the packages remain in the image layers below the current one in which the removal
of the packages happens, the overall size of the image is not reduced as discussed in the
last chapter. To overcome the problem there are two mentioned approaches implemented.

The simplest option is to build the last image with a flag that tells the build command
to squash all layers in the image. In Podman the flag is named --squash-all in Docker
--squash . Hence the final hppcm build recipe will only contain commands to remove
the software as shown in listing 3, and compiled into a container definition file. The
subsequent Podman image build instruction would be
" podman build --squash-all -t img_name -f Dockerfile.deploy . ".

The other approach is to clean up the Spack environment, build a new and clean deploy
image and copy over the cleaned environment. Additionally there is the need to set up
Spack into the new image by adding spacks completion bash and adding Spack and its
binary locations to the PATH variable. The corresponding HPCCM build script is shown
in listing 4. Since the deploy image does not have layers with unwanted content in it the
build is performed usually, without the --squash-all flag, and in case of Podman -or

10https://www.gnu.org/software/sed/

Section 4 [Winfried Oed] 5

[Building a reasonable sized Gromacs container image]

Docker- is
" podman build -t DEPLOY_IMAGE_NAME -f Dockerfile.deploy . ".

5 Evaluation/Results
The work described above significantly reduces the workload for a user to build a container
image for GROMACS. With the developed build script it is not necessary to go into the
different recipe files used by HPCCM in order to change the version or target architecture.
All relevant variables appear in one place and an easy overview is possible. As such it is
easy to see which exact software versions are installed.

The final image is much smaller compared to the initial build process since the compiler
and other unused software is removed and are not present in any layers of the container.
Sizes depend on the software versions installed as different GCC or GROMACS versions
will differ in their space requirements. For an installation of the versions listed in table
1 the final image size was reduced from 4280 to 2070 MB which is a reduction of 51
percent.

image size (MB) software added (+) removed (−)
root 80 + Ubuntu@22.04
base 596 + Spack@0.19, updates(Ubuntu)
mpi 3910 + GCC@12.2.0, OpenMPI@4.1.3, FFTW@3.3.10
gromacs 4280 + GROMACS@2022.3
deploy 2070 − GCC@12.2.0, librariescompile

Table 1: Sizes for the different container images generated during the build steps. Note
that the software column includes the installation or removal of all needed dependencies
-which are not listed-. The root image is not build, instead it is pulled from the Docker
library at "docker.io/library/ubuntu:22.04".

It was unexpected that the --squash flag in Docker version 20.10.23 did not work.
Building the image using it did not reduced the size of the final deploy image. To mention
is that the flag is listed as experimental since 2017. However it worked really well in
Podman and therefore Podman was adapted as the default builder.

Another important aspect is performance. Performance tests where made with the GRO-
MACS benchmark from the Max Plank Institute 11, specifically benchMEM where used.
Although testing was only made empirically the author can report that a performance
impact due to containerisation was marginally. With different simulations and or systems
the result might be different.

11https://www.mpinat.mpg.de/grubmueller/bench

Section 6 [Winfried Oed] 6

https://www.mpinat.mpg.de/grubmueller/bench

[Building a reasonable sized Gromacs container image]

6 Challenges / Discussion
Building container images can be a very compute heavy task. Since Spack is used which
will compile all installed software from source -which is a good thing as then the appro-
priate compile flags and compiler optimisations can be performed- the container build is
a very CPU hungry endeavour. On a Intel xeon E3− 1245V 2 the build for the containers
specified in table 1 took roughly about 4 hours. Since compilation of software is not
always a smooth process it can be very annoying to build the container images. It can
require some trial and error before a working combination of software versions can be
found. The multi image approach reduces the burden as not all images need to be rebuild
on a failure. However it would be great if containers could be build on the potent HPC
systems. This can be a non trivial task since the container build process might requires
to run as root which is not possible on such systems. Rootless container daemons like
singularity or Podman are therefore a step into the right direction.

Containers have their specialities when it comes to accessing the hosts file system. In
singularity the user file system is mounted automatically and its files are accessible easily,
in Docker and Podman the user has to explicitly mount the file system. As a new user
one has to become used to such facts and how to use the software installed inside the
container. This can be especially problematic if software within the container should run
on a HPC system where is has to use schedulers like slurm. The experience showed that
it is not easy as often permission or path problems occured.

Another observation is that HPCCM does not provide building blocks for Spack. As a
work around the shell block can be used to issue the correct Spack commands. However it
might be simpler to have a special Spack building block. This block could automatically
apply best practices for Spack.

Spack itself offers a containerize option 12. A Spack environment -defined in the Spack
way in a spack.yaml file- can be automatically translated into a Docker definition file by
issuing the command spack containerize > Dockerfile . It will build a container,
based on a precompiled Ubuntu based Spack image, and installs the software defined
in the spack.yaml file. Finally it will copy the environment into a new deploy image to
reduce the final image size. While this is a nice feature of Spack, the multi image approach
described above has advantages. It does not need a working Spack installation. It is more
flexible, in particular it is possible to change the root image or install software beside the
Spack environment. It generates reusable images, for example the MPI image can be used
to install a different simulation software then GROMACS without the need of changing
the underlying approach.

It is possible to run a GROMACS simulation using the compiled container images on the
compute nodes of the HPC system. However the process might be not very smooth. If
the container was started with slurm, some part of Open MPI tried to write into /local
inside the container. This stops the simulation with an error since the container directories
are not writable. As solution one can bind a writable directory into the same path into
the container as described in the repository of this work. Another failure might happen
if Open MPI tries to run over the network on more then one node, which is the case why

12https://spack.readthedocs.io/en/latest/containers.html

Section 6 [Winfried Oed] 7

https://spack.readthedocs.io/en/latest/containers.html

[Building a reasonable sized Gromacs container image]

it is used in the first place. Here errors and aborted simulations occurred for reasons that
where not really understood.

7 Conclusion
Containers provide a powerful environment for deploying software. They can be used by
users of HPC systems to use their own installed and configured software without the need
of having to ask the system administrator. However building and running containers es-
pecially on HPC systems can be a non trivial task as schedule managers and permissions
might throw a shadow over the users experience. Although they are sometimes the only
way of giving the user access to arbitrary software packages. And with a little experiment-
ing it should be possible to resolve all problems and have a well running containerized
simulation.

For me this course was the first time I worked with containers. I am very excited about the
ability to provide a separated and save environment to run software yet do not overload
the hardware resources. Having a container build script allows for easy installation of the
selected software on different machines. This streamlines the way I will use software in
the future. Additionally I learned how to use containers on a HPC system and submit
a batch job to slurm that runs the installed software in the container on the compute
nodes.

The source code and further usage instructions on how to run the container with slurm
can be found in the corresponding repository 13.

13https://gitlab.com/Winnus/gromacs-container-for-hpc

Section 7 [Winfried Oed] 8

https://gitlab.com/Winnus/gromacs-container-for-hpc

[Building a reasonable sized Gromacs container image]

References

[Bek+] H. Bekker et al. ““Gromacs: A parallel computer for molecular dynamics sim-
ulations”; pp. 252–256 in Physics computing 92. Edited by R.A. de Groot and
J. Nadrchal. World Scientific, Singapore, 1993.” In: ().

[Heo+18] Matt et. al Heon et al. Podman - : A tool for managing OCI containers and
pods. Version v1.0 and beyond. Currently at v3.0.1. Jan. 2018. doi: 10.5281/
zenodo.4735634. url: https://doi.org/10.5281/zenodo.4735634.

[KSB17] Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. “Singularity:
Scientific containers for mobility of compute”. In: PLOS ONE 12.5 (May 2017),
pp. 1–20. doi: 10.1371/journal.pone.0177459. url: https://doi.org/
10.1371/journal.pone.0177459.

Section [Winfried Oed] 9

https://doi.org/10.5281/zenodo.4735634
https://doi.org/10.5281/zenodo.4735634
https://doi.org/10.5281/zenodo.4735634
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459

[Building a reasonable sized Gromacs container image]

A Appendix

B Figures

Figure 1: Schematic drawing of specific layers in a container image. Whenever a new run
statement is made a new layer is added to the image. myfile is added into the second
layer of the image due to the first run command. The second run command removes the
file and as such it is not present anymore in the third layer of the image. However it is
still present in layer two of the image and as such contributes to the overall size of the
image.

C Code samples

Section C [Winfried Oed] A1

[Building a reasonable sized Gromacs container image]

1 ## -------------------------------
2 ## variables
3 ## -------------------------------
4 ## define builder
5 BUILDER='podman' ## 'podman' 'docker'
6

7 ## remove build recipes once build is finished?
8 REMOVE_RECIPES='false' ## 'true' 'false'
9

10 ## define how to deploy the final image
11 ## squash: builder removes all layers in final build
12 ## copy: spack env will be copied to new, clean image
13 FINAL_IMAGE_DEPLOY_METHOD='squash' ## 'squash' 'copy'
14

15 ## define the build architecture
16 ARCH='cascadelake' ## 'cascadelake' 'ivybridge' 'hashwell' ...
17

18 ## image names
19 ROOT_IMAGE_NAME='docker.io/library/ubuntu:22.04'
20 BASE_IMAGE_NAME="gwdg/hpc-base-ubuntu-$ARCH:latest"
21 MPI_IMAGE_NAME="gwdg/hpc-mpi-ubuntu-$ARCH:latest"
22 GROMACS_IMAGE_NAME="gwdg/hpc-gromacs-ubuntu-$ARCH:latest"
23 DEPLOY_IMAGE_NAME="gwdg/hpc-deploy-ubuntu-$ARCH:latest"
24

25 ## spack version
26 SPACK_VERSION='v0.19'
27

28 ## declare compiler, mpi and fftw to be installed
29 ## these have to be spack commands
30 ## to get available versions use a spack installation or
31 ## use their website:
32 ## "https://spack.readthedocs.io/en/latest/package_list.html"
33 GCC_VERSION='gcc@12.2.0 target=x86_64'
34 MPI_VERSION='openmpi@4.1.3' ## do not provide GCC version (added automatically)
35 FFTW_VERSION='fftw' ## do not provide the architecture (target=xyz) here
36 GROMACS_VERSION='gromacs@2022.3'

Listing 2: Variable section of the build script containing all variables that can be modified.

Section C [Winfried Oed] A2

[Building a reasonable sized Gromacs container image]

1 #!/usr/bin/python3
2 Stage0 += baseimage(image={{GROMACS_IMAGE_NAME}}, _distro='ubuntu22')
3 gcc_version = USERARG.get('gcc_version', {{GCC_VERSION}})
4

5 # clean up:
6 # clean gcc and clean env
7 Stage0 += shell(commands=
8 [
9 'spack uninstall -y {}'.format(gcc_version),

10 'spack gc -y',
11 '. /load-spack-env.sh',
12 'spack gc -y'
13])

Listing 3: HPCCM recipe to remove the compiler and software garbage with spack. A
shell command is specified which: uses spack to uninstall the compiler from the system
wide packages, doing a garbage collection on the system wide installed spack files, loads
the spack environment in which gromacs is installed, doing a garbage collection inside
that environment.

Section C [Winfried Oed] A3

[Building a reasonable sized Gromacs container image]

1 #!/usr/bin/python3
2 # ---
3 # clean up
4 # ---
5 Stage0 += baseimage(image={{GROMACS_IMAGE_NAME}}, _distro='ubuntu22',
6 _as='base')
7

8 gcc_version = USERARG.get('gcc_version', {{GCC_VERSION}})
9

10 # clean gcc and clean env
11 Stage0 += shell(commands=
12 [
13 'spack uninstall -y {}'.format(gcc_version),
14 'spack gc -y',
15 '. /load-spack-env.sh',
16 'spack gc -y'
17])
18

19 # ---
20 # copy spack env to new base
21 # ---
22 Stage1 += baseimage(image={{ROOT_IMAGE_NAME}}, _distro="ubuntu22")
23

24 # Spack dependencies and Python
25 ospackages = ['build-essential', 'make', 'patch', 'bash', 'tar', 'gzip',
26 'unzip', 'bzip2', 'xz-utils', 'zstd', 'file', 'gnupg2', 'git',
27 'python3-dev', 'curl', 'ca-certificates', 'autoconf', 'vim',
28 'pkg-config', 'gfortran', 'python2', 'python3'
29]
30 Stage1 += apt_get(ospackages=ospackages)
31

32 # Copy Spack
33 Stage1 += copy(_from='base', src='/opt', dest='/opt')
34 Stage1 += copy(_from='base', src='/root/.spack', dest='/root/.spack')
35 Stage1 += shell(commands=[
36 'ln -s /opt/spack/share/spack/setup-env.sh /etc/profile.d/spack.sh',
37 'ln -s /opt/spack/share/spack/spack-completion.bash /etc/profile.d'
38])
39 Stage1 += environment(variables={'PATH':'/opt/spack/bin:/opt/view:$PATH',
40 'SPACK_ROOT': '/opt/spack'})
41 Stage1 += shell(commands=[
42 'echo ". /opt/spack/share/spack/setup-env.sh" >> /load-spack-env.sh',
43 'echo "spack env activate /opt/spack-env" >> /load-spack-env.sh'
44])

Listing 4: HPCCM recipe to remove the compiler and software garbage with spack and
copy the cleaned spack environment into freshly build deploy image. Spack specific setups
are done as well.

Section C [Winfried Oed] A4

[Building a reasonable sized Gromacs container image]

1 FROM docker.io/library/ubuntu:22.04
2

3 # OpenMPI version 4.0.3
4 RUN apt-get update -y && \
5 DEBIAN_FRONTEND=noninteractive apt-get install -y \
6 --no-install-recommends \
7 bzip2 \
8 file \
9 hwloc \

10 libnuma-dev \
11 make \
12 openssh-client \
13 perl \
14 tar \
15 wget && \
16 rm -rf /var/lib/apt/lists/*
17 RUN mkdir -p /var/tmp &&
18 wget -q -nc --no-check-certificate -P /var/tmp \
19 https://www.open-mpi.org/software/ompi/v4.0/downloads/\
20 openmpi-4.0.3.tar.bz2 && \
21 mkdir -p /var/tmp && \
22 tar -x -f /var/tmp/openmpi-4.0.3.tar.bz2 -C /var/tmp -j && \
23 cd /var/tmp/openmpi-4.0.3 && \
24 ./configure --prefix=/usr/local/openmpi --disable-getpwuid \
25 --enable-orterun-prefix-by-default --with-cuda --with-verbs && \
26 make -j$(nproc) && \
27 make -j$(nproc) install && \
28 rm -rf /var/tmp/openmpi-4.0.3 /var/tmp/openmpi-4.0.3.tar.bz2
29 ENV LD_LIBRARY_PATH=/usr/local/openmpi/lib:$LD_LIBRARY_PATH \
30 PATH=/usr/local/openmpi/bin:$PATH

Listing 5: Docker definition file to install openmpi in a container. The definition file was
automatically generated by HPCCM using the recipe listed in 1

Section C [Winfried Oed] A5

	Contents
	List of Tables
	List of Figures
	List of Listings
	List of Abbreviations
	Introduction
	Background
	HPC Container Maker

	Methodology
	build script
	Expected outcome

	Implementation
	Deploy methods

	Evaluation/Results
	Challenges / Discussion
	Conclusion
	References
	Appendix
	Figures
	Code samples

