
SH

∞

Seminar Report

Encryption Tools: Hashicorp Vault

Sonal Lakhotia

MatrNr: 14913835

Supervisor: Hendrik Nolte

Georg-August-Universität Göttingen
Institute of Computer Science

March 26, 2023

Abstract
Hashicorp Vault is an identity-based secrets and encryption management, cloud agnostic
system. A secret is anything that needs strict control access. It includes Application Pro-
gramming Interface (API) encryption keys, credentials, passwords, and certificates. Vault
provides encryption services that incorporate authentication and authorization methods.
Modern systems require access to multiple secrets, such as database credentials, API keys
for external services, and service-oriented architecture communication credentials. Vault
ensures access to secrets and other sensitive data is managed and stored with security.
It allows restricted access that is auditable. Vault validates and authorizes clients such
as users, machines, and apps before giving them access to secrets and storing sensitive
data. Vault configuration is possible using Vault User Interface (UI), Command Line Inter-
face (CLI), or Hypertext Transfer Protocol (HTTP) API. The report demonstrates Vault
configuration for production with Transport Layer Security (TLS) configuration. It also
illustrates specific use cases for Vault, such as limited Time-to-live (TTL) service tokens,
one-time use tokens for access to secrets, and storing encrypted secrets in Random-Access
Memory (RAM).

i

Contents

List of Figures iii

List of Listings iii

List of Abbreviations iv

1 Introduction 1
1.1 Vault Key Features . 2

2 Vault Configuration 3
2.1 Installing Vault . 3
2.2 Initiating Vault Server . 3

2.2.1 Vault Development Server . 4
2.2.2 Vault Configuration for Production 4

2.3 Initializing the Vault . 5

3 Vault Use-Cases 7
3.1 Single-Use Tokens with Limited TTL with Cubbyhole 8
3.2 Secret Storage in RAM . 10

4 Future Work 10

5 Conclusion 11

References 12

ii

List of Figures
1 Vault Secret Management System . 1
2 Vault Core Workflow . 2

List of Listings
1 Installing Vault . 3
2 Verifying vault installation . 4
3 Starting vault dev server . 4
4 Verifying vault status . 5
5 Vault Configuration File . 6
6 Vault status and unseal key generation . 7
7 Unseal progress to unseal the Vault . 8
8 Unsealed Vault . 8
9 Logging in as the root user . 9
10 Essential permissions in Vault policy for the scenario 10
11 Vault token creation as per the policy . 11
12 Secret creation and Wrapped response creation 11
13 Unwrapped secrets . 12
14 Storage in virtual memory configuration 12

iii

List of Abbreviations
UI User Interface

TLS Transport Layer Security

CLI Command Line Interface

TTL Time-to-live

API Application Programming Interface

HTTP Hypertext Transfer Protocol

RAM Random-Access Memory

LDAP Lightweight Directory Access Protocol

GPG GNU Privacy Guard

HA High Availability

PGP Pretty Good Privacy

tmpfs Temporary File System

HCP Hashicorp Cloud Platform

AWS Amazon Web Services

iv

Encryption Tools: Hashicorp Vault

1 Introduction
Secrets such as credentials, TLS, host, client certificates, and API tokens hold specific
access rights. They are responsible for restricting unauthorized access to applications or
machines. In some cases, these credentials sprawl across the organization in plain text,
application source code, config files, and other locations in enterprises. Although most ap-
plication developers ensure that these details are encrypted and stored in a database, data
might be hacked by malicious means. Bots used in websites or applications might scrape
user credentials or Amazon Web Services (AWS) tokens and use it to their advantage. It is
difficult and daunting to determine who has access to what and prevent malicious attacks
by internal and external attackers. Vault resolves these challenges. It takes all the sensitive
information and centralizes them so that they are defined in one location and prevents
unwanted exposure to secrets and sensitive data. It ensures that authenticated users,
applications, and systems access the resources . Vault provides an audit trail that tracks
and maintains the client’s actions . Vault has many pluggable elements, such as secret
engines and authentication methods. They allow integration with external systems. These
components to manage and protect secrets in dynamic infrastructures. Figure 1 demon-
strates vault capabilities. It caters to identity-based access, policy-based authorization,
and sensitive data retrieval based on client requests.

Figure 1: Vault Secret Management System [Has20]

As demonstrated in Figure 1, Vault validates and authorizes clients before providing
them access to secrets or sensitive data. Vault predominantly works with tokens. A token
is associated with the client’s policy. A policy rule is path-based and constraints client’s
accessibility. Using Vault, clients can be assigned tokens manually, or the client can log
in and obtain them. The core Vault workflow consists of four stages as demonstrated in
Figure 2.

1. Authenticate: Vault authentication involves a process in which a client delivers
information to Vault, and it validates and determines the client’s identity. When an

Section 1 Sonal Lakhotia 1

Encryption Tools: Hashicorp Vault

auth method authenticates the client, a token is generated, and associated with a
policy

2. Validation: Vault validates the client against third-party trusted sources, such as
GitHub, Lightweight Directory Access Protocol (LDAP), AppRole, or other sources.

3. Authorize: The Vault security policy determines if a client matches its accessibil-
ity requirements. This policy is a set of rules that defines which API endpoints a
client can access with its Vault token. Policies provide a declarative way to grant or
prohibit access to specific paths and operations in Vault.

4. Access: Vault issues a token based on policies that determine the client’s identity. It
grants access to keys, secrets, and encryption capabilities. The client uses their Vault
token for accessing resources.

Figure 2: Vault Core Workflow [Has20]

1.1 Vault Key Features

This section enlists Vault’s key features that enable strict and restricted access to sensitive
data and credentials.

1. Secure Secret Storage: Vault stores arbitrary key/value secrets. It encrypts these
secrets before writing them to the persistent storage. Accessing raw storage alone

Section 1 Sonal Lakhotia 2

Encryption Tools: Hashicorp Vault

would not grant access to sensitive data. Vault can store these secrets in the disk, Con-
sul, and more.

2. Dynamic Secrets: Vault generates on-demand secrets for some systems, such as
AWS or SQL databases. If the lease is up, automatic revocation of these dynamic
secrets is possible.

3. Data Encryption: Vault encrypts and decrypts data without storing it. Using
Vault, security teams define encryption parameters, and developers store encrypted
data in a location, such as a SQL database, without designing their encryption
methods.

4. Leasing and Renewal: All secrets in Vault have an associated lease. When the
lease ends, Vault automatically revokes that secret. Clients can renew leases via
built-in APIs for review.

5. Revocation: Vault supports secret revocation. It can revoke a tree of secrets. Se-
crets read by a specific user or all credentials of a particular type form a tree of
secrets. In case of an intrusion, revocation assists in key rolling and locking down
systems.

2 Vault Configuration
Vault provides built-in and pre-configured dev servers for exploring and experimenting
with it. Vault servers are explicitly configured for production installations. This section
demonstrates Vault installation, Vault server configuration for production mode, and
Vault seal/unseal processes.

2.1 Installing Vault

Hashicorp officially maintains and signs packages for several OS distributions. Listing 1
demonstrates Vault installation in Debian/Ubuntu. It also installs the HashiCorp GNU
Privacy Guard (GPG) key and verifies the key’s fingerprint.

1 $ sudo apt update && sudo apt install gpg

Listing 1: Installing Vault

2.2 Initiating Vault Server

Listing 2 demonstrates successful installation of Vault. Vault works as a client-server
application. The Vault server starts in a sealed state. That is, it knows how to access the
physical data storage but does not know to decrypt it. Data stored in Vault is encrypted
using the encryption key in the keyring, and the encryption key is encrypted using the root
key. Vault should be unsealed to access it. Unsealing Vault provides a root key necessary
to read the decryption key and decrypt data. After Vault is unsealed, all operations are
carried out via Vault CLI that interacts with the server over a TLS connection.

Section 2 Sonal Lakhotia 3

Encryption Tools: Hashicorp Vault

1 $ vault
2 Usage: vault <command> [args]
3

4 Common commands:
5 read Read data and retrieves secrets
6 write Write data, configuration, and secrets
7 delete Delete secrets and configuration
8 list List data or secrets
9 login Authenticate locally

10 agent Start a Vault agent
11 server Start a Vault server
12 status Print seal and HA status

Listing 2: Verifying vault installation

2.2.1 Vault Development Server

The Vault development server mode does not require any setup. Listing 3 shows the
initialization of the dev server, initial root token creation, and the unseal key for re-
authentication purposes. The development server stores all the data in memory and
listens on localhost without TLS. TLS provides security, confidentiality, authenticity,
and integrity through certificates. Client-Server applications use TLS to prevent Man-
in-the-attack, eavesdropping, message forgery and tampering. It unseals automatically
and optionally sets the initial root token. Vault attackers might be most interested in
obtaining the initial root token to disrupt the system, and it is easily accessible in dev
server mode. It is most suited for experimentation and exploration. Listing 3 explicitly
states that the development mode is not for use in production work. Listing 4 shows that
the Vault is unsealed and runs entirely in-memory.

1 $ vault server -dev
2

3 Unseal Key: GkhonqUuELi5sqJFsp9McJUhw77SVqPS+AYjV7F0zgI=
4 Root Token: hvs.pVpvQLcEi1JpKUUtH3qJKiXd
5

6 Development mode should NOT be used in production installations!

Listing 3: Starting vault dev server

2.2.2 Vault Configuration for Production

Vault development servers are not suitable for production installations. The dev server
automatically unseals the vault and does not use TLS. It is not a security operation in the
real environment. Vault is configured in production mode using config files. Vault should
always use TLS to provide secure communication between the client and server. Each
host should have a certificate file and a key file. Listing 5 demonstrates a configuration
file (config.hcl) for starting the vault server in production mode.

Section 2 Sonal Lakhotia 4

Encryption Tools: Hashicorp Vault

1 $ export VAULT_ADDR='http://127.0.0.1:8200'
2 $ export VAULT_TOKEN='hvs.7eT6GRceYELd9qOraUAMENDw'
3 $ vault status
4

5 Key Value
6 --- -----
7 Seal Type shamir
8 Initialized true
9 Sealed false

10 Total Shares 1
11 Threshold 1
12 Version 1.12.2
13 Build Date 2022-11-23T12:53:46Z
14 Storage Type inmem
15 Cluster Name vault-cluster-756c87e0
16 Cluster ID 483e63b7-8ec0-7f66-69de-3407f0d1cf64
17 HA Enabled false

Listing 4: Verifying vault status

The primary configurations in the config file are explained further.

• ui: Enables the Web user interface to be accessible from any machine on the subnet
if no firewalls are in place at "https://127.0.0.1:8200/ui".

• storage: Integrated Storage (raft) is a production-ready backend and is better than
in-memory storage used by dev servers. This is the physical backend that Vault
uses for storage.

• listener: Vault uses TLS in production to provide secure communication between
clients and the Vault server. It requires a certificate file and key file on each Vault
host. The certificate and key were generated as -

"openssl req -out tls.crt -new -keyout tls.key -newkey rsa:4096 -nodes -sha256 -x509 -
subj "/O=HashiCorp/CN=Vault" -addext "subjectAltName = IP:127.0.0.1,DNS:c100-
199.cloud.gwdg.de" -days 3650"

• cluster_addr: It indicates the address and port to be used for communication
between the Vault nodes in a cluster.

• api_addr: It specifies the address to be advertised to route client requests.

2.3 Initializing the Vault

Vault initialization happens once when the server is started against a new backend that
has not been used with Vault before. It is a process of configuring Vault. When running in
High Availability (HA) mode, this happens once per cluster, not per server. This section
demonstrates the initial root token creation, encryption keys generation, and unseal keys
creation during initialization. The HA mode is automatically enabled when a specific data

Section 2 Sonal Lakhotia 5

Encryption Tools: Hashicorp Vault

1 ui = true
2 disable_mlock = true
3

4 storage "raft" {
5 path = "/opt/vault/data"
6 node_id = "node1"
7 }
8

9 listener "tcp" {
10 address = "127.0.0.1:8200"
11 tls_cert_file = "/opt/vault/tls/certs/tls.crt"
12 tls_key_file = "/opt/vault/tls/certs/tls.key"
13 }
14

15 cluster_addr = "https://127.0.0.1:8201"
16 api_addr = "https://127.0.0.1:8200"

Listing 5: Vault Configuration File

store that supports the mode is used. Starting the Vault server as per the configuration
file shows that Vault is running with TLS enabled.

• Starting Vault server: vault server -config /home/cloud/config.hcl

• Vault server output should have TLS: enabled:

Listener 1: tcp (addr: "127.0.0.1:8200",cluster address: "127.0.0.1:8201",
max_request_duration: "1m30s", max_request_size: "33554432", tls: "enabled")

• Storage: raft (HA available)

• A new terminal session is launched and environment variables are set as:
export VAULT_ADDR=’https://127.0.0.1:8200’
export VAULT_CACERT=’/opt/vault/tls/certs/tls.crt’

• To initialize Vault: vault operator init
This is an unauthenticated request that works for new Vaults without any data.

• Vault initialization provides information of incredibly high importance as shown in
Listing 6. The unseal keys and the initial root token. This is the only time that
all unseal keys are close together. In a real environment, these unseal keys can be
provided to five different users and encrypted with their Pretty Good Privacy (PGP)
keys so that vault security is integrated and no breach is possible.

• The vault server is initialized in a sealed state. Vault can access the physical storage
but cannot read anything from it as it does not know how to decode it. Unsealing
Vault is the process of teaching it to decrypt the data. Vault uses an algorithm
known as Shamir’s Secret Sharing to split the root key into shards. Only with the
threshold number of keys it is reconstructed and the data is finally accessed.

Section 2 Sonal Lakhotia 6

Encryption Tools: Hashicorp Vault

1 $ vault operator init
2

3 Unseal Key 1: xnsfjd5NVli+kOVLASbvSFIMwJNAxRvtifnJZhUhyll2
4 Unseal Key 2: eCdlrwBjKHLZ3k1pPW9q3grI3ToVfpOG0U5/wlcoVJcT
5 Unseal Key 3: +hPyp6oTg1xY7we03h74ztM4j74x9lMM+aLobgPezWrc
6 Unseal Key 4: btqKk0M/hPznu2NR1cDUXa+x+CX3hr10l4ucnk50sioW
7 Unseal Key 5: 4f0TMnHBGt+c5w/slBANV84K4CDCniM5aURf0xm0Ka0r
8

9 Initial Root Token: hvs.g1TtWg13Q8CpWF37jDTbINMN
10

11 $ vault status
12

13 Key Value
14 --- -----
15 Seal Type shamir
16 Initialized true
17 Sealed true
18 Total Shares 5
19 Threshold 3
20 Unseal Progress 0/3

Listing 6: Vault status and unseal key generation

• To unseal the Vault: vault operator unseal After entering one of the unseal keys the
vault status can be seen as shown in Listing 7

• Three different unseal keys are required to unseal Vault. If the unseal keys are
correct, output, as shown in Listing 8, is obtained. The vault is unsealed and the
initial root token could be used for authentication.

• Listing 9 shows a root user is logged in. As a root user, the Vault can be sealed
again in case of an emergency or suspicion by a single operator.

3 Vault Use-Cases
Vault is an identity-based, sensitive data management system that finds use in many
scenarios, such as secret storage, key management, and data encryption. It primarily
works with tokens. Each token is attached to a path-based client policy. The policy rules
restrict the actions and accessibility of the clients to specific paths. Tokens can be created
manually and assigned to clients, or the clients can log in and obtain them. In this section
specific scenarios, such as using tokens, type of tokens, token TTL, usage limit, and secret
storage in RAM are discussed.

Section 3 Sonal Lakhotia 7

Encryption Tools: Hashicorp Vault

1 $ vault operator unseal
2

3 Unseal Key (will be hidden): xnsfjd5NVli+kOVLASbvSFIMwJNAxRvtifnJZhUhyll2
4 Key Value
5 --- -----
6 Seal Type shamir
7 Initialized true
8 Sealed true
9 Total Shares 5

10 Threshold 3
11 Unseal Progress 1/3

Listing 7: Unseal progress to unseal the Vault

1 $ vault status
2

3 Key Value
4 --- -----
5 Seal Type shamir
6 Initialized true
7 Sealed false
8 Total Shares 5
9 Threshold 3

Listing 8: Unsealed Vault

3.1 Single-Use Tokens with Limited TTL with Cubbyhole

Accessibility rights are set as per the Vault policy attached to tokens for secret manage-
ment. Tokens enable users to access sensitive information. Trusted entities such as Chef,
Jenkins, etc read secrets from Vault after obtaining a token. There might be a case that
these trusted entities or their host machine are rebooted and it must re-authenticate with
Vault securely with an initial token. In such a situation, cubbyhole response wrapping is
very useful.

• In Vault, a cubbyhole is like a client’s locker. All secrets are namespaced under the
client’s token. If the token is revoked or if it expires, all the secrets in the cubbyhole
are revoked as well.

• It is not possible to reach into another person’s cubbyhole even as a root user.

• Cubbyhole minimizes the risk of unauthorized access as opposed to key/value secret
engine as secrets in key/value secret engine are accessible to any token as long as
the policy allows it.

• Vault creates a temporary single-use token (wrapping token) and inserts the response
into the token’s cubbyhole with a short TTL when response wrapping is requested.

Section 3 Sonal Lakhotia 8

Encryption Tools: Hashicorp Vault

1 $ vault login
2

3 Token (will be hidden): hvs.g1TtWg13Q8CpWF37jDTbINMN
4 Key Value
5 --- -----
6 token hvs.g1TtWg13Q8CpWF37jDTbINMN
7 token_accessor JJtBxGV7l2bGvuRAkSi3wsDV
8 token_duration
9 token_renewable false

10 token_policies ["root"]
11 identity_policies []
12 policies ["root"]

Listing 9: Logging in as the root user

• Only the client expecting the response has the wrapping token to unwrap this secret.

• Cubbyhole response wrapping is beneficial as it provides a cover. The value being
transmitted is not an actual secret but a reference to the secret.

• Any malicious activity can be easily traced as only a single client can unwrap the
token and view the response.

• The lifetime of secret exposure is limited.

Single-Token and Limited TTL Usage Scenario: In this section, a scenario is
assumed where an app needs to retrieve secrets from Vault at the cubbyhole/private path.
However, the app does not have a valid client token to read secrets in cubbyhole/private.
Vault admin wraps the secret values using the cubbyhole response wrapping and sends
the wrapping token to the app. The app unwraps the secrets before the wrapping token
expires.

As seen in Listing 5, Vault is configured for production mode. Using the initial root
token is not recommended. Tokens with an appropriate set of policies based on their role
in the organization should be used. Listing 10 shows the essential permissions included
in the policy of an admin in the organization.

A token is created with limited TTL and limited usage as per the policy as shown in
Listing 11. The use limit of the token can be limited to 1 if an admin decides so. In a
new terminal session, the environment variable VAULT_TOKEN is set and A secret is
created cubbyhole/cred path as shown in Listing 12. The secrets at cubbyhole/cred are
read and the output is wrapped using the -wrap-ttl flag to specify that the response should
be wrapped. Life of the wrapping token is set to be 120 seconds (2 minutes).
As seen in Listing 12 the secrets are not displayed at the cubbyhole/cred path but the
response includes a wrapping token. An environment variable WRAPPING_TOKEN is
set with the obtained token.

The Client/Entity app receives a wrapping token from the admin. To read secrets at
the cubbyhole/cred path, the unwrap operation should be run using the wrapping token.
The Client/Entity app does not require a client token to unwrap tokens using a valid
wrapping token. The secrets stored at cubbyhole/cred are displayed as seen in Listing 13.

Section 3 Sonal Lakhotia 9

Encryption Tools: Hashicorp Vault

1 # Manage tokens
2 path "auth/token/*" {
3 capabilities = ["create", "read", "update", "delete", "sudo"]
4 }
5

6 # Write ACL policies
7 path "sys/policies/acl/*" {
8 capabilities = ["create", "read", "update", "delete", "list"]
9 }

10

11 # Allow a token to manage its own cubbyhole
12 path "cubbyhole/*" {
13 capabilities = ["create", "read", "update", "delete", "list"]
14 }
15

16 # Allow a token to wrap arbitrary values in a response-wrapping token
17 path "sys/wrapping/wrap" {
18 capabilities = ["update"]
19 }
20

21 # Allow a token to unwrap a response-wrapping token
22 path "sys/wrapping/unwrap" {
23 capabilities = ["update"]
24 }

Listing 10: Essential permissions in Vault policy for the scenario

The wrapping token is limited to a single-use hence when the secrets are unwrapped
again, it shows an error.

3.2 Secret Storage in RAM

File systems whose content resides in virtual memory can be created using the Temporary
File System (tmpfs) facility. Data access is extremely fast as the files in this file system
reside in RAM. All sensitive data from virtual memory would be lost hence it assures
maximum security. Although, it is not encouraged to use in-memory storage for produc-
tion as data does not persist beyond restarts. Listing 14 shows storage configurations for
secret storage in RAM.

4 Future Work
Exploration and implementation of other vault use cases, such as identity-based access,
data encryption, and generating dynamic secrets in the future, would pave way for further
learning and enhanced secret management. Employing storage backends such as Consul
and Hashicorp Cloud Platform (HCP) Vault would provide a consistent user experience.

Section 4 Sonal Lakhotia 10

Encryption Tools: Hashicorp Vault

1 $ vault token create -ttl=1h -use-limit=3 -field token -policy=policy
2

3 hvs.CAESIApNUyEXTi3vgGZhB_QanCcvv................

Listing 11: Vault token creation as per the policy

1 $ export VAULT_TOKEN='hvs.CAESIApNUyEXTi3vgGZhB_QanCcvv....'
2 $ vault kv put cubbyhole/cred username="Chef123" password="Chef123"
3

4 Success! Data written to: cubbyhole/cred
5

6 $ vault kv get -wrap-ttl=120 cubbyhole/cred
7

8 Key Value
9 --- -----

10 wrapping_token: hvs.CAESIBpP_nexpAigJ9xIHU9NAi7aFX......
11 wrapping_accessor: lWw9oesMjZJUJiSoASTnECmm
12 wrapping_token_ttl: 2m
13 wrapping_token_creation_path: cubbyhole/cred

Listing 12: Secret creation and Wrapped response creation

Monitoring and Troubleshooting to inspect the Vault environment and understanding
audit and operational logs in depth would help with a better understanding of an error.

5 Conclusion
Vault’s capabilities ensure the secure management of sensitive data and impose role-based
access to resources. Vault simplifies accessibility using tokens and policies attached to
these based on the user role. Exploring, learning about Vault seal/unseal, and configuring
Vault with end-to-end TLS was the most challenging aspect of the practical experience
with Vault, provided that most of the implementation in Vault references were carried
out in dev server mode. The code listings in the report exhibit my practical experience
with Hashicorp Vault. In this report, Vault authorization using a role-based policy is
demonstrated. The initial root token is not secure when used for production mode there-
fore authentication is carried out using tokens generated as per the policy. Cubbyhole
response wrapping with a single-use token with limited TTL is described. The practical
executions also illustrate Vault storage to be in-memory or RAM. It is seen that all data
is lost when the running system is rebooted. It might be fruitful for carrying out tasks of
great importance without the risk of losing them to attackers. But it is not recommended
to use memory storage for production tasks. Vault workflow and numerous use cases
accentuated my learning about this incredible secret management tool.

Section 5 Sonal Lakhotia 11

Encryption Tools: Hashicorp Vault

1 $ VAULT_TOKEN=$WRAPPING_TOKEN vault unwrap
2

3 Key Value
4 --- -----
5 password Chef123
6 username Chef123

Listing 13: Unwrapped secrets

1 storage "inmem" {}
2

3 storage "file" {
4 path = "/mnt/mytmpfs"
5 node_id = "node2"
6 }

Listing 14: Storage in virtual memory configuration

References
[Has20] PA Hashicorp. Hashicorp vault. 2020.

Section Sonal Lakhotia 12

	Contents
	List of Figures
	List of Listings
	List of Abbreviations
	Introduction
	Vault Key Features

	Vault Configuration
	Installing Vault
	Initiating Vault Server
	Vault Development Server
	Vault Configuration for Production

	Initializing the Vault

	Vault Use-Cases
	Single-Use Tokens with Limited TTL with Cubbyhole
	Secret Storage in RAM

	Future Work
	Conclusion
	References

