GEORG-AUGUST-UNIVERSITAT ©
=)\ GOTTINGEN &7t e

Seminar Report

Monitoring System Performance

Lukas Steinegger

MatrNr: 27118007

Supervisor: Marcus Merz

Georg-August-Universitiat Gottingen
Institute of Computer Science

March 31, 2023

Abstract

Collecting system performance metrics is important to grasp the current state and health
of the underlying system. By determining where performance loss comes from, we can
improve our system in a targeted manner.

We look at three different tools, namely cc-metric-collector, Performance CoPilot, and
Telegraf. Furthermore, we discuss the Inlfux one-line protocol utilized by the InfluxDB.
We were also able to implement our own tool using Python, and go into detail about
major design decisions and what motivates them. The source of the system metrics is the
/proc directory under Linux. Due to the scope, we only explain a small set of selected files
and values. The discussed files are /proc/stat, /proc/<PID> /stat, and /proc/meminfo.
We close with a discussion about drawbacks, limitations, and possible future work.

Contents

List of Listings

List of Abbreviations

1

2

5

6

Motivation

System Performance Monitoring

Performance Agents

3.1 cc-metric-collector
3.2 Performance Co-Pilot . . .
3.3 Telegrat
3.3.1 ImfluxDB.
Own Implementation
4.1 The /proc Directory . . .
41.1 /proc/stat
4.1.2 /proc/<PID> /stat
4.1.3 /proc/meminfo . .
4.2 The implementation . . .
421 Usage
Conclusion

Limitations and Future work

References

i

iii

iv

10

11

List of Listings

1 Example output of the pmstat program
Small example configuration file for Telegraf.
Shortened example output from our implementation of the Influx one-line

protocol.
Truncated example output of the cat /proc command.
Reading the ‘SC_CLK TCK’value from Linux using Python.
Example output of the cat /proc/<PID>/stat command.
Usage examples of our implementation.

W DN

~N O O =~

1l

List of Abbreviations

PCP Performance Co-Pilot

DB Database

JSON JavaScript Object Notation

OS Operating System

CPU Central Processing Unit

PID Process ID

REST Representational State Transfer

API Application Programming Interface
PMCD Performance Metrics Collection Daemon

GWDG Gesellschaft fiir wissenschaftliche Datenverarbeitung mbH Gottingen

v

Monitoring System Performance

1 Motivation

As system administrators, we want to detect outages in our system. Ideally, we want to
prevent them, and in the worst case, we want to know if the system is currently down
so that we can take action to get the system up and running again. All of that should
happen in a reasonable amount of time. Furthermore, if the system is going to crash,
we want to know that in advance, so we can take precautions (e.g., buy more Hardware,
throttle traffic). If the system is down, we want to know about that the moment it goes
down. System Monitoring can be as easy as calling ps in the command line and increase
up to a sophisticated monitoring architecture. However. we are not only interested in the
worst case but want to ensure that all users have a pleasant experience with our system.
The system should therefore be responsive and give responses in an appropriate time.
Monitoring is important to achieve a performant system. Knowing where the system is
not fully productive can help us to make significant improvements.

2 System Performance Monitoring

To be able to monitor the system, we need to collect some meaningful data points so that
we can derive the performance of the system from these data points. Furthermore, we
need to identify what parts of the system we want to monitor. Some generally interesting
features include the CPU, memory, storage, and network metrics. But it is also important
to know how the user perceives the system. Thus, we should, for example, look into the
response time and/or latency of the system. For the scope of this report, we focus on
CPU and memory usage.

Another important point is the differentiation between the performance of the whole
system, especially hardware, OS, and the performance of the applications. In other words,
even when the hardware works fine, the software still needs to be monitored.

After we have determined what we want to monitor and through what metrics, we
need actual processes to automate the sensing step. For this purpose, we have small
programs called performance agents running in the background of the nodes. The task
of those programs is to collect the desired metrics and send them to a central place for
storage and further analysis.

3 Performance Agents

In this report, we take a closer look at three implementations. Additionally, we propose
an approach in our own implementations.

e cc-metric-collector !
e Performance Co-Pilot 2

e Telegraf 3

'https://github.com/ClusterCockpit/cc-metric-collector
*https://pcp.io/
3https://www.influxdata.com/time-series-platform/telegraf/

Section 3 Lukas Steinegger 1

https://github.com/ClusterCockpit/cc-metric-collector
https://pcp.io/
https://www.influxdata.com/time-series-platform/telegraf/
https://github.com/ClusterCockpit/cc-metric-collector
https://pcp.io/
https://www.influxdata.com/time-series-platform/telegraf/

Monitoring System Performance

e Our own implementation?

3.1 cc-metric-collector

The cc-metric-collector is part of the ClusterCockpit suite, along with the cc-metric-store
and the cc-backend. This tool is configured through a configuration file. By default, the
"config.json" file is in the current directory. The configuration file can also be specified
via the ——configure option.

This tool is set up in multiple parts.

1. sinks: In the sinks section, it is specified where the collected data is sent to. Among
others, it can be selected from stdout, http and influxdd.

2. collectors: Here it can be specified what to collect and where to collect it from. The
tool allows a lot of choices. For us, some important ones were: cpustat, memstat,
1ostat, which collect the data from the
proc directory under linux. Note that the tool is also able to collect metrics from
other sources, e.g., likwid ®

3. receivers: With the receivers it can be specified that the tools forward information
to the defined sinks. We did not look further into this feature of the tool.

4. router: With the router entries the tool allows us to add or remove tags to each
measuring point. Those can be specified via conditions in the JavaScript Object
Notation (JSON) format in the config file.

A drawback of this tool is that its documentation is inaccurate. For example, the interval
value was shown to be able to accept an integer value, but it only accepts strings with
the interval given in value concatenated with the unit. Furthermore, such errors were not
caught by the implementation, and the user received a non-filtered error output from the
Go% implementation.

Apart from that, the tool was easy to install by following the instructions from their
GitHub repository. Likewise, it was easy to configure the tool as wanted and to run an
executable. First and foremost, the cc-metric-collector collects system metrics and does
not collect process-specific data.

3.2 Performance Co-Pilot

The Performance Co-Pilot (PCP) comes with a wide range of tools, a description of some
tools is listed below.

e pmstat gives a high level overview of the collected system metrics. It outputs a
single line of a predefined set of values in a periodic way (this can be specified by
the -t parameter.). In 3.2 we shown an example output of the program.

e pmval outputs a single metric, also in a periodic way. The metric to be displayed is
selected as an argument (e.g. pmval proc.nprocs). The available metrics can be
viewed using the pminfo utility.

‘https://gitlab.gwdg.de/lukas.steinegger/performance-agent
Shttps://github.com/RRZE-HPC
Shttps://go.dev/

Section 3 Lukas Steinegger 2

https://gitlab.gwdg.de/lukas.steinegger/performance-agent
https://github.com/RRZE-HPC
https://go.dev/
https://gitlab.gwdg.de/lukas.steinegger/performance-agent
https://github.com/RRZE-HPC
https://go.dev/

Monitoring System Performance

user@node:~$ pmstat
@ Mon Mar 27 17:41:14 2023
loadavg memory swap io system cpu

1 min swpd free buff cache pi po bi bo in c¢s us sy id
0.87 54784 1286m 3896 887668 0 0 0 926 955 1624 6 1 092
0.80 54784 1274m 3896 899184 0 0 0 1001 837 1482 5 1 94
0.73 54784 1279m 3896 887588 0 0 0O 788 751 1213 4 1 95
0.75 54784 1071m 3896 936064 0 0 4579 4323 3471 8369 28 8 64
0.93 54784 725936 3896 1090m 2 0 1050 6513 5754 16K 54 13 33
1.02 54784 769588 3896 1026m 0 0 0 3114 3154 9734 18 6 77
1.02 54784 815224 3896 990m 0 0 0 1863 1253 2397 6 2 93
1.02 54784 848744 3896 986876 0 0 0 1102 891 1452 7 1 93

Listing 1: Example output of the pmstat program

e pminfo can be used to display and to search for specific metrics. pminfo proc shows
all available metrics with the prefix proc. The -T option is very useful because it
gives a small description of the metric.

e pmstore can be used to set some metrics by hand. This can be useful when a metric
needs to be reset (e.g. a counter).

PCP comes with a Performance Metrics Collection Daemon (PMCD) which runs on
each host that needs to be monitored. The tool is configured by the pmcd.conf. The
Daemon loads the configuration file through the $PCP_PMCDCONF_PATH environment vari-
able. pmecd.conf has two parts; the first part configures what metrics are collected and
the second part controls the access to the metrics.

A major drawback is that the apt package did not install all necessary dependencies,
so that all programs function as intented. Furthermore, some tools did not work and
only threw an unhandled Python error that said that the ‘pcp’ module was not found.
In addition, the pmcd daemon could not be started with the system we were using. We
tried to install the tools in a docker container using Fedora, but there we run into other
issues. Since we could not resolve the errors in a reasonable amount of time, we kept the
preview of the tool at this scope.

3.3 Telegraf

This tool is part of InfluxDB 3.3.1. It is configured through a configuration file which can
be specified by the —config option. A default configuration file can be created by running
telegraf config > telegraf.config.

After the setup of the tool, it is run using telegraf --config telegraf.config. It
then collects the data and forwards them to the specified source, and if specified it can
also output them using the Inlux one-line protocol to stdout. We show such an sample
configuration in 2.

The tool is feature-rich, as it is able to read metrics from a wide range of sources. For
example, it has built-in support to read metrics from {CockroachDB, MariaDB, Microsoft
SQL Server, MySQL, PostgreSQL, SQLite}".

The other tools we have examined are not able to collect metrics directly from Database
(DB) instances. With a simple query® over the default configuration file, Telegraf can read

"https://github.com/influxdata/telegraf/blob/master/docs/SQL_DRIVERS_INPUT.md
8telegraf config | grep -v "##" | grep "inputs\.["\\.]¥]]"

Section 3 Lukas Steinegger 3

https://github.com/influxdata/telegraf/blob/master/docs/SQL_DRIVERS_INPUT.md

Monitoring System Performance

[agent]
interval = "8g"
round_interval = true
collection_jitter = "Os"
flush_interval = "8s"

flush_jitter = "Os"

[[outputs.file]]
files = ["stdout"]
data_format = "influx"

[[inputs.cpu]]
percpu = true
totalcpu = true
collect_cpu_time = false

[[inputs.processes]]
Listing 2: Small example configuration file for Telegraf.

metrics from around 200 inputs. It can also handle many destinations for the data. Just
to name a few, it can load data via WebSockets, MongoDB?, Apache Kafka!?, MQTT*!,
and InfluxDB'2.

A sample configuration file could look like the following.

Overall, Telegraf is a powerful tool with many configuration possibilities, and when set
up, it is easy to use. It works nicely together with InfluxDB. The documentation is well
and so far we didn’t encounter any errors. An additional benefit is the big community
around Telegraf and InfluxDB, which helps to solve problems fast. By following the
instruction on the website, the installation also worked without any problems. Telegraf
can be used to collect system specific as well as process-specific data.

3.3.1 InfluxDB

This section shortly covers InfluxDB, since it is used at the GWDG and seems to be a
widely used DB for performance metrics. Note the Influx-one-line protocol!?: it is adapted
by Telegraf and also by the cc-collector. PCP doesn’t directly support this protocol. The
InfluxDB can load sample points in this format directly into the DB instance. The syntax
is as follows.

measurement,tags fields timestamp?

measurement := name of the measurement e.g. cpu_utility
tags := comma separated list of tag_name=value pairs
fields := comma separated list field_name=value pairs

timestamp (is optional, but often used) local timestamp in UTC,

Yhttps://www.mongodb.com/
Onttps://kafka.apache.org/
Hnttps://mqtt.org/
2https://www.influxdata.com/
Bhttps://docs.influxdata.com/influxdb/v1.8/write_protocols/line_protocol_tutorial/

Section 3 Lukas Steinegger 4

https://www.mongodb.com/
https://kafka.apache.org/
https://mqtt.org/
https://www.influxdata.com/
https://docs.influxdata.com/influxdb/v1.8/write_protocols/line_protocol_tutorial/

Monitoring System Performance

cpu,host=node, cpu=cpu user=0.073,system=0.014,idle=0.909 1679927146
cpu,host=node, cpu=cpul user=0.1725,system=0.01,1dle=0.8175 1679927146
cpu,host=node, cpu=cpul user=0.1,system=0.0275,1idle=0.865 1679927146
cpu,host=node, cpu=cpu2 user=0.010,system=0.007,1dle=0.982 1679927146
cpu,host=node, cpu=cpu3d user=0.010,system=0.010,1d1le=0.972 1679927146

Listing 3: Shortened example output from our implementation of the Influx one-line
protocol.

if not specified it is set by the InfluxDB instance

The measurement and tags lists are separated by a comma, but the tags list and the
fields list are separated by a whitespace. The timestamp is also separated by a whitespace.
The tag names and field names as well as their corresponding values can not contain
whitespaces or commas, and they need to be encapsulated by quotation marks. The
datatypes of values can be floats, integers, strings, and booleans. Floats are represented
by a string of digits with a possible decimal point. Integers are only a string of digits with
a suffix ‘7’

Strings are a sequence of characters, and if they contain a comma or a white space,
they need to be double-quoted. In the case of Booleans, true is represented with {T), t,
True, true, TRUE} and false is represented with {F, f, False, false, FALSE}.

Tags are used to describe the data point, while fields are used for the actual measure-
ment. For example, the hostname would be specified in the tags list. The CPU frequency,
on the other hand, would be listed in the fields section. In 3.3.1 we show examples of the
one-line protocol.

4 Own Implementation

Throughout the course, we were able to implement our own version of a performance
agent. For our implementation, we used Python, since this implementation is meant to
be a first draft and/or a proof of concept of an implementation of a performance agent.
Developing a small program in Python is a lot faster than for example in Java. Further,
we based our development on Linux systems, since Linux is used at the GWDG. Our
main source for system data is the /proc directory.

4.1 The /proc Directory

The /proc directory is a virtual file system provided by the Linux kernel. The kernel
generates the content of the files when they are read. The files themselves do not occupy
any space on the disk!?.

4.1.1 /proc/stat

We will now take a look at /proc/stat, /proc/meminfo and /proc/<PID>/stat. The
/proc/stat directory lists some general information about the system. For our use case,

14This can be verified with a s -sh command.

Section 4 Lukas Steinegger 5

Monitoring System Performance

cpu 456432 1920 125572 2100094 10029 0 3767 0 0 O
cpuO 115032 498 30002 895477 4938 0 1434 0 0 O
cpul 111105 542 35050 398895 1589 0 1628 0 0 O
cpu2 115184 480 29943 403243 1714 0 137 O
cpu3 115111 398 30576 402478 1787 0 568 0
intr 24289740 ...

ctxt 71526417

btime 1679493930

processes 186059

procs_running 1

procs_blocked O

softirq 19025529 6933211 1800113

00
00

Listing 4: Truncated example output of the cat /proc command.

it is also important that it keeps track of how much time a CPU core is running in
kernel /user mode, idle, or waiting for IO read /writes.

A sample output of cat /proc/stat on our Ubuntu system is shown in 4.1.1. We pruned
some values of the intr and softirq rows.

The values of the cpu/0123]? row are to be interpreted as follows and describe the
utilization of the Central Processing Unit (CPU).

cpu user nice system idle iowait irq softirq steal guest guest_nice

e cpu is simply the name and specifies if the total utilization is shown (c¢pu without
suffix). cpu is the total of cpul cpul cpu0, cpul, ...and show the utilization
grouped by the corresponding CPU cores.

e user indicates the time the CPU spent in the user mode.

e nice presents the time the CPU spent in the user mode with low priority.

e system shows the time the CPU spent in the kernel mode.

e idle is the time the CPU spend idling.

e jowait roughly indicates the time a CPU spent waiting for 10 operations to finish.
e irq is the time the CPU spent handling interrupts.

e softirq is the time the CPU spent handling softirq. In short, routines are called
softirq after finishing an interrupt handle when the kernel looks for other occurred
interrupts.

e steal represents the time spent in other Operating Systems (OSs) (virtualized envi-
ronments).

e guest shows the time spent running a virtual CPU.

e guest nice is the time spent running a niced guest.

Section 4 Lukas Steinegger 6

Monitoring System Performance

The values are so-called jiffies (clock ticks) and represent how many cycles of 1/100 per
second are spent in the respective mode [CRKO05; TB15].

To calculate the CPU utilization in our programs, we first took the values in an interval
of ¢ seconds. Then, we took the difference and multiplied it with SC_CLK TCK xt to
get the utilization. The SC _CLK TCK is often 100 and can be found using Python,
as shown in 5.

def sc_clk_tck():
return os.sysconf (os.sysconf_names['SC_CLK_TCK'])

Listing 5: Reading the ‘SC_CLK TCK’value from Linux using Python.

intr: shows which interrupt got handled since the last boot. The first value represents
the total of serviced interrupts. Depending on the use case, a look into the /proc/inter-
rupts file can be helpful [CRKO05].

ctrt: counts how many context switches are made since the last system boot. A con-
text switch is the process of switching from the currently running process, storing its state
and loading the state of the new process [TB15].

btime: shows the boot time since 1970-01-01 00:00:00 + 0000 (UTC) in seconds.
processes: number of processes created since the last boot.

procs _running: number of processes which are currently in a runnable state.
procs_blocked: number of processes blocked because they wait for 10 to finish.

softiqr: lists the number of softiqr handled. The first value is the total of all subse-
quent values, and all subsequent values correspond to their softiqr number.

4.1.2 /proc/<PID> /stat

So far, we have considered system-wide statistics. Now we want to take a look at process-
specific values. For this, we examine the /proc/<PID>/stat file. Please replace the
<PID> with an existing Process ID (PID).

The output from this file is less readable and is meant to be used by programs. From
the man page!®, we know that there are 52 values, but this would go beyond the scope
of this report. For a complete list, please see the man page. We will only take a look at
some selected values.

e (1) PID! of the selected process.

e (2) The (file-) name of the process.

15 man proc

16 At this point, it can seem unnecessary to specify the PID twice, once in the path and once in the file.
But the path /proc/self exists, which redirects to /proc/<PIS>, the directory of the current process.

Section 4 Lukas Steinegger 7

Monitoring System Performance

253051 (bash) S 252970 253051 253051 34816 254899 4194304 4435 44153 0 0
4 021 18 20 0 1 0 1814020 13402112 1477 18446744073709551615
94339739869184 94339740782349 140728151514896 0 0 O 65536 3686404
1266761467 1 0 0 17 2 0 0 0 O O 94339741026992 94339741075024
94339760603136 140728151517360 140728151517365 140728151517365
140728151519214 0

Listing 6: Example output of the cat /proc/<PID>/stat command.

) Current state the process is in. The most important values are (R)unning and
)leeping.
4) PPID, the PID of the parent process.

14) utime is the time the process spent in user mode.

)
15) stime is the time the process spent in system/kernel mode.
)

20) num__ threads is the number of threads belonging to this process.

[}
~—~ — —~ —~ — A~ N

22) starttime is the number of clock ticks before the process was started counting
from the boot time.

Note that utime, stime, and starttime are recorded using clock ticks. This is discussed
in 4.1.1.

4.1.3 /proc/meminfo

The last file we want to inspect is /proc/meminfo. As the name suggests, it covers memory
information. This file is nicely structured, with key-value-unit-pairs. The values are quite
self-describing, and are nice to parse with a simple routine. We do not want to dive deeper
into the meaning of each and every value. For more details, please look at the man page.
We use this file to gather memory-specific information. Note that the values can be hard
to interpret since processes can share their memory space. For example, the total memory
available could be lower than the memory used in total by all processes together.

4.2 The implementation

One important design choice was to use the async functionality from Python. With that,
gathering each metric was able to be implemented with its own subroutine using a loop.
The loops then suspended their work using await asyncio.sleep(sleep) to pass the
execution to the other routines. With this approach, it is easy to extend the functionality
of the program without manipulating other functions.

As a drawback, it should be noted that in a more extendable approach, it would be nice
to have each metric collection have its own python file/module, which would be loaded
dynamically as needed. So far, our implementation has all collection routines in a couple
of files linked together. With such an approach, it would be easier to support another
tool to collect additional metrics.

Section 4 Lukas Steinegger 8

Monitoring System Performance

Further, our implementation uses the REST-API from the InfluxDB. The developers
of InfluxDB provide two Python modules to interact with their DB. Version v1 is archived
but still in the PyPi'” index. Version v2!8 is actively maintained on GitHub.

During the development, we simply could not get them to run as expected, so we
fell back to the REST-API, which worked flawlessly using the Influx one-line-protocol.
In future development, more work should be put into getting the modules to work since
their interface seemed to be well designed.

4.2.1 Usage

Lastly, we want to show some example usages of our tool. Our tool can be downloaded
from Gesellschaft fiir wissenschaftliche Datenverarbeitung mbH Géttingen (GWDG) Git-
Lab instance here!®.

The Tool is run by the command python main.py. With the flags --influx-domain
(default: localhost) --influx-port (default: 8086) and --influx-db (default: TMP)
the respected Influx parameter can be set. Alternatively, the --local flag can be used
and the metrics are printed to stdout. The tool uses the Influx one-line protocol.

With the flags --cpu and --mem, general system information about the cpu and the
memory usage are collected. Those two flags use the file /proc/stat and /proc/meminfo,
respectively. When the program is called with a PID, it collects the specific information
from /proc/<pid>/stat file. To specify the collection interval, --seconds or -s can be
used. Their arguments are integers specifying the interval length in seconds. So far, the
interval can only be specified using seconds.

Some drawbacks of the tool so far are that a lot of the possible errors are not handled
and just passed to the user. The tool does not have an installation or a package to easily
install it using a packet manager.

python3.10 main.py --cpu --local

python3.10 main.py --cpu --mem --local -s 2

python3.10 main.py --local 390121

python3.10 main.py --influx-domain localhost \
--influx-port 8080 \
--influx-db TMP \
--Ccpu --mem

Listing 7: Usage examples of our implementation.

5 Conclusion

First of all, we discussed the tools cc-metric-collector, PCP and Telegraf. We tried to
understand the tools as well as we could. In addition, we explained the Influx one-
line protocol which we also support in our implementation. And finally, we got to the
implementation of our approach of a performance agent. We discussed the main design
choices and showed some examples of how to use it.

https://pypi.org/
Bhttps://github.com/influxdata/influxdb-client-python
Yhttps://gitlab.gwdg.de/lukas.steinegger/performance-agent

Section 5 Lukas Steinegger 9

https://pypi.org/
https://github.com/influxdata/influxdb-client-python
https://gitlab.gwdg.de/lukas.steinegger/performance-agent
https://pypi.org/
https://github.com/influxdata/influxdb-client-python
https://gitlab.gwdg.de/lukas.steinegger/performance-agent

Monitoring System Performance

6 Limitations and Future work

Now we want to discuss some limitations of our work as well as some possible future
work. We mainly tested the tools only on one Ubuntu machine. Especially our own
implementation was developed and tested on the same machine. Running the software
on other machines could result in unexpected errors. Additionally, a monitoring system
should be set up and tested on multiple machines.

Furthermore, we did not measure the performance of the tools or even compare them
to each other. Particularly, it would be interesting to see how our Python implementation
performs compared to the other tools. Lastly, it is important to carefully consider the
right metrics to collect. Just collecting any metrics can result in a huge amount of data,
and the selection process of meaningful metrics is just deferred to the analysis.

Section 6 Lukas Steinegger 10

Monitoring System Performance

References

[CRKO05] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linuz Device
Drivers, Third Edition. 3rd ed. O’'Reilly Media, Inc., 2005. 1SBN: 9780596005900.

[TB15] A.S. Tanenbaum and H.J. Bos. Modern Operating Systems, 4th Edition. En-
glish. Pearson Higher Education, 2015. 1SBN: 978-0133591620.

Section Lukas Steinegger 11

	Contents
	List of Listings
	List of Abbreviations
	Motivation
	System Performance Monitoring
	Performance Agents
	cc-metric-collector
	Performance Co-Pilot
	Telegraf
	InfluxDB

	Own Implementation
	The /proc Directory
	/proc/stat
	/proc/<PID>/stat
	/proc/meminfo

	The implementation
	Usage

	Conclusion
	Limitations and Future work
	References

