
Seminar Report

Application and System Benchmarks

Silin Zhao

MatrNr: 21569349

Supervisor: Marcus Merz

Georg-August-Universität Göttingen
Institute of Computer Science

March 26, 2023

Abstract
This report is about to discuss the tests of HPC performance for computational velocity
with benchmarks, and is allowed to be published for academic purpose. As the begining
of this report we are going to introduce the background and the purpose of the measur-
ment for HPC performance in the Section 1, and such discussions will show us how such
measurments indicate the HPC system performance. In Section 2 we are going to review
some well-know benchmarks. For demonstration we will shortly recover the implementa-
tion and testing of 4 benchmarks. Then in Section 3 our topic is focusing on the special
benchmark we interested, i.e. MiniBude benchmark. As we illustrate the performance
in detail, we are going to go through the Serial, OpenMP and GPU implementation and
performance with fine-turning different variables. In the Section 4 we will summary the
measurments and talk about their drawback and weakness of this report, and we will end
our report in Section 5 with conclusion.

i

Contents

List of Tables iii

List of Figures iii

List of Listings iii

List of Abbreviations iv

1 Background 1
1.1 The design of benchmark . 1
1.2 The meaning of benchmark . 1
1.3 The principles of Benchmark . 1

2 Benchmark introduction 2
2.1 IO500 . 2
2.2 HPL . 2
2.3 HPCG and Stream . 3

3 Exploration Benchmark 3
3.1 The description of MiniBude . 3
3.2 Defective Benchmarks . 4
3.3 OpenMP implementation . 5
3.4 Julia implementation . 7
3.5 CUDA implementation . 9
3.6 OpenCL implementation . 10

4 Summarizes and Drawback 11

5 conclusion 11

References 13

ii

List of Tables
1 All implementations from MiniBude are divided into 3 categories based on

how well they are implementated in SCC cluseter. 3
2 Based on the input data and poses we have 3 (Small, Medium and Large)

options of initial configaution to scale our problem size. 4
3 The number of threads for fine-turning. 6

List of Figures
1 OpenACC implementation . 5
2 OpenMP implementation for fine-turning 6
3 OpenMP implementation for best performance 7
4 Julia implementation . 8
5 CUDA implementation . 10
6 OpenCL implementation . 10

List of Listings
1 Load llvm module . 4
2 Disable nvptx64 driver because of lack of this dependence 4
3 Compile with GNU architecture . 4
4 Execuation of OpenMP implementation . 5
5 Compiling Julia implementation . 8
6 Execuation of Julia implementation . 8
7 Loading CUDA and update Julia compilation 9
8 Loading CUDA and compiling CUDA implementation 9
9 Execuation of CUDA implementation . 9

iii

List of Abbreviations
HPC High-Performance Computing

HPL High-Performance Linpack

HPCG High Performance Conjugate Gradients

BUDE Bristol University Docking Engine

iv

Application and System Benchmarks

1 Background
Using benchmark to illustrate the HPC cluseter preformance has been widely accepeted,
also has been treated as an indictor to estimate HPC system performance for ranking
over the world.

1.1 The design of benchmark

Benchmark is such a application that people can utilize it for indicating the performance
characters for HPC system. Such characters can be purely calculation capacity for CPU
and GPU, or communication velocity based on parallel interaction etc [YFK22]. Normally
if we want to estimate such a character, we have to go through those steps, implementa-
tion the application in our system, fine-turning some configuration varibles for different
conditions, and summarizes the performance matrix. Usually the theoretical value can
not be reached, because large application often works as a complete system, which need
many kinds of instructions, such as numerical calculation, parallel communication, and IO
etc. Hence people rather compare the resulte with the same implementation in different
system than estimate the performance from the theoretical calculated value. They are
some mechanisms to guarantee the implementated code is not modified for benchmark
testing, such as in IO500.

The design of benchmark regular only focus on one character, such as IO500 is only
designed for testing the IO operation performance, HPL is applied for testing the compu-
tational capacity.

About the problem that benchmark actually runs, people are inspired by the real
scientific problems, such as from high energy physics or bio-physics. In order to scale the
simulated problem, people are often allowed to use different size of input data, or controll
the initialized value with configuration file.

1.2 The meaning of benchmark

HPC system is a complex system which contains massive hardware and software con-
figurations. The question about whether those configuration are well defined and well
matched is definitely not easy to estimate. By comparing the results of benchmark test
from related systems can give us such a hint whether some potential capacity has been
buried. Meanwhile, well-knowing the HPC preformance through benchmark can offer us a
reasonable and efficient assignment of available computation resource for submited tasks.

1.3 The principles of Benchmark

We do not have some standardisation for designing benchmark, but we should take the
popularization principle into consideration. The benchmark tests should be so designed
to characterize the system in a well-defined and well-known way, that the results are easy
to understand, meaningful and can be compared across different systems.

It’s also important to ensure that the benchmark tests are scalable, so that they can
accurately measure the performance of the system in different levels of parallelism. For
example, to estimate the acceleration by using multi-threads or distributed system, in
this way the benchmark tests should be designed to run on different numbers of threads
or compute nodes.

Section 1 Silin Zhao 1

Application and System Benchmarks

Also we should play attention to the repeatablility of benchmark test, because it ensure
that the results obtained from the tests are reliable and can be reproduced consistently
over time[HCA16]. We can image that this case can be applied after the update or
reconfiguration of system. Based on the repeatablility we are able to characterize the
difference after changing the system.

We can also list some other relevances for the principles of benchmark, such as low
energy cost, which means the execuation of the benchmark should be effective. Beside
the transparency should also be considered, such as what is the test going for. In more
detail, which problem is the benchmark implementated, and how the benchmark can be
implementated in a easy way.

2 Benchmark introduction
In this section we are going to introduce some well-known benchmark, and give a short
overview of how it works. Those benchmarks have been already well implementated in
GWDG cluseter, and here we are going to give some instructions for self implementation.

2.1 IO500

This is a specific synthetic benchmark to measure the performance of storage systems,
which use ior and mktest benchmark. Every year IO500 update its historic list, full
list, IO500 list and 10-Node challenge list for different purpose. For the implementation
we need to generate the configuration file1, and in the generated configuration file we
can change the storage system, fine-turning the transfered file size and block size. After
loading the massage passing interface package for distributed system, such as MPI, we
can execute IO500 with slurm. The results will indicate that how well the reading and
writing operation perform with ior benchmark, and how fast the metadate operation 2

takes place with mdtest benchmark. As a example you can review the configuration
process and results here3, this site is also related to other 3 benchmarks, HPL, HPCG
and Stream in following subsections.

2.2 HPL

HPL benchmark is a very famours benchmark for computational capacity and contribute
to the TOP500 ranking list[Xu+20], which solves a random dense linear system in double
precision arithmetic on distributed system using LU factorization. In the configuration file
we can assige the problem size, and the initialized matrix will be block-cyclic distributed.
The whole matrix will be recursive update based on the calculation with MPI transfered
data. For the configuration we need to specific two liberaries, OpenBLAS and OpenMPI.
We can use the compiled file by ourself or load them with module in SCC. If everything
goes well, we can find the generated configuration file under /lib/bin directory, as the
detail you can also review the link in footnote 3.

1Seeing the README file in the Github site: https://github.com/IO500/io500
2Management of file or directory, such as creating, rename, change ownership ect.
3https://pad.gwdg.de/s/w5_TJ9Yrp

Section 2 Silin Zhao 2

Application and System Benchmarks

2.3 HPCG and Stream

HPCG is a complementary to HPL, and it targets to a widely used patterns between
computational resource and data access, which is more representative of real world scien-
tific application. By default HPCG can automatically recognise the dependences, and the
output is listed in two specialized files. Stream is special designed for testing the memory
transfer rate for computational kernels[Kar+18]. This benchmark consists of the kernel
functions that perform read, write, and copy operations on arrays of data only for the
measurement for the memory bandwidth during the transfering. A briefly implementation
and execuation of those two benchmarks can also be found with the above two benchmark
at footnote 3.

3 Exploration Benchmark
From this section on we will foucs on we interested benchmark, MiniBude, which is also
designed to measure the computational capacity for serial system, parallel system and
GPU accelerated system. MiniBude consists of multiple implementations for running the
screening the NDM-1 protein based on configurable varibles, such as iterations and poses
of the protein[HNPF23]. Next we will go into the detail, from the descripation of the
MiniBude, to how it is implementated for different variante, and then talk about the
resulte for each implementation.

3.1 The description of MiniBude

This application is implementated in different HPC programming models4. Relying on
the powerful computational capacity of HPC people try to simulate the process that we
screen the possibe protein after multiple times of folding. Each folding can offer us many
different kinds of poses and increase exponentially. We are going to simulate the process
with difference implementations, in some implementations we can even use the GPU for
acceleration.

Now let us review the implementation of MiniBude benchmark, the following is the
all original MiniBude variante in Table 1, but because of the current limitations we are
only be able to execute and discuss the 4 implementations in the first column of Table 1.

About the scalability of the size of the problem we have three options, i.e, Small,
Medium, and Large as in the Table 2. For each of those option we can fine-turning by
increasing the default iterations (default value is 8) for scaling our problem.

Well implementated Defective implementated Lack of dependences
OpenMP for CPUs OpenMP target for GPUs SYCL for CPUs and GPUs
Julia for CPUs OpenACC for GPUs Kokkos for CPUs and GPUs
CUDA for GPUs
OpenCL for GPUs

Table 1: All implementations from MiniBude are divided into 3 categories based on how
well they are implementated in SCC cluseter.

4https://github.com/UoB-HPC/miniBUDE

Section 3 Silin Zhao 3

Application and System Benchmarks

Small Medium Large

input data mb1 mb2 mb2_long
poses 65536 65536 1048576

Table 2: Based on the input data and poses we have 3 (Small, Medium and Large)
options of initial configaution to scale our problem size.

3.2 Defective Benchmarks

Before we go to the details about the first 4 well implementated benchmarks, let’s make
it clear that what is about the defective implementated and lacking of dependence bench-
marks. For the defective implementated benchmarks which contains OpenMP target for
GPUs and OpenACC for GPUs. About OpenMP target benchmark we need the clang
compiler, so we have to load the llvm module. In GWDG SCC cluseter we can load llvm
with spack as in Listing 1.

Listing 1: Load llvm module
module load spack−user
source $SPACK_USER_ROOT/ share / spack/ setup−env . sh
spack load llvm

And then another problem is prompted that we do not have nvptx64 dependence, and
this is needed under llvm architecture. But I can’t provide anything useful investigation
for installing nvptx64 driver. So we comment line 45 in our implementation of OpenMP
target for GPUs.

Listing 2: Disable nvptx64 driver because of lack of this dependence
TFLAGS_NVIDIA = −fopenmp −fopenmp−t a r g e t s=nvptx64 −Xopenmp−t a r g e t

In this way we are still able to compile this implementation, but the benchmark can only
be executed on CPU with OpenMP-4 with computational velocity around 2.44 GFlops/s.

The other defective implementation, i.e, OpenACC for GPUs, can’t launch GPU as
well. Unlike OpenMP target implementation, which can only be compiled by llvm, Ope-
nACC can be compiled by multiple architecture, and we choose GNU compiler.

Listing 3: Compile with GNU architecture
make COMPILER=GNU

The implementation can be well compiled without any error, but GPU is still not be
launched. The result is illustrated in Figure 1, unlike the OpenMP target implementation
use OpenMP of version 4, OpenACC implementation use OpenMP of version 5. Hence the
computational speed is about 5.2 GFLOPs/s, which is much more faster than OpenMP 4.
Because of the increasing the iteration, the consumption of time in totally is also increased
likewise.

As in the last column of Table 1 we have also SYCL and Kokkos implementations, but
from the instruction we can see that the SYCL and the Kokkos application are needed as
dependences, for the simplification there is no such investigation for installing SYCL and
Kokkos has been done for the report. In the following we will go into details about the
well implementated benchmarks.

Section 3 Silin Zhao 4

Application and System Benchmarks

Figure 1: The computational velocity and time consumption for OpenACC implementa-
tion with Small input data.

3.3 OpenMP implementation

OpenMP benchmark of MiniBude has been implementated for shared memory system.
From the instruction of the implementation we can customize the number of threads for
acceleration. As in Listing 3, using GNU architecture we can compile this implementation
smoothly, and the executable file is named bude and generated in the root directory of
this implementation.

Because this benchmark is for shared memory system, we don’t need to load the open-
mpi model, but in order to set the thread we have to customize the OMP_NUM_THREADS
environment variable as in Listing 4 5,

Listing 4: Execuation of OpenMP implementation
#!/ bin / bash
#SBATCH −−job−name B_openmp
#SBATCH −N 1
#SBATCH −p medium
#SBATCH −n 1
#SBATCH −−t ime =3:00:00

export OMP_NUM_THREADS=1
./ bude − i 8 −n 65536 −−deck . . / data/bm1

Listing 4 is the submited bash file for running this benchmark, for the problem size
we use the Small size in Table 2, and the default iteration is set to be 8 as default. In
Table 3 we list the numbers of threads for our report. Not only in this implementation,
also in other implementations of MiniBude benchmark we scale the threads always in this
way.

5To execute bude, -i is for the iteration, -n is the poses and –deck is for the inputed file path.

Section 3 Silin Zhao 5

Application and System Benchmarks

Threads 1 2 4 8 16 32

Table 3: The number of threads for fine-turning.

Figure 2: The time consumption for totally and average for each iteration illustration
with increasing of threads in OpenMP implementation benchmark

The time consumption for totally and average for each iteration has been illustrated
in Figure 2. From the title of each sub-image we see the number of CPUs that stands
after the character N , and this number is also increased just like threads in Table 3. We
know that the threads are running in CPU based on the rotating of execution. As the
threads are swithed from the one to another, there will be a mount of time consuming for
variables reloading from register. In order to gain the better performance, we want each
thread is launched in different CPUs, this is the reason we increase the number of CPUs
exactly as the increasing of threads.

In the first sub-image of Figure 2, we set the number of CPU to be 1, which means,
all the computation is serial, no benefit of parallelism has to been contributed. No matter
how many threads we try to scale as in Table 3, the computational speed stay almost
the same around 5.3 GFLOps/s, hence the totally and average time consumption also

Section 3 Silin Zhao 6

Application and System Benchmarks

make no difference as the increasing of thread. We can understand in such a way, that
it doesn’t matter in which way the threads are switched from one to another, the serial
implementation of task can not be scaled. We should keep this fact in mind that if we
run multiple threads only in one CPU, the speed is limited at around 5.2 GFlops/s. This
appearance also occurs in the rest sub-image in Figure 2 when we only run 1 thread for
multiple CPUs.

As we move on to multiple CPUs in this OpenMP benchmark implementation. We can
see a very clear fact that upto 16 CPUs, if the number of threads equal to the number of
CPUs, the computational velocity has the best preformance. Before this point is reached,
the speed is growing during the increasing of threads almost linearly. After this point the
speed is decreasing a little bit, and stay approximately the same.

Above 16 CPUs, a fast increasing phase of speed before the number of threads reach
the number of CPU, after that we don’t see a decreasing phase comparing to less than
16 CPUs. But the continuous increasing of performance stoped, and no further benefit
anymore for keeping growing threads.

Based on the fact that we obtain the best performance when each processor launchs
each thread, we collect the data from above and combinate them together only for this
case in Figure 3. Here we plot also the linear scalability of computational speed as yellow
line and mark with ‘Regression‘. As this yellow line shows, the increasing of computational
speed is in reality about 30% slower than linear scalability, and this contribution is mostly
cased by the overhead while task assignment between the threads.

We explored the performance for Small problem size in detail, we do not repeat such
a huge investigation again for Medium and Large problem size, because the basic com-
putational speed of OpenMP implementation do not perform better than other problem
size. Next we move to Julia implementation.

Figure 3: The best performed time consumption and computational velocity based on the
number of threads matching the number of CPUs.

3.4 Julia implementation

In this subsection we are going to illustrate the performance of Julia implementation of
MiniBude benchmark. Let’s give a briefly introduction for Julia, based on the fact that
it is designed to compile code just-in-time (JIT) at runtime, this allows Julia to achieve

Section 3 Silin Zhao 7

Application and System Benchmarks

performance levels that are compatible to Fortran and C[God+23]. Beside because of the
productivity and nature spport for parallelism, this make Julia becomes a nonnegligible
option for HPC.

Listing 5: Compiling Julia implementation
module load j u l i a
. / update_al l . sh
j u l i a −−p r o j e c t=Threaded −e ' import ␣Pkg ; ␣Pkg . i n s t a n t i a t e () '

As in Listing 5 we need to compile julia code at first. For the execuation of julia im-
plementation we submit the task with slurm as Listing 6. In order to save the energy
we scale our threads as in Table 3 as we scale the CPU at the same time, which means
for each test the number of CPUs is equal to the number of threads, and so that we can
run this benchmark implementation for Small, Medium and Large problem size for best
performance, and the final result is shown in Figure 4.

From left to right in Figure 4 we see that the time consumption for totally and average
for each iteration rapidly grows with the increasing of problem size (Small, Medium and
Large). We start with the discussion about the performance for the first sub-image for
Small. With only one CPU and one thread (serial) we see that the basic computation
velocity is about 36 GFlops/s, which is about 7 times larger than the speed in OpenMP
implementation.

Listing 6: Execuation of Julia implementation
#!/ bin / bash
#SBATCH −−job−name j u l i a
#SBATCH −N 1
#SBATCH −n 1
#SBATCH −p medium
#SBATCH −−t ime =3:00:00

export JULIA_NUM_THREADS=1
j u l i a −−p r o j e c t=Threaded s r c /Threaded . j l − i 8 −n 65536 −−deck . . / data/bm1

Figure 4: The time consumption for totally and average for each iteration illustration
with increasing of threads in Julia implementation benchmark.

As the problem size increasing, we need more time to finish the benchmark. In the
Large problem size we do not following the settings as in Table 3, because even only for
the smallest case, i.e, 8 threads, we need about 2 hours. Instead of decrease the threads
number to 4, 2, and 1, we increasing it 6 for saving the time consumption.

6The total threads number: 8, 16, 20, 32, 40, 64

Section 3 Silin Zhao 8

Application and System Benchmarks

Likewise as in Figure 3 we also plot the theoretical value of linear scalability based
on the increasing of threads as yellow line, and mark it as ‘Regression‘. At this point
we can see that for Medium problem size, the computational speed is perfect growing as
theoretical scalability. The yellow line (Regression) matchs the green line (GFLOPS/s)
upto 32 threads.

In MiniBude benchmark we have multiple implementation for Julia 7, but we only
well-implementated here the multi-thread variant in SCC cluseter. That is because the
effort of compiling Julia implementation with GPU doesn’t work. After we load the
CUDA and update the compilation as Listing 7, we still can’t launch GPU implemen-
tation with Julia. According to the feedback we have to set the CUDA version using
CUDA.set_runtime_version for giving the precompiled julia code an appropriate envi-
ronment, but we don’t find any instruction for the wanted CUDA driver version for this
GPU implementation in Julia.

Listing 7: Loading CUDA and update Julia compilation
module load cuda
. / update_al l . sh

But in the following subsections we have 2 well-done GPU implementation as in Ta-
ble 1.

3.5 CUDA implementation

In this subsection we are going to explore the successful GPU acceleration for computa-
tional speed in MiniBude benchmark, and let’s start with CUDA implementation. As in
Listing 8 we load the cuda environment and compile the source code.

Listing 8: Loading CUDA and compiling CUDA implementation
module load cuda
make COMPILER=GNU

Listing 9: Execuation of CUDA implementation
#!/ bin / bash
#SBATCH −−job−name B_cuda
#SBATCH −N 1
#SBATCH −n 1
#SBATCH −p medium
#SBATCH −p gpu
#SBATCH −G v100 :1
#SBATCH −−t ime =1:00:00

. / bude −n 65536 − i 8 −−deck . . / data/bm1

For the exploring the CUDA acceleration of our benchmark, we need some special
commands to launch GPU as in Listing 9. v100 : 1 stand for using only one v100 GPU,
and the available GPU of SCC in GWDG is listed here8. For this implementation we let
the thread to be default as 1, and execuation is launched for 3 different problem size as in
Figure 5. In the left side of all sub-image, our time consumption is increasing significantly.

7https://github.com/UoB-HPC/miniBUDE/tree/master/miniBUDE.jl
8https://hpc-neu.gwdg.de/hpc/systems/scc/

Section 3 Silin Zhao 9

Application and System Benchmarks

Figure 5: The time consumption for totally and average for each iteration illustration by
increasing of iterations in CUDA benchmark.

To illustrate more detail about the performance about CUDA acceleration, we increase
the computational demand by scaling its iterations9. In Figure 5 we can clear find that
the time cost in total is linear increased by the increasing the iteration, and the average
time consumption for each iteration stays the same.

The most interesting measurement is the computational speed, for Small andMedium
problem size we see that the velocity is about 6.6 TFlops/s, and this is a massive improve-
ment comparing to non-GPU. Meanwhile for Large problem size we see there is another
improvement, from about 6.6 TFlops/s to about 10 TFlops/s.

3.6 OpenCL implementation

This is another well-implementated GPU benchmark of MiniBude, and the dependence
load and compilation is the same as CUDA implementation as in Listing 8. To launch this
implementation we use the same instruction as for CUDA implementation in Listing 9,
and the exploration is also with the same problem size as before. The only difference is
we increase the times of iteration upto 12810.

From Figure 6 we also see that the enormous increasing of time consumption over
different problem size from Small to Large, and with the increasing of iteration we see
the linear increasing of time consumption for totally. Also the computational velocity is at
level of TFlops/s. But we see a slightly reduction comparing to CUDA implementation,
from 6.6 Tflops/s to 5.7 TFlops/s. Such reduction appears for all problem size, but the
speed increasing at Large problem size over Small and Medium is also happens in this
implementation.

Figure 6: The time consumption for totally and average for each iteration illustration
with increasing of iterations in OpenCL implementation benchmark.

98, 16, 32, 64
108, 16, 32, 64, 128

Section 4 Silin Zhao 10

Application and System Benchmarks

4 Summarizes and Drawback
In this report we started with the discussion about why and how benchmark should be
designed. In HPC research area we are concerning about weather our system is able to
expose its potential capacity. With benchmark testing we can compare the system per-
formance with historic settings or over different cluseters. The core part of benchmark
is to execute a scientific problem, such as from physics or biology. The execuation of
such benchmark should satisfy some criterions. Such as the benchmark should be rep-
resentative, in this way people can understand easyly what this benchmark stands for.
Also the benchmark should be able to be repeated identity and verified. Meanwhile the
implementation should obtains the scalability for different problem size. Those relevances
and principles can guarantee the reproduction of the benchmark for different timestamps
and comparsion between different system.

This report recalled 4 well implementated benchmarks in GWDG, IO500, HPL, HPCG
and Stream. From compiling to execuation we briefly discuss those implementation in SCC
cluseter, and mentioned some details for testing.

Next we detailly go through the MiniBude benchmark, which is a synthetic application
and contains multiple implementations. Because of the lack of dependence we can’t launch
all the implementations, as the drawback of this report we should investigate more effort
to install such dependence, such as Kokkos and SYCL. As for the defective implementation
we are able to launch the benchmark, but GPU is not trigged.

As the core parts of this report we foucs on the 4 well-implementated benchmarks,
i.e, OpenMP, Julia, CUDA and OpenCL. OpenMP and Julia is for CPU implementated
and we explore the performance with increasing threads. In order to find the best confi-
gaution to launch the CPU benchmark, we fine-turning the number of CPUs and threads
in OpenMP implementation. The fact shows us that if the number of CPU matches the
number of threads, we have the best performance of computational speed. With this
indication we configured our Julia implementation also in this way, and acqurie a inter-
esting computational speed at 36 GFlops/s. Meanwhile as the drawback of this report,
the attempt to launch other implementations with Julia, such as GPU, are failed. Highly
because of the imcompatible GPU driver between compiling Julia code and executing
julia code according to the failed attempt.

As the last part of this report we discuss the two well-implementated GPU benchmarks
with CUDA and OpenCL. In GPU acceleration we run only one CPU and let the thread
to be as default, and explore the computational velocity based on the scaling of iteration
for different problem size. The computational speed is impoved from 6.6 Gflops/s to 5.7
TFlops/s comparing to non-GPU acceleration. For both GPU implementations we see
a significante improvement of computational velocity in Large problem size over other
different problem size, and as another drawback of this report, we don’t know the reason
for this improvement.

5 conclusion
In HPC area, no matter for academic or industrial, the benchmark testing is definite
needed as indictor for operating the system. We introduced the background of designing,
meaning and principles of benchmark and reviewed the 4 well-done benchmark in GWDG.

Section 5 Silin Zhao 11

Application and System Benchmarks

As a example we choosed MiniBude benchmark for demostration, from implementation to
execuation, we illustrate the results of computational velocity measurements. At the same
time as drawback of this report there are still many effort can be further investigated,
we finish our report here, and hopefully this report can be valuable as reference for other
people. Based on reseach purpose this report is allowed to be published and shared.

Section 5 Silin Zhao 12

Application and System Benchmarks

References
[God+23] William F. Godoy et al. Evaluating performance and portability of high-level

programming models: Julia, Python/Numba, and Kokkos on exascale nodes.
2023. arXiv: 2303.06195 [cs.DC].

[HCA16] Sascha Hunold and Alexandra Carpen-Amarie. MPI Benchmarking Revisited:
Experimental Design and Reproducibility. 2016. arXiv: 1505.07734 [cs.DC].

[HNPF23] Pablo Herrera-Nieto, Adrià Pérez, and Gianni De Fabritiis. Binding-and-
folding recognition of an intrinsically disordered protein using online learning
molecular dynamics. 2023. arXiv: 2302.10348 [q-bio.BM].

[Kar+18] Jeyhun Karimov et al. “Benchmarking Distributed Stream Data Processing
Systems”. In: 2018 IEEE 34th International Conference on Data Engineering
(ICDE). IEEE, 2018. doi: 10.1109/icde.2018.00169. url: https://doi.
org/10.1109%2Ficde.2018.00169.

[Xu+20] Gen Xu et al. Simulation-Based Performance Prediction of HPC Applications:
A Case Study of HPL. 2020. arXiv: 2011.02617 [cs.DC].

[YFK22] Yijing Yang, Hongyu Fu, and C. C. Jay Kuo. Design of Supervision-Scalable
Learning Systems: Methodology and Performance Benchmarking. 2022. arXiv:
2206.09061 [cs.CV].

Section Silin Zhao 13

https://arxiv.org/abs/2303.06195
https://arxiv.org/abs/1505.07734
https://arxiv.org/abs/2302.10348
https://doi.org/10.1109/icde.2018.00169
https://doi.org/10.1109%2Ficde.2018.00169
https://doi.org/10.1109%2Ficde.2018.00169
https://arxiv.org/abs/2011.02617
https://arxiv.org/abs/2206.09061

	Contents
	List of Tables
	List of Figures
	List of Listings
	List of Abbreviations
	Background
	The design of benchmark
	The meaning of benchmark
	The principles of Benchmark

	Benchmark introduction
	IO500
	HPL
	HPCG and Stream

	Exploration Benchmark
	The description of MiniBude
	Defective Benchmarks
	OpenMP implementation
	Julia implementation
	CUDA implementation
	OpenCL implementation

	Summarizes and Drawback
	conclusion
	References

